Self-motions of planar projective Stewart Gough platforms

Georg Nawratil

Institute of Geometry, TU Dresden, Germany Research was supported by FWF (1408-N13)

Advances in Robot Kinematics, June 24-28 2012, Innsbruck, Austria

Austrian Science Fund FUIF

Table of contents

- [1] Introduction
- [2] Basic results
- [3] Spherical self-motions
- [4] Schönflies self-motions
- [5] Planar affine SGPs with self-motions
- [6] Conclusion and future research
- [7] References and acknowledgements

[1] What is a self-motion of a SGP?

The geometry of a SGP is given by the six base anchor points $M_i \in \Sigma_0$ and by the six platform points $m_i \in \Sigma$.

A SGP is called planar, if M_1, \ldots, M_6 are coplanar and m_1, \ldots, m_6 are coplanar. The carrier planes are denoted by π_M resp. π_m .

 M_i and m_i are connected with a SPS leg.

If all <u>P</u>-joints are locked, a SGP is in general rigid. But under particular conditions, the manipulator can perform an n-parametric motion (n > 0), which is called self-motion.

[1] **Planar projective SGPs**

Definition 1 A planar SGP is called projective if M_i and m_i are related by a non-singular projectivity κ ; i.e. $m_i \kappa = M_i$ for i = 1, ..., 6.

Remark: If κ is singular, all base anchor points would collapse into a line or a point, which yields trivial cases of architecturally singular SGPs.

Due to the results of Chasles [8], Karger [4,9], Röschel and Mick [6], a planar projective SGP is architecturally singular if and only if one set of anchor points is located on a conic section.

As it is well known that architecturally singular SGPs possess self-motions (over \mathbb{C}) in each pose, we are only interested in non-architecturally singular planar projective SGPs with self-motions.

[2] Basic results

Theorem 1 (Proof was given by Karger [9])

A singular configuration of non-architecturally singular planar projective SGP does not depend on the distribution of the anchor points in the platform and the base, but only on the mutual position of the planes π_M and π_m and on the correspondence between them. The configuration is singular if and only if either one of the legs can be replaced by a leg of zero length or two legs can be replaced by aligned legs.

Lemma 1 (Proof is given in the presented paper, pages 28–29) One can attach a two-parametric set of additional legs to planar projective SGPs without changing the forward kinematics and singularity surface.

Remark: Due to Lemma 1, it is clear why a singular configuration does not depend on the distribution of the anchor points in π_M and π_m (cf. Theorem 1).

[2] Basic results

s denotes the line of intersection of π_M and π_m in the projective extension of the Euclidean 3-space.

Definition 2

A self-motion of a non-architecturally singular planar projective SGP is called elliptic, if in each pose of this motion s exists with $s = s\kappa$ and where the projectivity from s onto itself is elliptic.

Theorem 2

A self-motion of non-architecturally singular planar projective SGPs can only be:

- 1. a spherical self-motion with rotation center $m\kappa = m$,
- 2. a Schönflies self-motion, where the direction of the rotation axis is parallel to the planes $\pi_{\rm M}$ and $\pi_{\rm m}$,
- 3. an elliptic self-motion.

2] Basic results

Proof of Theorem 2

As in any pose of a self-motion of a planar projective SGP, the manipulator has to be in a singular configuration, we can apply Theorem 1. Therefore, the manipulator is singular if and only if:

- a. π_{M} and π_{m} coincide ($\Rightarrow \exists$ real fixed point \Rightarrow case 1 or 2),
- b. $S = S\kappa$ (real fixed point \Rightarrow case 1 or 2) holds, where S is the intersection point of s and s κ ,
- c. $s = s\kappa$. If the restriction of κ to s is hyperbolic or parabolic, we also get at least one real fixed point (\Rightarrow case 1 or 2). The elliptic projectivity yields case 3.

Remark: Due to Theorem 2, only the three listed types of motions are candidates for self-motions of non-architecturally singular planar projective SGPs.

[3] **Spherical self-motions**

If a planar projective SGP has a spherical self-motion about $m\kappa = m$, the spherical image of this manipulator with respect to the unit sphere S^2 centered in $m\kappa = m$ has to have a self-motion as well.

Therefore the problem reduces to the determination of non-degenerated spherical 3-dof RPR manipulators with self-motions, where the base points M_1° , M_2° , M_3° and the platform points m_1° , m_2° , m_3° are located on great circles.

Due to Nawratil [14], there exists only the illustrated solution (after relabeling of anchor points and interchange of platform and base).

[3] **Spherical self-motions**

This 3-dof R<u>P</u>R manipulator has a pure rotational self-motion around the axis $a := [m\kappa = m, m_1^{\circ} = m_3^{\circ} = M_2^{\circ}].$

Therefore, we can only add an additional leg $\overline{m_4^{\circ}M_4^{\circ}}$ without restricting the self-motion if $m_4^{\circ} = m_1^{\circ}$ or $M_4^{\circ} = M_2^{\circ}$ holds.

Therefore, κ has to map all platform anchor points \notin a on points of a $\Rightarrow \kappa$ is singular \Rightarrow

Theorem 3

Non-architecturally singular planar projective SGPs do not have spherical selfmotions with rotation center $m\kappa = m$.

[4] Schönflies self-motions

The Schönflies motion group consists of all translations combined with all rotations about a fixed direction d, which in our case is parallel to π_M and π_m .

It is well known (e.g. Husty and Karger [15]), that platform points being on lines parallel to d have congruent trajectories in a Schönflies motion. Therefore, every leg can be translated in direction d without changing this motion.

