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1. Introduction

U-joint: It can be seen as a serial 2R-chain with orthogonal axes u1 and u2. If
these axes intersect each other, we have the classic U-joint, otherwise we get a
so-called eccentric one.

Advantages of eccentric U-joints (cf. [3,4]):
• larger pivot range =⇒ extension of workspace,
• stiffer design =⇒ improvement of accuracy,
• cheaper production.

U-joints and C-joints are connected as follows:
• the lines u2, c and n are copunctal,
• and c intersects u2 orthogonally. u1

ec
ce

n
tr

ic
it
y

common normal . . . n
of u1 and u2

u2

c . . . axis of C-joint

Remark: These assumptions keep the kinematic structure of the UCU-legs simple
enough for practical application (cf. [4]). ⋄
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1. Introduction

For the UCU-legs, both types of U-joints are
allowed, which are in all cases passive joints of
the manipulator.

C-joint: As only the translation along c can be
controlled actively, the C-joint can be replaced
by a composition of an active P-joint along c
and a passive R-joint with rotary axis c.

Therefore each leg connecting Σ0 with Σ can
be seen as a serial RRPRRR-chain, where the
P-joint is active and the five R-joints are passive.

Notation:
We denote the jth rotation axis of the ith leg
by aij for i = 1, . . . , 6 and j = 1, . . . , 5.

ai1∈ Σ0

ai2

ai3

ai4

ai5∈ Σ
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1. Dual vector calculus

The rotation axis aij is given by

aij = aij + εâij,

where aij is the unit vector along aij. âij is
the so-called moment vector, which is given by
xij × aij, where xij is the coordinate vector of
an arbitrary point Xij ∈ aij.

ε is the dual unit, which has the property ε2 = 0.

The screw for the prismatic joint of the ith leg
is given by

ti = o + εt̂i,

where o denotes the zero vector and t̂i = ai3

the unit vector in direction of the translation.
ai1∈ Σ0

ai2

ai3

ai4

ai5∈ Σ
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2. Jacobian Matrix of the i-th leg

The Jacobian matrix Ji of the ith leg (= serial
RRPRRR-robot) can be written as (cf. [7]):

Ji =

(
ai1 ai2 ai3 ai4 ai5 o

âi1 âi2 âi3 âi4 âi5 t̂i

)
.

Therefore the instantaneous screw q = q + εq̂

of Σ with respect to Σ0 can be computed as

(
q

q̂

)
= Ji





ωi1
...

ωi5

τi



 ,

ωij . . . angular velocity of the jth R-joint,
τi . . . translatory velocity of the P-joint.

ai1∈ Σ0

ai2

ai3

ai4

ai5∈ Σ
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2. Jacobian Matrix of the EE

If we assume that rk(Ji) = 6 for i =
1, . . . , 6, we can compute

J−1

i

(
q

q̂

)
=





ωi1
...

ωi5

τi



 .

By denoting the sixth row of J−1

i by

(̂ji, ji), the 6 × 6 Jacobian matrix J of
the platform can be written as

J =




ĵ1 j1
... ...

ĵ6 j6



 .

J transforms the instantaneous screw of
the platform into the translatory veloci-
ty of the active joints, i.e.

J

(
q

q̂

)
=




τ1
...
τ6



 .

Remark: The instantaneous screw
j
i
:= jTi + ε̂jTi equals an instantaneous

rotation around the carrier line of the
ith P-joint. Therefore (ji, ĵi) are the
spear coordinates of the axis ai3. ⋄
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2. rk(Ji) < 6 . . . leg singularity

Geometrically, this means that the five rotary axes and the axis of the translation
(ideal line) belong to a so-called linear line complex (cf. Section 3 of [17]). In this
case, there exists a non-trivial linear-combination of the zero screw o, i.e.

ωi1ai1 + ωi2ai2 + ωi3ai3 + ωi4ai4 + ωi5ai5 + τiti = o.

a) τi 6= 0: The translatory velocity of the ith active joint cannot be transmitted
onto the EE, as the velocity ratio (τ1 : . . . : τi : . . . : τ6) = (0 : . . . : 1 : . . . : 0)
causes an instantaneous standstill of Σ, i.e. q = o.

b) τi = 0: Now there is an infinitesimal redundant mobility of the leg itself (but
not of Σ). In the worst case, this can result in a self-motion of the leg.

