Generalizing the Control Number for 6-dof UCU Hexapods
with classic or eccentric U-joints

Georg Nawratil*

Abstract— In this paper, we present a novel index, called the
Generalized Control Number (GCTN), which evaluates the
closeness of a given non-singular configuration of a hexapod
with UCU-legs to the next singularity. The GCTN is invariant
with respect to similarity transformations (choice of units) and
under Euclidean motions of the reference frame (choice of
fixed frame). Moreover, this index indicates the closenessot
all types of singularities (end-effector and leg singulaties)
simultaneously and it has a clear geometric/kinematic meang.

. INTRODUCTION

Given is a parallel manipulator with six degrees of freedom
(dofs), where the fixed base is denoted®hyand the moving
platform by X, on which the end-effector EE is installed.
Moreover,3, is connected withx by six UCU-legs, where _ S
U denotes an universal joint and C a cylindrical one. Fig. 1. Left: Connection of an eccentric U-joint and a C-joiwe get

. .. . classic U-joint, if the eccentricity equals zero. Righth8matic sketch of

Itis well known, that a C-joint has two dofs, where one is ane serial RRPRRR-chain, which corresponds with tie UCU-leg.
translation along the cylinder axésand the other a rotation
aroundc. For the hexapods under consideration, only the
translation along: can be controlled actively; the rotationalwith the C-joint (cf. Fig. 1, left). This assumptions keep
component is passive. Therefore, the C-joint can be reglacthe kinematic structure of the UCU-legs simple enough for
by a composition of an active prismatic joint (P-joint) adpn practical application (cf. [4]).

c and a passive rotational joint (R-joint) with rotary axis Summed up, each leg connectillg with ¥ can also be

A U-joint also has two dofs, as it can also be seen as seen as a serial RRPRRR-chain, where the P-joint is active
serial 2R-chain, with orthogonal axes; and u,. If these and the five R-joints are passive. We denote jtterotation
axes intersect each other, we have the classic U-joint andaikis of thei*" leg bya;; fori =1,...,6 andj = 1,...,5
this is not the case, we get a so-calztentricone (cf. [3], (cf. Fig. 1, right).

[4]). For the UCU-legs, both types of U-joints are allowed, Based on this notation, we first study the instantaneous
which are in all cases passive joints of the manipulator. kinematic of the hexapod with UCU-legs in Section II,
where the different types of singularities of this manipoita
U-ioi - . —are listed as well. In Section Ill, we make preliminary
-joints are, that they have a significantly larger pivoting . . . .

gon5|derat|ons on an index, which evaluates the closeness

range, which results in an extension of the manipulatorofa iven non-singular configuration to the next sin rit
workspace. At the same time, the joints can be producy 9 9 g gua

cheaper and they can be designed more compact and stiff loreover, we discuss already existing performance indices
which additionally improves the accuracy.

eccentricit

Remark 1. According to [3], [4] the advantages of eccentric

rom this point of view and repeat the so-called Control

Number for Stewart Gough manipulators in more detail.
Moreover, we assume that the connection of each U-joilBased on this, we generalize the Control Number for the

with a C-joint fulfills the following two design constraints hexapods under consideration in Section IV. We close the

e the linesus, c andn are copunctal, paper by demonstrating the validity of this index on the $asi
e andc intersectsu, orthogonally, of a concrete example, which is given in Section V.
where n denotes the common normal of and u, and Il INSTANTANEOUS KINEMATICS

where u, denotes the axis of the U-joint, which is linked )
We use the dual vector calculus for the representation
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called moment vector, which is given bBy; x a;;, wherex;;  carrier line of theit" P-joint. Therefore(jiji) are the spear
is the coordinate vector (column vector) of an arbitrarynpoi coordinates(a’;,a%) of the axisa;s (cf. proof of the later

Xij € a;; with respect to the fixed frame. Further it should begiven Theorem 1).

noted, that is the dual unit, which has the propetty = 0. Note, thatJ transforms the instantaneous screw of the
The screw for the prismatic joint of thé” leg is given platform into the translatory velocity of the active jointe.
by N T1
where o denotes the zero vector artd the unit vector in q 7'.6
direction of the translation with respect to the fixed frame. ) N
Therefore, in our case; equalsa;s. C. Types of singularities
In the following, we distinguish different types of singu-

A. Jacobian matrixJ; of thei*" leg larities:

As every leg can be seen 351 a serial RRPRRR-robot, the rk(J;) < 6: This is a so-called leg singularity. Geomet-
6 > 6 Jacobian matrid; of the:"" leg can be written as (cf. ~ yicaly, this means that the five rotary axes and the axis

