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Abstract— In this paper, we present a novel index, called the
Generalized Control Number (GCTN ), which evaluates the
closeness of a given non-singular configuration of a hexapod
with UCU-legs to the next singularity. TheGCTN is invariant
with respect to similarity transformations (choice of units) and
under Euclidean motions of the reference frame (choice of
fixed frame). Moreover, this index indicates the closeness to
all types of singularities (end-effector and leg singularities)
simultaneously and it has a clear geometric/kinematic meaning.

I. INTRODUCTION

Given is a parallel manipulator with six degrees of freedom
(dofs), where the fixed base is denoted byΣ0 and the moving
platform by Σ, on which the end-effector EE is installed.
Moreover,Σ0 is connected withΣ by six UCU-legs, where
U denotes an universal joint and C a cylindrical one.

It is well known, that a C-joint has two dofs, where one is a
translation along the cylinder axisc and the other a rotation
aroundc. For the hexapods under consideration, only the
translation alongc can be controlled actively; the rotational
component is passive. Therefore, the C-joint can be replaced
by a composition of an active prismatic joint (P-joint) along
c and a passive rotational joint (R-joint) with rotary axisc.

A U-joint also has two dofs, as it can also be seen as a
serial 2R-chain, with orthogonal axesu1 and u2. If these
axes intersect each other, we have the classic U-joint and if
this is not the case, we get a so-calledeccentricone (cf. [3],
[4]). For the UCU-legs, both types of U-joints are allowed,
which are in all cases passive joints of the manipulator.

Remark 1. According to [3], [4] the advantages of eccentric
U-joints are, that they have a significantly larger pivoting
range, which results in an extension of the manipulators
workspace. At the same time, the joints can be produced
cheaper and they can be designed more compact and stiffer,
which additionally improves the accuracy. ⋄

Moreover, we assume that the connection of each U-joint
with a C-joint fulfills the following two design constraints:
• the linesu2, c andn are copunctal,
• andc intersectsu2 orthogonally,

where n denotes the common normal ofu1 and u2 and
where u2 denotes the axis of the U-joint, which is linked
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Fig. 1. Left: Connection of an eccentric U-joint and a C-joint. We get a
classic U-joint, if the eccentricity equals zero. Right: Schematic sketch of
the serial RRPRRR-chain, which corresponds with theith UCU-leg.

with the C-joint (cf. Fig. 1, left). This assumptions keep
the kinematic structure of the UCU-legs simple enough for
practical application (cf. [4]).

Summed up, each leg connectingΣ0 with Σ can also be
seen as a serial RRPRRR-chain, where the P-joint is active
and the five R-joints are passive. We denote thejth rotation
axis of theith leg by aij for i = 1, . . . , 6 and j = 1, . . . , 5
(cf. Fig. 1, right).

Based on this notation, we first study the instantaneous
kinematic of the hexapod with UCU-legs in Section II,
where the different types of singularities of this manipulator
are listed as well. In Section III, we make preliminary
considerations on an index, which evaluates the closeness
of a given non-singular configuration to the next singularity.
Moreover, we discuss already existing performance indices
from this point of view and repeat the so-called Control
Number for Stewart Gough manipulators in more detail.
Based on this, we generalize the Control Number for the
hexapods under consideration in Section IV. We close the
paper by demonstrating the validity of this index on the basis
of a concrete example, which is given in Section V.

II. INSTANTANEOUS KINEMATICS

We use the dual vector calculus for the representation
of screws and lines (cf. page 154 of [17]). Therefore, the
rotation axisaij is given by

aij = aij + εâij , (1)

where aij is the unit vector (column vector) along the
rotation axis with respect to the fixed frame.âij is the so-



called moment vector, which is given byxij×aij , wherexij

is the coordinate vector (column vector) of an arbitrary point
Xij ∈ aij with respect to the fixed frame. Further it should be
noted, thatε is the dual unit, which has the propertyε2 = 0.

