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1. Motivation

The elegance of the quaternion based analytical treatment of kinematics in Eucli-
dean spaces of dimension 2 and 3 was pointed out and used by various authors:

Blaschke W. Kinematik und Quaternionen. DVW, Berlin (1960)

Müller H.R. Sphärische Kinematik. DVW, Berlin (1962)

Ströher W. Sphärische und Räumliche Kinematik. unpublished book (1973)

The quaternionic approach does not only yield a more compact notation in
comparison with matrices, but it also provides an easier access to the geometry of
motions.

Motivated by this circumstance, we want to extend this quaternionic kinematic to
the Euclidean 4-space E4 in the tradition of the above cited works.
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2. Review on Kinematic Mappings

A kinematic mapping of SE(n) is a bijective mapping between the group of
displacements of En and a set of points in a certain projective space. For n = 3,
this mapping can be constructed by the usage of unit dual quaternions:

Quaternions: Q := q0+ q1i+ q2j+ q3k = q0+q with q0, . . . , q3 ∈ R is an element
of the skew field of quaternions H, where i, j,k are the so-called quaternion units.

The conjugated quaternion to Q is given by Q̃ := q0 − q.

Q is called pure quaternion for Q = q and unit quaternion for q20+q21+q22+q23 = 1.

We embed the points X of E3 with Cartesian coordinates (x1, x2, x3) into the set
of pure quaternions by the following mapping:

ι3 : R
3 → H with (x1, x2, x3) 7→ x := x1i+ x2j+ x3k.
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2a. Study Mapping of SE(3)

Dual Quaternions: An element E+ εT of H+ εH is called dual quaternion, where
ε is the dual unit with the property ε2 = 0 and ε 6= 0.

It is called unit dual quaternion, if E is an unit quaternion and following condition
holds:

e0t0 + e1t1 + e2t2 + e3t3 = 0.

The mapping of points X ∈ E3 to X′ ∈ E3 induced by any element of SE(3) can
be written as follows by using ι3 (e.g. Husty et al [2]):

x 7→ x′ with x′ := ExẼ+ (TẼ−ET̃).

Moreover this mapping is an element of SE(3) for any unit dual quaternion E+εT.
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2a. Study Mapping of SE(3)

As both unit dual quaternions ±(E+εT) correspond to the same Euclidean motion
of E3, we consider the homogeneous 8-tuple (e0 : . . . : e3 : t0 : . . . : t3).

These so-called Study parameters can be interpreted as a point of a projective
7-dimensional space P 7. Therefore there is a bijection between SE(3) and all real
points of P 7 located on the so-called Study quadric

Φ : e0t0 + e1t1 + e2t2 + e3t3 = 0,

which is sliced along the 3-dimensional generator-space e0 = e1 = e2 = e3 = 0, as
the corresponding quaternion E cannot be normalized.

Remark: Restricting the Study mapping to planar Euclidean displacements within
a plane yields the so-called Blaschke-Grünwald Mapping of SE(2). ⋄
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2b. Klawitter-Hagemann Mapping of SE(n)

Based on Clifford algebras, Klawitter & Hagemann [3] presented an unified
concept for constructing kinematic mappings for certain Cayley-Klein geometries.

Especially for E2 and E3, they demonstrated that their approach yields the
Blaschke-Grünwald mapping and the Study mapping (see also Selig [6]).

The Study parameters (resp. Blaschke-Grünwald parameters) are isomorphic to the
Spin group of the Clifford Algebra with signature (3+, 0−, 10) (resp. (2+, 0−, 10)).

The Spin group of the Clifford Algebra with signature (4+, 0−, 10) implies a mapping
between displacements of SE(4) and points of P 15 with homogeneous coordinates
(a0 : . . . : a7 : c0 : . . . : c7) located in the intersection of nine quadrics Ri

(i = 1, . . . , 9), which is additionally sliced along the quadric N :
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2b. Klawitter-Hagemann Mapping of SE(4)

R1 : a2c6 − a3c5 + a4c0 − c1c4 = 0, R2 : a5c0 − c1c7 + c2c5 − c3c6 = 0,

R3 : a1c5 − a2c7 + a7c0 − c3c4 = 0, R4 : a1c6 − a3c7 + a6c0 − c2c4 = 0,

R5 : a0c0 − a1c1 + a2c2 − a3c3 = 0, R6 : a0c7 − a1a5 − a6c3 + a7c2 = 0,

R7 : a0c4 − a1a4 + a2a6 − a3a7 = 0, R8 : a0c6 − a3a5 − a4c2 + a6c1 = 0,

R9 : a0c5 − a2a5 − a4c3 + a7c1 = 0, N : a20 + . . .+ a27 + c20 + . . .+ c27 = 0.