[71): of the translation (ideal line) belong to a so-callatar
J, = (f“ 82 i3 84 A 9) ) () line complex(cf. Section 3 of [17]). In this case, there
ain Az A3 A A b exist angular velocities;; and a translatory velocity;
Therefore, the instantaneous scrgw= q + q of ¥ with that .
respect toX, can be computed as it + Zwijﬂij —o ©)
Wil j=1
(g) _g. | @ holds, whereo = o + co denotes the zero screw. We
q wis | distinguish two cases:
T a) 7; # 0: In this case, the translatory velocity of tif&

active joint cannot be transmitted onto the EE, as the

wherew;; denotes the angular velocity of thi& R-joint and velocity ratio

7; the translatory velocity of the P-joint of th&" leg.
The spear coordinatép”, p”) of the axisp (= normal- (reeoimiime)=(0:...:1:...:0) (10)
ized Plucker coordinates qf, cf. page 155 of [17]) of the

: causes an instantaneous standstilbpfi.e. q = o.
screwq can be computed according to

b) » = 0: Now, there is an infinitesimal redundant
1 1 <A w ) mobility of the leg itself (but not of). In the worst

= — D = — —_——_— 5 - . .
p o 9 P o a w2 a ®) case, this can result in a self-motion of the leg.

Finally, it should be mentioned, that in a leg singularity
the leg loses$ — rk(J;) dofs. If an infinitesimal screw is
applied to the platform, which belongs to the set of lost
dofs, then this can yield a breaking of the leg.

2) rk(J) < 6: This is a so-called EE singularity. Due to the
observation of Subsection II-B, this singularity can also
be interpreted by means of line geometry as follows: The

for w = ||q|| # 0 andw® = qq. The screw parametér is
given by h := &/w, wherew is the translatory velocity and
w the angular velocity of the scre.

If w = |lq| = 0 holds, thenq is an instantaneous
translation along the directioq. In this case, the axis is
the ideal line of any plane orthogonal &

B. Jacobian matrixJ of the EE hexapod is in an EE singularity, if and only if, the carrier
If we assume thatk(J;) = 6 for i = 1,...,6, then Eq. lines of the prismatic legs belong to a linear line complex.
(4) can be rewritten as In this case, there exists at least a scrkgy# o that

~

q

Q-0
. q o
J ()= | (6) : . . .
v wis ' holds. Therefore, in an EE singularity, the platform is
infinitesimal movable while all active joints are locked.
Finally it should be noted, that in the worst case, this

By denoting the sixth row off;* by (j;,j:), the 6 x 6 singularity can result in a self-motion af.
Jacobian matrixd of the platform can be written as

Ti

Remark 2. This singularity study also shows, that the

31 J hexapods under consideration only have line-based sin-
I=1: :1. (7) Qularities, even though the last three joints of each leg

P are not equivalent with a spherical joint (S-joint), if an

6 J6

eccentric U-joint is used ak. Therefore, these are more
Moreover, it should be noted that the instantaneous scrayeneral parallel manipulators with line-based singula,

i, = il + sf;-f equals an instantaneous rotation around th#han those characterized in Section 4 of [2]. o



lIl. PERFORMANCE INDEX A. Manipulability [20]

In fut licati it is ol d that the h q A drawback of the manipulability/(C) is, that it is not
n future applications, 1t 1S planne at the Nexapodis, ariant under similarity transformations and therefdtre
motion is controlled directly by ordinary skilled Workersdepends on the choice of units (cf. [12]). To overcome this

and not by highly-qualified academics, e.g. wheel loader : . . )
will be coupled by hexapods with different EEs (dredgeF?mblem’ some authors use the following relation as index:

bucket, stacker forks, snowplough, gripper, 1. Jherefore, M — M(C) (12)
there is an interest in an index, which gives the operator " M(Craz)’

a feedback about the closeness of a given non-singuigfi, ¢ denoting the configuration of the hexapod, where
hexapod-configuration to the next singular one. the manipulability is maximal=¢ A* € [0,1]). But the

As_ it is well known, that the.re does not exist a distanc@omputation of’,,.... is a highly non-linear task and was only
metric in the pure mathematical sense, if rotational andone for some special manipulators of Stewart Gough (SG)
translatory dofs are m_volved (which is the case for a 6-dq§,pez (cf. [9], [10]). Moreover, only in some special cases
hexapod), we are looking for a performance ind& which (¢, ) can be interpreted geometrically as the volume,
assigns to each configuratidha scalarPI(C) € R obeying spanned by the framework (cf. [9]).
the following six properties:

1) PI(C) > 0 for all C of the configuration space, B. Best fitting linear line complex [16], [19]

2) PI(C) =0 if and only if C is singular, As our studied manipulator only has line-based singular-
3) PI(C) is invariant under Euclidean motions of theities (cf. Remark 2), also this index has to be taken into
reference frame, consideration, which is again not invariant under simiiiesi
4) PI(C) is invariant under similarities, But one can solve this problem as for the case of the

5) PI(C) has a geometric/kinematic meaning, manipulability.
6) PI(C) is computable in real-time. The much bigger problem is, that this index does not

consider singular linear line complexes, where the axisis a

Teal line (cf. page 166 of [17]). In order to close this gap,

fhe authors of [16] proposed the computation of a second
index. But it is not clear how these two indices should be
combined to a single geometric/kinematic meaningful value

aluating the closeness to the next linear line complex.

A further challenge for the definition of the requested inde
is, that it has to evaluate the closeness to different tyes
singularities simultaneously, as separated computatibiine
closeness to EE singularities and leg singularities (fahea
leg) go at the expense of the computation time (cf. dema
6), and one is confronted with the problem of combining
the obtained values to a single meaningful closeness indexBeside the already mentioned drawbacks of the manipula-
(cf. demand 5). But exactly this clear geometric/kinematibility and the method of the best fitting linear line complex,
meaning is of importance for identifying a critical value,these two indices cannot master the challenge formulated in
which indicates that a given configuration is too close tthe paragraph below the six demands.

?e)s(:gg(lfnty for guaranteeing a save performance of th& Control Number [13], [14], [15]

As the set of singular poses of a manipulator is solely de- AS pointed out by the author in [13], [14], [15], the
termined by its geometry, a performance index, which makézontrol NumberCT'N fulfills all six demands. Therefore,
demands to evaluate the closeness to the next singularit@/',s index is best suited for measuring the closeness to the
should only depend on geometric/kinematic properties ef t€xt singularity in the author’s mind, but until now the
inspected non-singular pose. Therefore, such a perforenarfe LV is only defined for SG manipulators. As we want to
index must not depend on the EE. As a COnsequencg}generalize theCT N for the hexapods under consideration
all known condition number indices (either based on th_@/ithinthe next section, we repeat its basic idea and dedimiti
characteristic point [21], operation ellipsoid [14], [16] N the following two paragraphs: _
velocity of three EE points [8]) as well as the local singitjar ~ AS in each pose, the SPS-leg allows a rotational self-
transmission index [11], which depends on the choice of tH@otion around the line spanned by the centers of the S-
application point, are out of question. joints, we are only interested in an index, which evaluates

Moreover, the requested index must not depend on nofe closene_ss to EE singularities. Note that EE_ singmaariti_
kinematic parameters as mass or stiffness, which exclsge aPf SG manipulators have the same geometric interpretation
the indices presented in [1], [6], [18]. In the following we 23S the one given in item 2 of Subsection II-C. Therefore,

discuss the remaining EE independent performance indice® Manipulators are also infinitesimal movable in EE sin-
which are known to the author. in more detail: gularities, which means that there exists an infinitesimal

motion of X while all actuators are locked. As a consequence,

the velocity of ¥ can be arbitrarily large (even infinity),
1Cft. research projectMOBIMA — Arbeitsausriistungen mit parallelkine- Y y 9 ( y)

matischen Strukturen fur mobile Arbeitsmaschinémided by the German and therefore the posture Is uncontrollable. In practice,
Ministry of Education and Research. For more details please
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v, (P) A consequence of this theorem is, that a leg singularity
|~ P of type (a) can only occur ifrk(J;) < 5 holds, but
\/ ~ this implies the existence of a leg singularity of type (b).

o Therefore, our performance index only has to indicate EE
> 4\9\ singularities and leg singularities of type (b). The common
characteristic property of these two singularities ist thare
wB exists an infinitesimal mobility while all active joints are
fixed. Therefore, the so-called Generalized Control Number
q GCTN can be used as index. The definition and computation
of the GC'T'N is given as follows:
We calculate the extreme values of the objective function
B " i :
(sum of the squared angular velocities of the passive jpints
Fig. 2. Definition of the angular velocityg of the spherical base joint ) 2
(with centerB): v(P) denotes the velocity of the platform poiRt(= center ¢: Z Z Wij (14)
of S-joint) with respect to the instantaneous scegvivioreover,v, (P) (resp. i=1 j=1

v, (P)) is the component of (P) along (resp. orthogonal to) the carrier line .. ..
of the P-joint. Thenwg is defined as the length of | (P) divided through  Under the normalizing condition (sum of the squared trans-