The screw for the prismatic joint of theith leg is given
by

ti = o + εt̂i, (2)

whereo denotes the zero vector and̂ti the unit vector in
direction of the translation with respect to the fixed frame.
Therefore, in our casêti equalsai3.

A. Jacobian matrixJi of the ith leg

As every leg can be seen as a serial RRPRRR-robot, the
6×6 Jacobian matrixJi of the ith leg can be written as (cf.
[7]):

Ji =

(
ai1 ai2 ai3 ai4 ai5 o

âi1 âi2 âi3 âi4 âi5 t̂i

)
. (3)

Therefore, the instantaneous screwq = q + εq̂ of Σ with
respect toΣ0 can be computed as

(
q

q̂

)
= Ji





ωi1

...
ωi5

τi




, (4)

whereωij denotes the angular velocity of thejth R-joint and
τi the translatory velocity of the P-joint of theith leg.

The spear coordinates(pT , p̂T ) of the axisp (= normal-
ized Plücker coordinates ofp, cf. page 155 of [17]) of the
screwq can be computed according to

p =
1

ω
q, p̂ =

1

ω

(
q̂ −

ωω̂

ω2
q

)
, (5)

for ω = ‖q‖ 6= 0 andωω̂ = qq̂. The screw parameterh is
given byh := ω̂/ω, whereω̂ is the translatory velocity and
ω the angular velocity of the screwq.

If ω = ‖q‖ = 0 holds, thenq is an instantaneous
translation along the direction̂q. In this case, the axis is
the ideal line of any plane orthogonal tôq.

B. Jacobian matrixJ of the EE

If we assume thatrk(Ji) = 6 for i = 1, . . . , 6, then Eq.
(4) can be rewritten as

J−1

i

(
q

q̂

)
=





ωi1

...
ωi5

τi




. (6)

By denoting the sixth row ofJ−1

i by (̂ji, ji), the 6 × 6
Jacobian matrixJ of the platform can be written as

J =




ĵ1 j1
...

...
ĵ6 j6



 . (7)

Moreover, it should be noted that the instantaneous screw
j
i

:= jTi + ε̂jTi equals an instantaneous rotation around the

carrier line of theith P-joint. Therefore,(ji, ĵi) are the spear
coordinates(aT

i3, â
T
i3) of the axisai3 (cf. proof of the later

given Theorem 1).
Note, thatJ transforms the instantaneous screw of the

platform into the translatory velocity of the active joints, i.e.

J

(
q

q̂

)
=




τ1

...
τ6



 . (8)

C. Types of singularities

In the following, we distinguish different types of singu-
larities:
1) rk(Ji) < 6: This is a so-called leg singularity. Geomet-

rically, this means that the five rotary axes and the axis
of the translation (ideal line) belong to a so-calledlinear
line complex(cf. Section 3 of [17]). In this case, there
exist angular velocitiesωij and a translatory velocityτi

that

τiti +
5∑

j=1

ωijaij = o (9)

holds, whereo = o + εo denotes the zero screw. We
distinguish two cases:

a) τi 6= 0: In this case, the translatory velocity of theith

active joint cannot be transmitted onto the EE, as the
velocity ratio

(τ1 : . . . : τi : . . . : τ6) = (0 : . . . : 1 : . . . : 0) (10)

causes an instantaneous standstill ofΣ; i.e. q = o.
b) τi = 0: Now, there is an infinitesimal redundant

mobility of the leg itself (but not ofΣ). In the worst
case, this can result in a self-motion of the leg.

Finally, it should be mentioned, that in a leg singularity
the leg loses6− rk(Ji) dofs. If an infinitesimal screw is
applied to the platform, which belongs to the set of lost
dofs, then this can yield a breaking of the leg.

2) rk(J) < 6: This is a so-called EE singularity. Due to the
observation of Subsection II-B, this singularity can also
be interpreted by means of line geometry as follows: The
hexapod is in an EE singularity, if and only if, the carrier
lines of the prismatic legs belong to a linear line complex.
In this case, there exists at least a screwq 6= o that

J

(
q

q̂

)
=

(
o

o

)
(11)

holds. Therefore, in an EE singularity, the platform is
infinitesimal movable while all active joints are locked.
Finally it should be noted, that in the worst case, this
singularity can result in a self-motion ofΣ.