Computation of the Hilbert-polynomial shows that the kinematic image of SE(4)
is a 10-dimensional variety R1 ∩ R2 ∩ . . . ∩R9 ∈ P 15 of degree 12, which is sliced
along N = 0.

Therefore we are interested in a simplified kinematic mapping of SE(4).

CGTA, June 8 – 12 2015, Kefermarkt, Austria Austrian Science Fund 7



2c. Quaternionic Kinematic Mapping of SE(4)

We embed the points X of E4 with Cartesian coordinates (x0, x1, x2, x3) into the
set of quaternions by the mapping:

ι4 : R
4 → H with (x0, x1, x2, x3) 7→ X := x0 + x1i+ x2j+ x3k.

Theorem 1. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element
of SE(4) can be written as follows by using ι4:

X 7→ X′ with X′ := EXF̃− 2ET̃.

Moreover this mapping is an element of SE(4) for any triple of quaternions E,F,T,
where E and F are unit-quaternions.

As both triples of quaternions ±(E,F,T), where E and F are unit quaternions,
correspond to the same Euclidean motion of E4, we consider the homogeneous
12-tuple (E : F : T), which can be interpreted as a point of P 11.
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2c. Quaternionic Kinematic Mapping of SE(4)

Therefore there is a bijection between SE(4) and all real points of P 11 located on
the quadric

Ξ : (e20 + e21 + e22 + e23)− (f2
0 + f2

1 + f2
2 + f2

3 ) = 0,

and is sliced along the 7-dimensional space e0 = e1 = e2 = e3 = 0, as the
corresponding quaternion E cannot be normalized. The real intersection of this
7-space and Ξ equals the 3-dimensional generator-space U of Ξ with:

U : e0 = e1 = e2 = e3 = f0 = f1 = f2 = f3 = 0.

Remark: Note that Ξ expresses the fact that F is also normalized if E is. ⋄

Resume: There is a bijection between elements of SE(4) and real points of Ξ \ U.
The Study parameters and subsequently the Blaschke-Grünwald parameters can be
obtained from (E : F : T).

CGTA, June 8 – 12 2015, Kefermarkt, Austria Austrian Science Fund 9



3. Representation of Displacements

The composition (E,F,T) of two displacements (Ei,Fi,Ti) for i = 1, 2 corre-
sponds to the multiplication D = D2D1 of lower triangular 2 × 2 quaternionic
matrices (cf. Wilker [7]) with

D =

(
E O

T F

)
and D

i
=

(
Ei O

Ti Fi

)
.

Remark: This map from SE(4) to the group of lower triangular 2× 2 quaternionic
matrices with unit-quaternions in the diagonal is a representation (e.g. [1]). ⋄

This motivates us to embed a point X ∈ E4 into the set of 2 × 2 quaternionic
matrices in a way that its multiplication with such matrices gives the point
coordinates of X′ ∈ E4; i.e. an analogue to the 3-dimensional case, where we can
embed the points into the set of dual unit-quaternions in a way that:

1 + εx′ = (E+ εT) (1 + εx)
(
Ẽ− εT̃

)
holds.
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3a. Representation of Point Displacements

By introducing the following notation

X =

(
−1 X

O 1

)
, X′ =

(
−1 X′

O 1

)
, D̃

T

=

(
Ẽ T̃

O F̃

)
, D̃

−T

=

(
E −ET̃F

O F

)
,

this can be done as follows:

Theorem 2. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element
of SE(4) can be written as follows:

X 7→ X′ with X′ := D̃
−T

XD̃
T

.

Proof: Straightforward computation. �

In the following we show that the displacement of oriented lines, planes and
hyperplanes in E4 can also be written by 2× 2 quaternionic matrices.
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3b. Representation of Hyperplane Displacements

All points X ∈ E4 with coordinates (x0, x1, x2, x3) located in a hyperplane fulfill a
linear equation, which can be written in the Hesse normal form as

x0w0 + x1w1 + x2w2 + x3w3 + w = 0 with w2
0 + w2

1 + w2
2 + w2

3 = 1.

Thus a hyperplane can be fixed by a unit-quaternion W = w0 + w1i+ w2j+ w3k

and a real number w.

Therefore −w gives the oriented distance of the footpoint on the hyperplane to the
origin with respect to the direction of W. Applying a rotation about the origin the
footpoint has still the distance −w, but now in direction of EWF̃. This distance
is only changed by the component of the translational vector, which is orthogonal
to the rotated hyperplane; i.e. 〈−2ET̃,EWF̃〉.
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3b. Representation of Hyperplane Displacements

Summed up we have: W 7→ EWF̃ and w 7→ w + 〈2ET̃,EWF̃〉.

Having in mind that (W, w) also assigns an orientation we can state the following
theorem under consideration of the notation:

W =

(
O W

W̃ w

)
, W′ =

(
O W′

W̃′ w′

)
.