the leg length. Note, that the definition ©f can be done analogously with latory velocities of the active joints)

respect to the inverse motionq.
- 6

v ZTZZ—l:O. (15)
i=1
?}nder consideration of Eq. (6), these two equations can be
expressed in dependency@fAs the resulting equations are
gadratic functions iny, they can be written as:

configurations must be avoided, where minor (or even zer
variations of the leg lengths have uncontrollable largectf
on the instantaneous displacement>af The question is,
which measurable parameter of the SG manipulator indicatd
the circumstance of uncontrollability in a natural way aag h o7 q
a geometric/kinematic meaning for the manipulator. ¢(a@): (@, q )z <a) 5 (16)

The answer to this question are the angular velocities
of the S-joints (cf. Fig. 2). We computed the maximunt"
Amaz and the minimum\,,;, of the sum of the squared v(q): (q",q")N (ﬂ) -1=0, (17)

" L L q
angular velocities of the passive joints under the norrradiz
condition that the sum of the squared translatory velaitievhereZ andN are6 x 6 matrices, withN = J7J.
of the active joints equals. Then, theC'T N is defined as: We solve the optimization problem by introducing a La-
grange multiplierh (cf. [5]). Then, the approach simplifies

CTN := Amin € [0,1]. (13) under consideration of
Remark 3. For a more detailed review of the indices V((q) =27Z (g), Vv(q) =2N (g), (18)
discussed in Subsection IlI-A, 11I-B and III-C for parallel g 1

manipulators of SG type, please see [15]. Moreover, thege the general eigenvalue problem
indices are also compared within Subsection 6.4 of [15].
(Z — AN) (9) = (

IV. GENERALIZED CONTROL NUMBER

The base for the definition of a generalized version of thghjs system of linear equations only has a non-trivial so-

0) : (19)

o

CTN is the following theorem: lution, if the determinant of the matri — AN vanishes.
Theorem 1. A leg singularity of type (a) withk(J;) = 5 Each solution\; (general eigenvalue & with respect taN)
cannot exist. of the resulting characteristic polynomial of degree 6Ain

_ . corresponds with a general eigenveator Due to Eqgs. (17)
Proof: As all rotary axes;, . .., a;5 intersect (or are even and (19) we get

identical with) the carrier line of theé!* P-joint (= line Cler) = A (20)
a;3), the linear line complex spanned by the axgs. . ., a;s ’ v

equals the path normal complex of the instantaneous sj%rewwhich implies that the greateat; and smallest\_ general
(cf. page 164 of [17]). This linear line complex is a singulaeigenvalue equal the requested extrema.

one and uniquely determined, #;,...,a,; are linearly o
independent 1k(J;) — 5). Theorem 2. The GCT N, which is given by
Therefore, a leg singularity of type (a) wittk(J;) = 5 N
exists, if and only if, the axis of t, intersects the carrier GCTN := oW € [0,1], (21)

line of the P-joint. But this can never happen, tas the
ideal line of the plane orthogonal tgs. O fulfills all six stated requirements.



Proof: Due to the definition of the index, all demands, with V. EXAMPLE
exception of the second one, are trivially fulfilled. Thene,
we only comment on demand 2: The valueXaf equalsoo,
if and only if, the manipulator is in an EE singularity or
leg singularity of type (b), as only in these configurations a
instantaneous self-mobility of the manipulator existsjlevh

Due to the simplicity of the inverse kinematics, we study

a hexapod, where both U-joints of all UCU-legs are classic
ones. Moreover, we assume that the cenBerandP; of the
base U-joint and platform U-joint, respectively, of tHé leg

all active actuators are locked (cf. Section 11-C). are Io<_:ated on semi-regular hexagons with a circumcircle

of radius 1. Without loss of generality, we can choose a

Hence, it remains to check the cage = 0: In this . .
case, all passive joints have an instantaneous stanéstif. Carteslan coordmate system i, thatB; and Pl have the
following coordinate vectordy; andp;, respectively:

consequence, an instantaneous change of the EE’s organtati
is not possible and therefore only a pure translation can be b = (
performed at this moment. A pure translation can only be

done if all six legs are parallel to each other, but this alyea with
implies rk(J) < 3, as the six carrier lines of the P-joints

. T . T
cos g, sina;, 0)" ,  p; = (cosf;,sinG;,d)"