Remark 2. This singularity study also shows, that the
hexapods under consideration only have line-based sin-
gularities, even though the last three joints of each leg
are not equivalent with a spherical joint (S-joint), if an
eccentric U-joint is used atΣ. Therefore, these are more
general parallel manipulators with line-based singularities,
than those characterized in Section 4 of [2]. ⋄



III. PERFORMANCE INDEX

In future applications, it is planned that the hexapod’s
motion is controlled directly by ordinary skilled workers
and not by highly-qualified academics, e.g. wheel loaders
will be coupled by hexapods with different EEs (dredger
bucket, stacker forks, snowplough, gripper, ...).1 Therefore,
there is an interest in an index, which gives the operator
a feedback about the closeness of a given non-singular
hexapod-configuration to the next singular one.

As it is well known, that there does not exist a distance
metric in the pure mathematical sense, if rotational and
translatory dofs are involved (which is the case for a 6-dof
hexapod), we are looking for a performance indexPI, which
assigns to each configurationC a scalarPI(C) ∈ R obeying
the following six properties:

1) PI(C) ≥ 0 for all C of the configuration space,
2) PI(C) = 0 if and only if C is singular,
3) PI(C) is invariant under Euclidean motions of the

reference frame,
4) PI(C) is invariant under similarities,
5) PI(C) has a geometric/kinematic meaning,
6) PI(C) is computable in real-time.

A further challenge for the definition of the requested index
is, that it has to evaluate the closeness to different types of
singularities simultaneously, as separated computationsof the
closeness to EE singularities and leg singularities (for each
leg) go at the expense of the computation time (cf. demand
6), and one is confronted with the problem of combining
the obtained values to a single meaningful closeness index
(cf. demand 5). But exactly this clear geometric/kinematic
meaning is of importance for identifying a critical value,
which indicates that a given configuration is too close to
a singularity for guaranteeing a save performance of the
hexapod.

As the set of singular poses of a manipulator is solely de-
termined by its geometry, a performance index, which makes
demands to evaluate the closeness to the next singularity,
should only depend on geometric/kinematic properties of the
inspected non-singular pose. Therefore, such a performance
index must not depend on the EE. As a consequence,
all known condition number indices (either based on the
characteristic point [21], operation ellipsoid [14], [15]or
velocity of three EE points [8]) as well as the local singularity
transmission index [11], which depends on the choice of the
application point, are out of question.

Moreover, the requested index must not depend on non-
kinematic parameters as mass or stiffness, which exclude also
the indices presented in [1], [6], [18]. In the following we
discuss the remaining EE independent performance indices,
which are known to the author, in more detail:

1Cf. research project”MOBIMA – Arbeitsausrüstungen mit parallelkine-
matischen Strukturen für mobile Arbeitsmaschinen”funded by the German
Ministry of Education and Research. For more details pleasesee:
http://tu-dresden.de/die tu dresden/fakultaeten/
fakultaet maschinenwesen/iwm/forschung/2012 mobima

A. Manipulability [20]

A drawback of the manipulabilityM(C) is, that it is not
invariant under similarity transformations and thereforeit
depends on the choice of units (cf. [12]). To overcome this
problem, some authors use the following relation as index:

M⋆ :=
M(C)

M(Cmax)
, (12)

with Cmax denoting the configuration of the hexapod, where
the manipulability is maximal (⇒ M⋆ ∈ [0, 1]). But the
computation ofCmax is a highly non-linear task and was only
done for some special manipulators of Stewart Gough (SG)
type2 (cf. [9], [10]). Moreover, only in some special cases
M(Cmax) can be interpreted geometrically as the volume,
spanned by the framework (cf. [9]).

B. Best fitting linear line complex [16], [19]

As our studied manipulator only has line-based singular-
ities (cf. Remark 2), also this index has to be taken into
consideration, which is again not invariant under similarities.
But one can solve this problem as for the case of the
manipulability.

