Introducing the theory of bonds for Stewart Gough platforms with self-motions

Georg Nawratil

Institute of Discrete Mathematics and Geometry Funded by FWF (1408-N13 and P 24927-N25)

CGTA, June 24-28 2013, Ljubljana, Slovenia

Austrian Science Fund **FUF**

Overview

- **1.** Introduction
- 2. Bonds of SGPs with self-motion
 - a. SGPs with pure translational self-motions
 - b. Definition of bonds
- 3. Basic facts, results and examples on bonds
 - a. Classification of SGPs with non-translational self-motions
 - b. Check whether a SGP is free of non-translational self-motions
 - c. Determine SGPs with non-translational self-motions
- 4. Conclusion, outlook and references

1. Motivation

The theory of bonds was introduced by Hegedüs, Schicho and Schröcker [1] as a new means for the analysis of overconstrained closed linkages with R-joints.

Basic idea of bonds

Each configuration of the overconstrained closed linkage can be identified with a point on the so-called configuration curve. Bonds are the points on this algebraic curve at some degenerate infinity, which contain a lot of information regarding the geometry of the overconstrained closed chain.

Analogy for bonds

To an algebraic curve k in Euclidean 2-space, we associate the points of k at infinity. These ideal points correspond with the bonds. If this set is a singleton, the curve is a line in direction of the ideal point. If it contains the two cyclic points, the curve is circular, and so on.

1. What is a self-motion of a SGP?

The geometry of a SGP is given by the six base anchor points $M_i \in \Sigma_0$ and by the six platform points $m_i \in \Sigma$ for i = 1, ..., 6.

A SGP is called planar, if M_1, \ldots, M_6 are coplanar and m_1, \ldots, m_6 are coplanar.

 M_i and m_i are connected with a SPS leg.

If all <u>P</u>-joints are locked, a SGP is in general rigid. But, under particular conditions, the manipulator can perform an d-parametric motion (d > 0), which is called self-motion.

1. Singularity of SGPs

Theorem 1. Merlet [6] A SGP is singular (infinitesimal flexible, shaky), if and only if, the carrier lines of the six S<u>P</u>S legs belong to a linear line complex.

If a SGP is singular in every possible configuration then it is called architecturally singular.

Remark: Architecturally singular SGPs possess self-motions in each pose over \mathbb{C} .

1. Study parameters

We use Study parameters $(e_0 : e_1 : e_2 : e_3 : f_0 : f_1 : f_2 : f_3)$ for the parametrization of SE(3). Note that $(e_0 : e_1 : e_2 : e_3)$ are the so-called Euler parameters of SO(3).

All real points of the Study parameter space P^7 , which are located on the so-called Study quadric

$$\Psi: e_0 f_0 + e_1 f_1 + e_2 f_2 + e_3 f_3 = 0,$$

correspond to an Euclidean displacement with exception of the 3-dimensional subspace $e_0 = e_1 = e_2 = e_3 = 0$ of Ψ , as its points cannot fulfill the condition N = 1 with

$$N = e_0^2 + e_1^2 + e_2^2 + e_3^2.$$

All points of P^7 , which cannot fulfill this normalizing condition, are located on the so-called exceptional quadric N = 0.

1. Direct kinematics of SGPs

The solution of the direct kinematics is based on Husty's quadratic homogeneous equation in Study parameters expressing that the point $m_i := (a_i, b_i, c_i)$ is located on a sphere centered in $M_i := (A_i, B_i, C_i)$ with radius R_i (cf. [2]). This is the so-called sphere condition Λ_i with:

$$\Lambda_i: \quad (a_i^2 + b_i^2 + c_i^2 + A_i^2 + B_i^2 + C_i^2 - R_i^2)N + 4(f_0^2 + f_1^2 + f_2^2 + f_3^2) - 2(a_iA_i + b_iB_i + c_iC_i)e_0^2 + \ldots + 4(c_iB_i - b_iC_i)e_0e_1 + \ldots + 4(a_i - A_i)(e_0f_1 - e_1f_0) + \ldots = 0.$$

Now the solution of the direct kinematics over \mathbb{C} can be written as the algebraic variety V of the ideal \mathcal{I} spanned by $\Psi, \Lambda_1, \ldots, \Lambda_6, N = 1$. In general V consists of a discrete set of points with a maximum of 40 elements.

2. Basic idea of bonds for SGPs

We assume that a given SGP has a d-dimensional self-motion. As a d-dimensional self-motion corresponds with a d-dimensional solution of the direct kinematics problem, the seven quadrics $\Psi, \Lambda_1, \ldots, \Lambda_6$ have to have a d-dimensional set of points in common (= algebraic motion).