Theorem 3. The mapping of oriented hyperplanes (W, w) of E4 to oriented
hyperplanes (W′, w′) of E4 induced by any element of SE(4) can be written as
follows:

W 7→ W′ with W′ := DWD̃
T

.

Proof: Straightforward computation under consideration of

〈2ET̃,EWF̃〉 = FW̃T̃+TWF̃. �
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3c. Representation of Line Displacements

We characterize an oriented line by its footpoint C and by its direction, which
can be written as a unit-quaternion Y. Clearly this direction is transformed by an
arbitrary displacement into Y′ = EYF̃.

Now it only remains to calculate the footpoint C′ of the displaced line, which is
composed of the rotated footpoint ECF̃ plus the component of the translational
vector orthogonal to Y′. Thus we get:

C′ = ECF̃− ET̃+EYF̃TYF̃.

Due to the last term we do not represent the line by the pair (Y,C), but by

(Y, ỸC) as the following holds:

Ỹ′C′ = FỸCF̃− FỸT̃+TYF̃.
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3c. Representation of Line Displacements

Remark: Note that in the 3-dimensional case ỸC equals the moment vector. Thus
(Y, ỸC) is the 4-dimensional analogue of the spear coordinates of E3. As ỸC is

a pure quaternion, the spear coordinates (Y, ỸC) of E4 have 7 entries. ⋄

The following notation is needed for the formulation of the next theorem:

Y =

(
O Y

−Ỹ ỸC

)
, Y′ =

(
O Y′

−Ỹ′ Ỹ′C′

)
.

Theorem 4. The mapping of oriented lines (Y, ỸC) of E4 to oriented lines

(Y′, Ỹ′C′) of E4 induced by any element of SE(4) can be written as follows:

Y 7→ Y′ with Y′ := DY D̃
T

.

Proof: Straightforward computation. �

CGTA, June 8 – 12 2015, Kefermarkt, Austria Austrian Science Fund 15



3d. Representation of Plane Displacements

We describe a finite plane by a finite point X and two unit-vectors, which are
orthogonal to each other. Based on the corresponding unit-quaternions Y and Z we
can compute the oriented Plücker coordinates (l, l̂) of the planes ideal line oriented
from the ideal point in direction Y to the ideal point in direction Z as

l := 1

2
(ZỸ + ỸZ), l̂ := 1

2
(ZỸ − ỸZ)

with respect to the ideal 3-space according to Müller [4].

Moreover the ideal 3-space is the elliptic space described in [4], where oriented lines
can alternatively be described by their left and right direction vectors

l+ = l+ l̂ = ZỸ, l− = l− l̂ = ỸZ,

which are transformed by: l+ 7→ l′+ = El+Ẽ, l− 7→ l′− = Fl−F̃.

CGTA, June 8 – 12 2015, Kefermarkt, Austria Austrian Science Fund 16



3d. Representation of Plane Displacements

Clearly one can compute the 10 Grassmann coordinates of the plane, which can
abstractly be represented by the quaternionic triple (l : l̂ : L) with

L := 1

2
(l+X−Xl−).

In order to avoid the loss of the information on the plane’s orientation we can use
normalized Grassmann coordinates, where the normalization is done with respect to
the Plücker coordinates of the ideal line. As already l201+l202+l203+l223+l231+l212 = 1

holds, the normalized Grassmann coordinates of the plane can be written as (l, l̂,L).

Under a displacement the quaternion L is transformed to L′ with:

L′ = 1

2
(l′+X

′ −X′l′−) =
1

2
(EZỸXF̃−EXỸZF̃)− EZỸT̃+ ET̃FỸZF̃.
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3d. Representation of Plane Displacements

Instead of the triple (l, l̂,L) we can also use the representation (l+, l−,L). This is
the most suitable form for our purpose as we can state the following theorem under
consideration of the notation:

L =

(
−l+ L

O −l−

)
, L′ =

(
−l′+ L′

O −l′−

)
.

Theorem 5. The mapping of oriented planes (l+, l−,L) of E4 to oriented planes
(l′+, l

′
−,L

′) of E4 induced by any element of SE(4) can be written as follows:

L 7→ L′ with L′ := D̃
−T

LD̃
T

.