Remark: In a leg singularity, the leg loses 6− rk(Ji) dofs. If an infinitesimal screw
belonging to the lost dofs is applied to Σ, this can yield a breaking of the leg. ⋄
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2. rk(J) < 6 . . . EE singularity

The hexapod is in an EE singularity, if and only if, the carrier lines of the P-joints
belong to a linear line complex. In this case, there exists at least a screw q 6= o

with

J

(
q

q̂

)
=

(
o

o

)
.

Therefore Σ is infinitesimal movable while all active joints are locked. In the worst
case, an EE singularity can result in a self-motion of Σ.

Remark: This singularity study also shows, that the hexapods under consideration
only have line-based singularities, even though the last three joints of each leg
are not equivalent with a S-joint, if an eccentric U-joint is used at Σ. Therefore
these are more general parallel manipulators with line-based singularities than those
characterized in Section 4 of [2]. ⋄
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3. Performance Index: Motivation

In future applications, the hexapod’s motion is
controlled directly by skilled workers and not by
highly-qualified academics.

Therefore there is an interest in an index,
which gives the operator a feedback about
the closeness of a given non-singular hexapod-
configuration to the next singular one.

As there does not exist a distance metric in
the pure mathematical sense, if rotational and
translatory dofs are involved, we are looking for
a performance index PI, which assigns to each
configuration C a scalar PI(C) ∈ R.

Wheel loaders are coupled by
hexapods with different EEs
(cf. research project MOBIMA)
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3. Desirable properties of a PI

1. PI(C) ≥ 0 for all C of the configuration space,
2. PI(C) = 0 if and only if C is singular,
3. PI(C) is invariant under Euclidean motions of the reference frame,
4. PI(C) is invariant under similarities,
5. PI(C) has a geometric/kinematic meaning,
6. PI(C) is computable in real-time.

The PI has to evaluate the closeness to different types of singularities simulta-
neously, as separated computations of the closeness to EE and leg singularities go
at the expense of the computation time, and one is confronted with the problem of
combining the obtained values to a single meaningful closeness index.

But exactly this clear geometric/kinematic meaning is of importance for identifying
a critical value, which indicates that a given configuration is too close to a singularity
for guaranteeing a save performance of the hexapod.
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3. Review

As the set of singular poses is solely determined by the hexapods geometry, a PI,
which makes demands to evaluate the closeness to the next singularity, should only
depend on geometric/kinematic properties of the inspected non-singular pose.

Therefore such a PI must not depend on the EE. As a consequence, all known
condition number indices [8,14,15,21] as well as the local singularity transmission
index [11] are out of question.

Moreover the requested index must not depend on non-kinematic parameters as
mass or stiffness, which exclude also the indices presented in [1,6,18].

Also the manipulability [29] and the best fitting linear line complex [16,19], which
are EE independent PIs, cannot master our demands (cf. presented paper).
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3. Control Number CTN for SGPs

The CTN fulfills all six demands, but until
now it is only defined for evaluating the clo-
seness to EE singularities of Stewart Gough
platforms (SGP).

In an EE singularity of a SGP, there exists an
infinitesimal motion of Σ while all P-joints
are locked.

In practice, configurations must be avoided,
where minor (or even zero) variations of the
leg lengths have uncontrollable large effects
on the instantaneous displacement of Σ.
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3. Control Number CTN for SGPs

The question is, which measurable parameter of SGPs indicates the circumstance
of uncontrollability in a natural way and has a geometric/kinematic meaning.

The answer to this question are the angular velo-
cities of the S-joints (see figure).

We computed the maximum λmax and the mi-
nimum λmin of the sum of the squared angular
velocities of the passive joints under the nor-
malizing condition that the sum of the squared
translatory velocities of the active joints equals 1.

CTN :=

√
λmin

λmax

∈ [0, 1].

Remark: For details please see [13,14,15]. ⋄
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4. Basic Theorem for the Generalized CTN

Theorem 1. A leg singularity of type (a) with rk(Ji) = 5 cannot exist.

Proof: As ai1, . . . , ai5 intersect (or are even
identical with) the carrier line of the ith P-joint
(= line ai3), the linear line complex L spanned
by ai1, . . . , ai5 is singular.