T T
belong to a bundle of lines (cf. page 142 of [17]). O o = P2 — 3= % az =B+ 3%
2 2
Remark 4. Note, that theZCT N also ma_sters the challenge az = By — m_ 4T a, o = B + A ta,
formulated in the paragraph below the six demands. It should 3 3 3 3
be mentioned that, similar to théT' N (cf. [14]), theGCTN as = B — g _ 4?” —a, ag = fs + g _ 4?” +a.

can also be used for parallel manipulators with more than
six legs, i.e. redundant hexapods with UCU-legs. ¢ Moreover, we set the design parameteequal tor/12 and
If a given configuration of the hexapod is indicated bythe configuration parametet equal to 1 in order to get a

a smallGCT N-value to be close to a singularity, then thePresentable graphical illustration of the hexapod's @ntr

extra information: of the first rotational axis;; throughB; as well as the
The joint ratior™ := (r7 : ... : 7F), computed direction of the last rotational axis;s through P;. They
from g = q; + eG4 with (q7,q7) = 7 by Eq. &€ chosen in a way, that they contain the center of the

(8), corresponds with the most uncontrollable motion oforresponding circumcircle (cf. Fig. 3).

the hexapod, as small variations of the prismatic joints By rotating the platform o’ around the lineg spanned

have large effects on the instantaneous transformationeof tby the centers of the two circumcircles about the angfe,

whole manipulator (EE singularity) or of a substructurey(le We get into the EE singularity illustrated in Fig. 4. The \alu

singularity). Therefore, the joint ratiot should be avoided. of the GCTN, in dependency of the rotation angbe €
This joint ratior*™ can also be used for evaluating thel0,7/2], is displayed in Fig. 6.

quality of an arbitrary instantaneous joint ratio:= (7, : By rotating the platform of’; aroundg about the angle
. 76) by computing the angle enclosed by the one- 7/6, we get into the intermediate pose,, where the axis
dimensional subspacesandr™: a3 is parallel tog. If we move the hexapod out @f,, by

- rotating the platform about the angte/4 around the line
—_— (22) h, which passes through the center of the platform and is
Il orthogonal to the plane spanned &y; andg, then we get
where the signt has to be chosen thate [0,7/2] holds. into the leg singularity illustrated in Fig. 5. The value &t

Moreover, we can even detect whether the given config@@C'T N, in dependency of the rotation andlec [0, 7/4] of
ration is close to either an EE singularity or a leg singtyari the rotation around, is displayed in Fig. 6.

p 1= arccos

by computing In the following we study a configuration close to the
_ o > 9 23 leg singularity and EE singularity, respectively, from the
“Z(ﬂ+) T z;wij (23) perspective of the last paragraph before Remark 5. For e.g.
j:

6 = 40°, we getGCTN = 0.052, A\ ~ 630.867 and
fori=1,...,6.If ui(q+) is not far away from\., then the

manipulator is in the neighborhood of a leg singularity af th 1 ~ 600.997, p2 & 7.271, ps ~ 4.472,
i'" leg, aspi(q,) + ...+ ps(a, ) = A+ holds. Otherwise, 114 ~ 3.370, 115 ~ 3.806, 116 ~ 10.951,

we are close to an EE singularity. _ _ _ _
Remark 5. Note, that theGCTN can also be used to which shows that we are cloge tor_;\Ieg §|ngular|ty (21‘ the first
Jg_g. In contrast, for the configuration given by= 85°, we

optimize the kinematic design of the hexapods under consi N N
eration, as this was done for SG manipulators with respect t%et GOTN 70034, Ay ~ 2267.560 and
the CT'N in [14], [15]. From this perspective, the hexapod
should be isotropic in the central configuratigh, of the
workspace, i.eGCTN(Cs) = 1. The topic of isotropy is According to the prognosticate behaviour, we are close to an
dedicated to future research. o EE singularity.

M1 = U3 = U5 = 508978, M2 = g = g = 246.875.
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(1]

Fig. 3. The hexapod in its central configuratiéa . The manipulator is far
from being isotropic a&CT N (Cy ) = 0.314 holds. E.g. the corresponding
octahedral manipulatoi{= 0) in this pose has &CT N of about0.715.

(2]

(3]

(4

(5]
(6]

(7]
(8]

9
Fig. 4. A well-known EE singularity of the hexapod. Note,tttiee camera Bl

position for the Figs. 3, 4 and 5 is always the same with resjeE.
[10]

[11]

[12]

(23]

[14]

[15]

16
Fig. 5. Leg singularity of the hexapod: The axas (green) and 5 (red) [16]
coincide. The axisai4 is not displayed, as it is not uniquely determined
due to a rotational self-mobility of the leg around the axis = a;s.

[17]

(18]
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