The much bigger problem is, that this index does not
consider singular linear line complexes, where the axis is an
ideal line (cf. page 166 of [17]). In order to close this gap,
the authors of [16] proposed the computation of a second
index. But it is not clear how these two indices should be
combined to a single geometric/kinematic meaningful value,
evaluating the closeness to the next linear line complex.

Beside the already mentioned drawbacks of the manipula-
bility and the method of the best fitting linear line complex,
these two indices cannot master the challenge formulated in
the paragraph below the six demands.

C. Control Number [13], [14], [15]

As pointed out by the author in [13], [14], [15], the
Control NumberCTN fulfills all six demands. Therefore,
this index is best suited for measuring the closeness to the
next singularity in the author’s mind, but until now the
CTN is only defined for SG manipulators. As we want to
generalize theCTN for the hexapods under consideration
within the next section, we repeat its basic idea and definition
in the following two paragraphs:

As in each pose, the SPS-leg allows a rotational self-
motion around the line spanned by the centers of the S-
joints, we are only interested in an index, which evaluates
the closeness to EE singularities. Note that EE singularities
of SG manipulators have the same geometric interpretation
as the one given in item 2 of Subsection II-C. Therefore,
SG manipulators are also infinitesimal movable in EE sin-
gularities, which means that there exists an infinitesimal
motion ofΣ while all actuators are locked. As a consequence,
the velocity of Σ can be arbitrarily large (even infinity),
and therefore the posture is uncontrollable. In practice,

2These are hexapods with six SPS-legs, where both S-joints are passive
and the P-joint is active.
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respect to the inverse motion−q.

configurations must be avoided, where minor (or even zero)
variations of the leg lengths have uncontrollable large effects
on the instantaneous displacement ofΣ. The question is,
which measurable parameter of the SG manipulator indicates
the circumstance of uncontrollability in a natural way and has
a geometric/kinematic meaning for the manipulator.

The answer to this question are the angular velocities
of the S-joints (cf. Fig. 2). We computed the maximum
λmax and the minimumλmin of the sum of the squared
angular velocities of the passive joints under the normalizing
condition that the sum of the squared translatory velocities
of the active joints equals1. Then, theCTN is defined as:

CTN :=

√
λmin

λmax

∈ [0, 1]. (13)

Remark 3. For a more detailed review of the indices
discussed in Subsection III-A, III-B and III-C for parallel
manipulators of SG type, please see [15]. Moreover, these
indices are also compared within Subsection 6.4 of [15].⋄

IV. GENERALIZED CONTROL NUMBER

The base for the definition of a generalized version of the
CTN is the following theorem:

Theorem 1. A leg singularity of type (a) withrk(Ji) = 5
cannot exist.

Proof: As all rotary axesai1, . . . , ai5 intersect (or are even
identical with) the carrier line of theith P-joint (= line
ai3), the linear line complex spanned by the axesai1, . . . , ai5

equals the path normal complex of the instantaneous screwj
i

(cf. page 164 of [17]). This linear line complex is a singular
one and uniquely determined, ifai1, . . . ,ai5 are linearly
independent (⇒ rk(Ji) = 5).

Therefore, a leg singularity of type (a) withrk(Ji) = 5
exists, if and only if, the axist of ti intersects the carrier
line of the P-joint. But this can never happen, ast is the
ideal line of the plane orthogonal toai3. �

A consequence of this theorem is, that a leg singularity
of type (a) can only occur ifrk(Ji) < 5 holds, but
this implies the existence of a leg singularity of type (b).
Therefore, our performance index only has to indicate EE
singularities and leg singularities of type (b). The common
characteristic property of these two singularities is, that there
exists an infinitesimal mobility while all active joints are
fixed. Therefore, the so-called Generalized Control Number
GCTN can be used as index. The definition and computation
of the GCTN is given as follows:

We calculate the extreme values of the objective function
(sum of the squared angular velocities of the passive joints)

ζ :