If ai1, . . . , ai5 are linearly independent (⇒
rk(Ji) = 5) L is uniquely determined.

Therefore a leg singularity of type (a) with
rk(Ji) = 5 exists, if and only if the axis t
of ti intersects ai3. But this can never happen,
as t is the ideal line of the plane orthogonal to
ai3. � ai1∈ Σ0

ai2

ai3

ai4

ai5∈ Σ
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4. Consequences of the Basic Theorem

As a consequence of Theorem 1 a leg singularity of type (a) can only occur if
rk(Ji) < 5 holds, but this implies the existence of a leg singularity of type (b).

=⇒ The PI only has to indicate EE singularities and leg singularities of type (b).

The common characteristic property of these two singularities is that there exists
an infinitesimal mobility while all active joints are fixed.

Therefore the so-called Generalized Control Number GCTN can be used as index:

We computed the maximum λ+ and the minimum λ− of the sum of the squared
angular velocities of the passive joints under the normalizing condition that the
sum of the squared translatory velocities of the active joints equals 1.
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4. Computation and Definition of GCTN

λ+ and λ− is the largest resp. smallest general eigenvalue of Z with respect to N,
with

objective function ζ:

6∑

i=1

5∑

j=1

ω2
ij ⇐⇒ ζ(q) : (qT , q̂T )Z

(
q

q̂

)
,

and

normalizing condition ν:

6∑

i=1

τ2
i = 1 ⇐⇒ ν(q) : (qT , q̂T )N

(
q

q̂

)
= 1.

GCTN :=

√
λ−

λ+

∈ [0, 1].
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4. Main Theorem on GCTN

Theorem 2. The GCTN fulfills all six stated requirements.

Proof: Due to the definition of the index, all demands, with exception of the second
one, are trivially fulfilled. Therefore we only comment on demand 2:

The value of λ+ equals ∞, if and only if, the manipulator is in an EE singularity
or leg singularity of type (b), as only in these configurations an instantaneous
self-mobility exists while all active actuators are locked.

Hence it remains to check the case λ− = 0: In this case all passive joints have an
instantaneous standstill. As a consequence an instantaneous change of the EE’s
orientation is not possible and therefore only a pure translation can be performed at
this moment. A pure translation can only be done if all six legs are parallel to each
other, but this already implies rk(J) ≤ 3, as the six carrier lines of the P-joints
belong to a bundle of lines (cf. page 142 of [17]). �
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4. Additional Information from GCTN

If a given configuration is indicated by a small GCTN -value to be close to a
singularity, the corresponding eigenvector e+ of λ+ can be used to detect whether
the given configuration is close to either an EE or a leg singularity by computing

µi(q
+
) :=

5∑

j=1

ω2
ij with (q+, q̂+) := e+ for i = 1, . . . , 6.

If µi(q
+
) is close to λ+, then the manipulator is in the neighborhood of a leg

singularity of the ith leg, as µ1(q
+
) + . . . + µ6(q

+
) = λ+ holds. Otherwise, we are

in the neighborhood of an EE singularity.

Remark: Similar to the CTN , the GCTN can be used as well
• for manipulators with more than six legs (redundant hexapods),
• to optimize the kinematic design (isotropic central configuration). ⋄
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5. Example

a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13

a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12 a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11

a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15 a14a14a14a14a14a14a14a14a14a14a14a14a14a14a14a14a14
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GCTN(δ)

δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦δ = 90◦

δ = 85◦: GCTN ≈ 0.034, λ+ ≈ 2268 and
µ1 = µ3 = µ5 ≈ 509, µ2 = µ4 = µ6 ≈ 247.
According to the prognosticate behaviour, we
are close to an EE singularity.
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5. Example

a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13
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a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a14a14a14a14a14a14a14a14a14a14a14a14a14a14a14a14a14
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GCTN(θ)

θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦θ = 45◦

θ = 40◦: GCTN ≈ 0.052, λ+ ≈ 631 and
µ1 ≈ 601, which shows that we are close to
a leg singularity of the first leg.
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6. Outlook

• Determination of isotropic designs, i.e. GCTN = 1 in central configuration.

• Bernd Kauschinger and his team
(TU Dresden) try to identify a criti-
cal GCTN -value for FELIX-1.
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