[4] **Case** $h\kappa \neq h\tau$

Now, every point $m \in h$ (with exception of m_e) can only rotate about the line $[m\tau, m\kappa] \parallel d$. Therefore, the platform cannot move in direction d during the self-motion and the problem reduces to the following planar one:

Determine all non-degenerated 3-dof RPR manipulators with self-motions, where the platform points m_1^- , m_2^- , m_3^- and base points M_1^- , M_2^- , M_3^- are collinear.

It is well known, that only two solutions exist:

• Planar analogue of the spherical self-motion:

The same arguments as in the spherical case yield again a contradiction.

[4] **Case** $h\kappa \neq h\tau$

• <u>Circular translation:</u>

If we choose the y-axis of the moving and the fixed frame in direction of d, the matrix \mathbf{P} of the projectivity κ can be written as:

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ p_{21} & 1 & 0 \\ p_{31} & p_{32} & p_{33} \end{pmatrix} \quad \text{with} \quad p_{33} \in \mathbb{R} \setminus \{0, 1\} \quad \text{and} \quad p_{21}, p_{31}, p_{32} \in \mathbb{R}.$$
 (*)

As ideal points are mapped onto ideal points, κ is an affinity.

Remark: For the proof of the matrix \mathbf{P} see pages 31–32 of the presented paper. \diamond

Austrian Science Fund **FUIF** 11

[4] **Case** $h\kappa = h\tau$

For this case, it can also be proven (cf. page 32 of the presented paper) that κ has to be an affinity with the following matrix **P**:

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & 1 \end{pmatrix} \quad \text{with} \quad p_{22} \in \mathbb{R} \setminus \{0\} \quad \text{and} \quad p_{21}, p_{31}, p_{32} \in \mathbb{R}.$$
 (o)

Theorem 4

A non-architecturally singular planar projective SGP can only have a Schönflies self-motion with the direction d of the rotation axis parallel to π_{M} and π_{m} , if it belongs to the subset of planar affine SGPs.

Moreover, if we choose the y-axis of the moving and the fixed frame in direction of d, the affinity κ has to be of the form given in (\star) or (\circ).

[5] **Planar affine SGPs with self-motions**

Theorem 5

Assume a non-architecturally singular planar affine SGP is determined by $\mathbf{M}_i = \mathbf{a} + \mathbf{A}\mathbf{m}_i$. Then this manipulator has a self-motion if and only if the singular values s_1 and s_2 of \mathbf{A} with $0 < s_1 \leq s_2$ fulfill $s_1 \leq 1 \leq s_2$.

Proof of Theorem 5

First of all, we prove that planar affine SGPs cannot have elliptic self-motions: If $s = s\kappa$ is not the ideal line, then at least the ideal point of $s = s\kappa$ is a fixed point. Therefore, $s = s\kappa$ has to be the ideal line during the whole elliptic self-motion. Hence, the self-motion is a Schönflies motion with d orthogonal to $\pi_M \parallel \pi_m$.

As all points of π_m have to run on spherical paths, this Schönflies motion can only be the Borel Bricard motion due to Husty and Karger [15]. Therefore, the corresponding points of π_m and π_M have to be related by an inversion (\neq projectivity).

[5] Continuing the proof of Theorem 5

Therefore, planar affine SGPs with self-motions have to be of type (\circ) or (\star). We consider the image of the unit vectors $\mathbf{c} = (\cos \varphi, \sin \varphi) \in \pi_{\mathsf{m}}$ for $\varphi \in [0, 2\pi]$. Clearly, the tie points of the vectors \mathbf{Ac} are located on an ellipse k.

Now, it can easily be seen (cf. page 33 of the presented paper) that the necessary and sufficient condition for an affinity of type:

- (•) is that k and c have a common point,
- (\star) is that k and c have a common tangent.

Clearly, we only get real common points and tangents of k and the unit circle c if the singular values $0 < s_1 \leq s_2$ of A fulfill $s_1 \leq 1 \leq s_2$. \Box

[5] **Remarks on self-motions of planar affine SGPs**

• All self-motions of planar affine SGPs are pure translations, and the self-motion is two-dimensional only if the platform and the base are congruent and all legs have equal length.

This can easily be proven by direct computations (cf. Nawratil [14]), but this result was also already known to Karger [9].

- Theorem 5 also implies the result of Karger [10], that non-architecturally singular planar equiform SGPs cannot have self-motions, as in this case $s_1 = s_2 \neq 1$ holds.
- All planar affine SGPs given in (★) and (○) are Schönflies-singular manipulators due to item (3) and item (2), respectively, of Theorem 3 given by Nawratil [16].

[6] **Conclusion and future research**

We proved that non-architecturally singular planar projective SGPs have either:

- elliptic self-motions or
- pure translational self-motions.

The latter are the only self-motions of planar affine SGPs. For these manipulators, we also presented a geometric characterization in Theorem 5.

It remains open whether elliptic self-motions even exist, as no examples are known.

Remark: An answer to this question was recently found (paper is in preparation).

[7] **References and acknowledgements**

All references refer to the list of publications given in the presented paper:

Nawratil, G.: Self-motions of planar projective Stewart Gough platforms. Latest Advances in Robot Kinematics (J. Lenarcic, M. Husty eds.), pp. 27–34, Springer, 2012, ISBN 978-94-007-4619-0.

Acknowledgements

This research is supported by Grant No. I 408-N13 of the Austrian Science Fund FWF within the project "Flexible polyhedra and frameworks in different spaces", an international cooperation between FWF and RFBR, the Russian Foundation for Basic Research.