Now the points of this algebraic motion with $N \neq 0$ equal the kinematic image of the algebraic variety V. But we can also consider the points of the algebraic motion, which belong to the exceptional cone N = 0. These points are the so-called bonds of the d-dimensional self-motion.

For their exact definition, one has to consider that an algebraic motion of fixed orientation (= pure translational motion) is projected to a single point (with $N \neq 0$) of the Euler parameter space P^3 by the linear elimination of f_0, \ldots, f_3 . \implies The kernel of this projection equals the group of translational motions.

2a. SGPs with pure translational self-motions

All SGPs with pure translational self-motions can easily be characterized as follows:

Theorem 2. Nawratil [9]

A SGP possesses a pure translational self-motion, if and only if, the platform can be rotated about the center $m_1 = M_1$ into a pose, where the vectors $\overrightarrow{M_i m_i}$ for i = $2, \ldots, 6$ fulfill the condition $rk(\overrightarrow{M_2 m_2}, \ldots, \overrightarrow{M_6 m_6}) \leq 1$.

- All 1-parametric self-motions are circular translations.
- We get a 2-parametric translation iff the platform and the base are congruent ($\Rightarrow R_1 = \ldots = R_6$).

Therefore pure translational self-motions correspond with components of V.

2b. Definition of bonds

Based on this preparatory work, an exact definition of bonds reads as follows:

Definition 1. Nawratil [9] For a parallel manipulator of SG type the set \mathcal{B} of bonds is defined as:

$$\mathcal{B} := ZarClo(V^{\star}) \cap \{ (e_0 : \ldots : f_3) \in P^7 \mid \Psi = \Lambda_1 = \ldots = \Lambda_6 = N = 0 \}.$$

 V^* denotes the variety V after the removal of all components, which correspond to pure translational motions. Moreover $ZarClo(V^*)$ is the Zariski closure of V^* ; i.e. the zero locus of all algebraic equations that also vanish on V^* .

Therefore the set of bonds \mathcal{B} can be seen as exceptional points (N = 0) of the algebraic motion, which are limits of non-translational motions.

3. Example: Butterfly self-motion

We get the following two 1parametric bonds (up to conjugation of coordinates), where the ratio u : v can be seen as projective parameter with $(u, v) \neq (0, 0)$:

$$\mathcal{B} = \{(uI: u: 0: 0: vI: v: 0: 0), (0: 0: u: uI: 0: 0: v: vI)\}.$$

This SGP can perform a so-called butterfly self-motion if the x-axes of the fixed frame and moving frame coincide. The first bond corresponds to the 1-dimensional set of rotational self-motions, where the x-axes have the same orientation. For the second bond they have opposite orientation.

3. Basic facts and results on bonds

Theorem 3. Nawratil [9] The set \mathcal{B} of bonds depends on the geometry of the SGP, but not on R_1, \ldots, R_6 .

Proof: This follows directly from the equation of the sphere condition Λ_i .

Moreover, Theorem 3 and Definition 1 already imply the following result:

Theorem 4. Nawratil [9] A SGP is free of non-translational self-motions if $\mathcal{B} = \emptyset$ holds.

Due to these properties the bond theory is suited for different tasks; e.g.:

- a. Classification of SGPs with non-translational self-motions
- b. Check whether a SGP is free of non-translational self-motions
- c. Determine SGPs with non-translational self-motions

3a. Example for the classification task

We get the following four 1parametric bonds (up to conjugation of coordinates), where the ratio u : v can be seen as projective parameter with $(u, v) \neq (0, 0)$:

$$\mathcal{B} = \{(0:0:u:uI:0:0:v:vI), (uI:u:0:0:vI:v:0:0), \\ (0:uI:0:u:0:vI:0:v), (u:0:uI:0:v:0:vI:0)\}.$$

The first and second bond contain the information that the SGP possesses butterfly self-motions if the x-axes of the fixed and moving frame coincide. An analogous interpretation can be given for the bonds three and four with respect to the y-axes.

3a. Example for the classification task

The SGP also has a spherical self-motion if $M_1 = M_2$ coincides with $m_5 = m_6$. Therefore this spherical self-motion is also encoded within \mathcal{B} , which demonstrates the following: *The set of bonds is more than the sum of its single bonds*.

There exist manipulators with the same bond-set \mathcal{B} , which only possess the butterfly self-motions but no spherical self-motion.