6∑

i=1

5∑

j=1

ω2
ij (14)

under the normalizing condition (sum of the squared trans-
latory velocities of the active joints)

ν :

6∑

i=1

τ2
i − 1 = 0. (15)

Under consideration of Eq. (6), these two equations can be
expressed in dependency ofq. As the resulting equations are
quadratic functions inq, they can be written as:

ζ(q) : (qT , q̂T )Z

(
q

q̂

)
, (16)

and

ν(q) : (qT , q̂T )N

(
q

q̂

)
− 1 = 0, (17)

whereZ andN are6 × 6 matrices, withN = JT J.
We solve the optimization problem by introducing a La-

grange multiplierλ (cf. [5]). Then, the approach simplifies
under consideration of

∇ζ(q) = 2Z

(
q

q̂

)
, ∇ν(q) = 2N

(
q

q̂

)
, (18)

to the general eigenvalue problem

(Z − λN)

(
q

q̂

)
=

(
o

o

)
. (19)

This system of linear equations only has a non-trivial so-
lution, if the determinant of the matrixZ − λN vanishes.
Each solutionλi (general eigenvalue ofZ with respect toN)
of the resulting characteristic polynomial of degree 6 inλ
corresponds with a general eigenvectorei. Due to Eqs. (17)
and (19) we get

ζ(ei) = λi, (20)

which implies that the greatestλ+ and smallestλ− general
eigenvalue equal the requested extrema.

Theorem 2. TheGCTN , which is given by

GCTN :=

√
λ−

λ+

∈ [0, 1], (21)

fulfills all six stated requirements.



Proof: Due to the definition of the index, all demands, with
exception of the second one, are trivially fulfilled. Therefore,
we only comment on demand 2: The value ofλ+ equals∞,
if and only if, the manipulator is in an EE singularity or
leg singularity of type (b), as only in these configurations an
instantaneous self-mobility of the manipulator exists, while
all active actuators are locked (cf. Section II-C).

Hence, it remains to check the caseλ− = 0: In this
case, all passive joints have an instantaneous standstill.As a
consequence, an instantaneous change of the EE’s orientation
is not possible and therefore only a pure translation can be
performed at this moment. A pure translation can only be
done if all six legs are parallel to each other, but this already
implies rk(J) ≤ 3, as the six carrier lines of the P-joints
belong to a bundle of lines (cf. page 142 of [17]). �

Remark 4. Note, that theGCTN also masters the challenge
formulated in the paragraph below the six demands. It should
be mentioned that, similar to theCTN (cf. [14]), theGCTN
can also be used for parallel manipulators with more than
six legs, i.e. redundant hexapods with UCU-legs. ⋄

If a given configuration of the hexapod is indicated by
a smallGCTN -value to be close to a singularity, then the
corresponding eigenvectore+ of λ+ contains the following
extra information:

The joint ratio r+ := (τ+

1 : . . . : τ+

6 ), computed
from q

+
:= q+ + εq̂+ with (qT

+, q̂T
+) := eT

+ by Eq.
(8), corresponds with the most uncontrollable motion of
the hexapod, as small variations of the prismatic joints
have large effects on the instantaneous transformation of the
whole manipulator (EE singularity) or of a substructure (leg
singularity). Therefore, the joint ratior+ should be avoided.

This joint ratio r+ can also be used for evaluating the
quality of an arbitrary instantaneous joint ratior := (τ1 :
. . . : τ6) by computing the angleρ enclosed by the one-
dimensional subspacesr andr+:

ρ := arccos
±r·r+

‖r‖‖r+‖
, (22)

where the sign± has to be chosen thatρ ∈ [0, π/2] holds.
Moreover, we can even detect whether the given configu-

ration is close to either an EE singularity or a leg singularity
by computing

µi(q
+
) :=

5∑

j=1

ω2
ij (23)

for i = 1, . . . , 6. If µi(q
+
) is not far away fromλ+, then the

manipulator is in the neighborhood of a leg singularity of the
ith leg, asµ1(q

+
) + . . . + µ6(q

+
) = λ+ holds. Otherwise,

we are close to an EE singularity.