Proof: Straightforward computation. �
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4. Instantaneous Kinematics

We consider a constrained motion (Eτ ,Fτ ,Tτ) in dependency of the time τ :

X⊕

τ
= EτXF̃τ − 2EτT̃τ ⇐⇒ X⊕

τ
= D̃

−T

τ
XD̃

T

τ

X . . . coordinates of X w.r.t. the moving frame C
X⊕

τ
. . . coordinates of X w.r.t. the fixed frame C⊕ in dependency of the time τ

We change the fixed frame from the old C⊕ into the new one C⊗ in a way that at
the time instance τ = ∗ the moving frame C and C⊗ coincide. This is achieved by:

X⊗

τ
= D̃

T

∗X
⊕

τ
D̃

−T

∗ = B̃
−T

τ
XB̃

T

τ
⇐⇒ X⊗

τ
= GτXH̃τ − 2GτŨτ

with B
τ
=

(
Gτ O

Uτ Hτ

)
=

(
Ẽ∗Eτ O

−F̃∗T∗Ẽ∗Eτ + F̃∗Tτ F̃∗Fτ

)
.
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4. Instantaneous Kinematics

The time derivative of the normalizing condition GτG̃τ = 1 and the equation
GτG̃τ −HτH̃τ = 0 of Ξ with respect to τ yields:

ĠτG̃τ +Gτ

˙̃
Gτ = 0 and ĠτG̃τ +Gτ

˙̃
Gτ − ḢτH̃τ −Hτ

˙̃
Hτ = 0.

Evaluation of these formulas at τ = ∗ implies Ġ∗ = ġ∗ and Ḣ∗ = ḣ∗.

Moreover by the differentiation of X⊗

τ
and X⊗

τ
, respectively, with respect to τ and

its evaluation at τ = ∗ yields:

Ẋ
⊗

∗ =
˙̃
B

−T

∗ X+X
˙̃
B

T

∗ ⇐⇒ Ẋ⊗

∗ = ġ∗X−Xḣ∗ − 2
˙̃
U∗.

It can easily be checked that the affine mapping X 7→ Ẋ⊗
∗ is singular if and only if

ġ∗ġ∗ − ḣ∗ḣ∗ = 0 holds, which implies the following notation:
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4. Instantaneous Screw

Definition 1. The triple (ġ∗, ḣ∗, U̇∗) is called the instantaneous screw $⊗∗ of the
motion (Gτ ,Hτ ,Uτ) at time instance τ = ∗ with respect to the fixed system C⊗.
$⊗∗ is called singular if ġ∗ġ∗ − ḣ∗ḣ∗ = 0 holds; otherwise regular.

Remark: Note that in the singular case $⊗∗ is located on Ξ. ⋄

Direct computation shows that $⊗∗ is transformed into $⊕∗ = (ġ⊕
∗ , ḣ

⊕
∗ , U̇

⊕
∗ ) by:

$
⊕

∗
= D̃

−T

∗ $
⊗

∗
D̃

T

∗ with $
⊕

∗
=

(
−ġ⊕

∗

˙̃
U

⊕

∗

O ḣ⊕
∗

)
, $

⊗

∗
=

(
−ġ∗

˙̃
U∗

O ḣ∗

)
.

Theorem 6. The mapping of an instantaneous screw $ of E4 to an instantaneous
screw $′ of E4 induced by any element of SE(4) can be written as follows:

$ 7→ $′ with $′ := D̃
−T

$ D̃
T

.
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4. Geometric Parameters of $⊗∗

The quaternionic formulation also provides easy access to the geometric parameters
of $⊗∗ = (ġ∗, ḣ∗, U̇∗), which is demonstrated for the most general case:

$⊗∗ regular and ġ∗ 6= o 6= ḣ∗: Instantaneously we have a double-rotation with
angular velocities:

ω1 = ‖ġ∗‖+ ‖ḣ∗‖, ω2 = ‖ġ∗‖ − ‖ḣ∗‖,

about the oriented total-orthogonal planes ε1 and ε2 given in the form (l+, l−,L):

ε1 :
(
ġ0, ḣ0,

1

2
(ġ0P−Pḣ0)

)
, ε2 :

(
ġ0,−ḣ0,

1

2
(ġ0P+Pḣ0)

)
,

with the velocity pole P = 2
ġ∗

˙̃
U∗ +

˙̃
U∗ḣ∗

ġ∗ġ∗ − ḣ∗ḣ∗

and ġ0 =
ġ∗

‖ġ∗‖
, ḣ0 =

ḣ∗

‖ḣ∗‖
.
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5. Conclusion and Outlook

Based on the quaternionic kinematic mapping of SE(4) we showed that the
displacement of basic geometric elements in E4 can be treated in a unified way
using the compact notation of 2× 2 quaternionic matrices:

• oriented hyperplanes, oriented lines: ∗ 7→ D ∗ D̃
T

• points, oriented planes, instantaneous screws: ∗ 7→ D̃
−T

∗ D̃
T

Note that the algebra of 2 × 2 quaternionic matrices is isomorphic to the Clifford
algebra (1+, 3−, 00), which shows again the difference to the Klawitter-Hagemann
construction based on the Spin group of the Clifford algebra (4+, 0−, 10).

The presented quaternionic approach is also well suited for studying equiform
kinematics of E4 and its relation to the geometry of line-elements (cf. [5]).
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