 \implies For a serious classification of SGPs with non-translational self-motions, algebraic properties of \mathcal{B} have to be taken into consideration, which are invariant with respect to changes of the reference frames (e.g. algebraic multiplicities of bonds).

3b. Examples for the checking task

Due to Theorem 4, the following examples are free of non-translational self-motions.

Example 1: For a SGP with a *generic* geometry (= randomly generated), we get $\mathcal{B} = \emptyset$. Moreover due to Theorem 2 a *generic* SGP is also free of pure translational self-motions. Therefore a *generic* SGP does not possess any self-motions.

Example 2: The planar platform and planar base of the SGP are related by a regular affinity. Due to a well known result (e.g. [7]), we can use any six platform and base anchor points related by the affinity (as long as they are not located on a conic section) for the computation of \mathcal{B} . $\mathcal{B} = \emptyset$ verifies [4,7] that planar affine SGPs can only possess translatory self-motions if they are

not architecturally singular.

3c. Basic idea of the determination task

If we want to design SGPs with non-translational self-motions, we can also make use of the necessary condition that these manipulators have to possess bonds. This criterion can for example be used for the determination of planar and spherical 3-dof R<u>P</u>R parallel manipulators with non-translational self-motions (cf. [9]).

But in the remainder of the talk we focus on the determination of SGPs with so-called multidimensional self-motions (d-dimensional self-motions with d > 1).

Until now only the following non-architecturally singular SGP with a multidimensional self-motion is known to the author (cf. Theorem 2): The platform and the base are congruent and $R_1 = \ldots = R_6 \implies 2$ -dimensional translation.

Moreover the question is motivated by footnote 3 of [3], which reads as follows:

Examples of 2-DOF self motions are known. If non-trivial 3-DOF self motions are possible is not known. They would correspond to solids on S_6^2 .

3c. Types of 3-dimensional self-motions

We assume that a given SGP has a 3-dimensional self-motion S. Therefore its corresponding algebraic motion is also 3-dimensional and the bond-set is an algebraic variety of dimension 2; i.e. a *bonding surface*.

We classify S with respect to the dimension β of the bonding surface after its projection into the Euler parameter space P^3 (by a linear elimination of f_0, \ldots, f_3). As we have a bonding surface in the Study parameter space P^7 , β can take the values:

$$\beta = 2, \qquad \beta = 1, \qquad \beta = 0, \qquad \beta = -1.$$

In order that $\beta = i$ holds for i = -1, 0, 1, there has to exist a (2 - i)-dimensional translational sub-self-motion, which is contained in S, in each pose of S.

Remark: For i = -1 this already implies that S is a 3-dimensional translation. \diamond

3c. Example for a 2-dim. self-motion with $\beta = 0$

We study a congruent SGP, where the anchor points are located on the x-axis and a parallel line through (0, d, 0). Therefore the manipulator is architecturally singular. If all legs have equal lengths, this manipulator has two 2-dimensional self-motions.

3c. Example for a 2-dim. self-motion with $\beta = 0$

Parallelogram mode: The already known 2-dimensional translational self-motion. Therefore this self-motion is of type $\beta = -1$.

Anti-parallelogram mode: There exists a 1-dimensional translational sub-selfmotion (circular translation) in each pose of the 2-dimensional self-motion. Its corresponding bonds are as follows, up to conjugation of coordinates:

$$\left(-\frac{2u}{d}:\frac{2uI}{d}:0:0:v:-vI:u:-uI\right), \left(\frac{2u}{d}:-\frac{2uI}{d}:0:0:v:-vI:u:uI\right).$$

By restricting us to the first four coordinate entries, we project the first and second *bonding curve* to the Euler parameter space P^3 , which yields the points (-1 : I : 0 : 0) and (1 : -I : 0 : 0). This shows that the anti-parallelogram self-motion is indeed of type $\beta = 0$.

3c. 3-dimensional self-motions

Theorem 5. Nawratil [10] Non-architecturally singular SGPs with 3-dimensional self-motion do not exist.

Sketch of the proof:

Case $\beta = 2$: It turns out that the solution of the general case is equivalent to the fact that a homogeneous polynomial P[1955651] of degree 16 in e_0, e_1, e_2 is fulfilled identically for all e_0, e_1, e_2 . This problem can only be solved as $Q[7589]^2 = P[1955651]$ holds.

Case $\beta = 1, 0$: Due to Theorem 2 a necessary condition for the existence of these types of self-motions is that a $(1 + \beta)$ -dimensional set of platform orientations with $m_1 = M_1$ and $rk(\overrightarrow{M_2m_2}, \dots, \overrightarrow{M_6m_6}) \leq 1$ exists.