Remark 5. Note, that theGCTN can also be used to
optimize the kinematic design of the hexapods under consid-
eration, as this was done for SG manipulators with respect to
the CTN in [14], [15]. From this perspective, the hexapod
should be isotropic in the central configurationC⊙ of the
workspace, i.e.GCTN(C⊙) = 1. The topic of isotropy is
dedicated to future research. ⋄

V. EXAMPLE

Due to the simplicity of the inverse kinematics, we study
a hexapod, where both U-joints of all UCU-legs are classic
ones. Moreover, we assume that the centersBi andPi of the
base U-joint and platform U-joint, respectively, of theith leg
are located on semi-regular hexagons with a circumcircle
of radius 1. Without loss of generality, we can choose a
Cartesian coordinate system inΣ0, thatBi andPi have the
following coordinate vectorsbi andpi, respectively:

bi = (cosαi, sinαi, 0)
T

, pi = (cosβi, sin βi, d)
T

,

with

α1 = β2 −
π

3
= −α, α2 = β1 +

π

3
= α,

α3 = β4 −
π

3
=

2π

3
− α, α4 = β3 +

π

3
=

2π

3
+ α,

α5 = β6 −
π

3
=

4π

3
− α, α6 = β5 +

π

3
=

4π

3
+ α.

Moreover, we set the design parameterα equal toπ/12 and
the configuration parameterd equal to 1 in order to get a
presentable graphical illustration of the hexapod’s central
configurationC⊙. In addition, we can still select the direction
of the first rotational axisai1 through Bi as well as the
direction of the last rotational axisai5 through Pi. They
are chosen in a way, that they contain the center of the
corresponding circumcircle (cf. Fig. 3).

By rotating the platform ofC⊙ around the lineg spanned
by the centers of the two circumcircles about the angleπ/2,
we get into the EE singularity illustrated in Fig. 4. The value
of the GCTN , in dependency of the rotation angleδ ∈
[0, π/2], is displayed in Fig. 6.

By rotating the platform ofC⊙ aroundg about the angle
π/6, we get into the intermediate poseC⊘, where the axis
a13 is parallel tog. If we move the hexapod out ofC⊘, by
rotating the platform about the angleπ/4 around the line
h, which passes through the center of the platform and is
orthogonal to the plane spanned bya13 andg, then we get
into the leg singularity illustrated in Fig. 5. The value of the
GCTN , in dependency of the rotation angleθ ∈ [0, π/4] of
the rotation aroundh, is displayed in Fig. 6.

In the following we study a configuration close to the
leg singularity and EE singularity, respectively, from the
perspective of the last paragraph before Remark 5. For e.g.
θ = 40◦, we getGCTN ≈ 0.052, λ+ ≈ 630.867 and

µ1 ≈ 600.997, µ2 ≈ 7.271, µ3 ≈ 4.472,

µ4 ≈ 3.370, µ5 ≈ 3.806, µ6 ≈ 10.951,

which shows that we are close to a leg singularity of the first
leg. In contrast, for the configuration given byδ = 85◦, we
get GCTN ≈ 0.034, λ+ ≈ 2267.560 and

µ1 = µ3 = µ5 ≈ 508.978, µ2 = µ4 = µ6 ≈ 246.875.

According to the prognosticate behaviour, we are close to an
EE singularity.
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Fig. 3. The hexapod in its central configurationC⊙. The manipulator is far
from being isotropic asGCTN(C⊙) ≈ 0.314 holds. E.g. the corresponding
octahedral manipulator (α = 0) in this pose has aGCTN of about0.715.

Fig. 4. A well-known EE singularity of the hexapod. Note, that the camera
position for the Figs. 3, 4 and 5 is always the same with respect to Σ0.
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a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15

Fig. 5. Leg singularity of the hexapod: The axesa13 (green) anda15 (red)
coincide. The axisa14 is not displayed, as it is not uniquely determined
due to a rotational self-mobility of the leg around the axisa13 = a15.
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