Case $\beta = -1$: Trivial.

3c. 3-dimensional self-motions

Theorem 6. Nawratil [10] If a SGP has a 3-dimensional self-motion, it has to be one of the following architecturally singular designs:

1.
$$m_1 = m_2 = m_3$$
 and $M_4 = M_5 = M_6$.

2.
$$m_1 = m_2 = m_3 = m_4$$
 and $M_5 = M_6$.

- 3. $m_1 = m_2 = m_3 = m_4 = m_5$.
- 4. m_1, \ldots, m_6 are collinear, M_1, \ldots, M_6 are collinear and there exists a regular projectivity κ with $M_i \mapsto m_i$ for $i = 1, \ldots, 6$.

3c. n-dimensional self-motions with n>3

Based on the results for 3-dimensional self-motions, one can prove the following:

Theorem 7. Nawratil [10] Non-architecturally singular SGPs with 4-dimensional self-motion do not exist. SGPs (architecturally singular or not) with higher-dimensional self-motions than 4 do not exist.

Theorem 8. Nawratil [10] If a SGP has a 4-dimensional self-motion, it has to be the following architecturally singular design:

• All six base anchor points are collinear and the six platform anchor points collapse into one point.

3c. 2-dimensional self-motions

Architecturally singular SGPs:

• Based on Theorem 3 of [5], it is not difficult to give a list of all SGPs with $rk(\mathbf{J}) = 4$, where \mathbf{J} denotes the Jacobian matrix.

• The more challenging (still unsolved) problem is to determine all designs with $rk(\mathbf{J}) = 5$. From each of these designs one can construct non-architecturally singular SGPs with 1-dimensional self-motions (cf. type II DM self-motion [8]).

Non-architecturally singular SGPs:

Beside the translational self-motion of the congruent SGP, there exists a further trivial example, which was not mentioned in the literature before, to the best knowledge of the author:

 $\mathsf{m}_1 = \mathsf{m}_2 = \mathsf{m}_3$ and $\mathsf{M}_4 = \mathsf{M}_5$.

This self-motion is spherical with center $m_1 = M_4$.

4. Conclusion and outlook

- In this paper we introduced the theory of bonds for SGPs with self-motions.
- We presented some basic facts and results on bonds and demonstrated the potential of this theory on the basis of several examples.
- Moreover we showed that for a further, deeper study of bonds, their algebraic multiplicities have to be considered as well, which is dedicated to future research.
- This concept is not limited to SGPs, but it can also be adopted for other parallel manipulators as well (e.g. spherical and planar 3-dof R<u>P</u>R manipulators).
- We gave a geometric characterization of all SGPs with pure translational selfmotions.
- We listed all SGPs, which have *n*-dimensional self-motions with n > 2. The case of SGPs possessing multidimensional self-motions with n = 2 remains open.

4. References

- Hegedüs G, Schicho J, Schröcker H-P (2012) Bond Theory and Closed 5R Linkages, In: Lenarcic J, Husty M (eds) Latest Advances in Robot Kinematics, Springer, pp 221–228
- [2] Husty M (1996) An algorithm for solving the direct kinematics of general Stewart-Gough platforms, Mechanism and Machine Theory 31(4):365–380
- [3] Husty M, Karger A (2002) Self motions of Stewart-Gough platforms: an overview, In: Gosselin CM, Ebert-Uphoff I (eds) Proc. of the workshop on fundamental issues and future research directions for parallel mechanisms and manipulators, pp 131–141
- [4] Karger A (2002) Singularities and self-motions of a special type of platforms, In: Lenarcic J, Thomas F (eds) Advances in Robot Kinematics: Theory and Applications, Springer, pp 155–164
- [5] Karger A (2008) Architecturally singular non-planar parallel manipulators, Mechanism and Machine Theory 43(3):335–346
- [6] Merlet J-P (1989) Singular configurations of parallel manipulators and Grassmann geometry, International Journal of Robotics Research 8(5):45-56
- [7] Nawratil G (2012) Self-motions of planar projective Stewart Gough platforms, In: Lenarcic J, Husty M (eds) Latest Advances in Robot Kinematics, Springer, pp 27–34
- [8] Nawratil G (2013) Types of self-motions of planar Stewart Gough platforms, Meccanica 48(5):1177–1190
- [9] Nawratil G (under review) Introducing the theory of bonds for Stewart Gough platforms with self-motions
- [10] Nawratil G (in preparation) On Stewart Gough manipulators with multidimensional self-motions