Types of self-motions of planar Stewart Gough platforms

Georg Nawratil

Institute of Discrete Mathematics and Geometry Research was supported by FWF (1408-N13)

Table of contents

[1] Introduction

- [a] Stewart Gough Platform (SGP)
- [c] Architecturally singular SGPs
- [2] Preliminary considerations
 - [a] Redundant planar SGPs

[b] Assumptions and basic idea

[b] Self-motions

[d] Review

- $[c] \ {\rm Darboux} \ \& \ {\rm Mannheim} \ {\rm constraint} \ \ [d] \ {\rm Implication} \ {\rm of} \ {\rm the} \ {\rm assumptions}$
- [3] Types of non-architecturally singular self-motions [a] Definition of types [b] Type II DM self-motions
- [4] Known examples of type II DM self-motions
- [5] References

[1a] Stewart Gough Platform

The geometry of a planar SGP is given by the six base anchor points M_i with $\mathbf{M}_i := (A_i, B_i, 0)^T$ in the fixed space Σ_0 , and by the six platform points m_i with $\mathbf{m}_i := (a_i, b_i, 0)^T$ in the moving space Σ .

 M_i and m_i are connected with a SPS leg.

Theorem 1

A SGP is singular (infinitesimal flexible, shaky) if and only if the carrier lines of the six SPS legs belong to a linear line complex.

[1b] Self-motions and the Borel Bricard problem

If all P-joints are locked, a SGP is in general rigid. But, in some special cases the manipulator can perform an n-parametric motion (n > 0), which is called self-motion.

Note that in each pose of the self-motion, the SGP has to be singular. Moreover, all self-motions of SGPs are solutions to the famous Borel Bricard problem [3,6,7,8,9].

Borel Bricard problem (still unsolved) Determine and study all displacements of a rigid body in which distinct points of the body move on spherical paths.

[1c] Architecturally singular SGPs

Manipulators which are singular in every possible configuration, are called architecturally singular.

Architecturally singular SGPs are well studied:

- \star For the planar case see [A,B,C,D],
- \star For the non-planar case see [E,F].

It is well known, that architecturally singular SGPs possess self-motions in each pose.

Therefore we are only interested in selfmotions of non-architecturally singular SGPs.

[1d] Review on SGPs with self-motions

- Husty and Zsombor-Murray [G]: SGP with Schönflies self-motion
- Zsombor-Murray et al. [H]: SGP with line-symmetric self-motion (cf. Krames [I])
- Husty and Karger [J] proved that the list of Schönflies Borel Bricard motions given by Borel [3] is complete
- Karger and Husty [K]: Self-motions of the original SGP
- Karger [2,10] presented a method for designing planar SGPs with self-motions of the type $e_0 = 0$, where e_0 denotes an Euler parameter
- Nawratil [L] presented a complete list of TSSM self-motions (6-3 SGPs)

[2a] **Redundant planar SGPs**

According to Husty [M], the "sphere constraint" that m_i is located on a sphere with center M_i can be expressed by a homogeneous quadratic equation Λ_i in the Study parameters $(e_0 : e_1 : e_2 : e_3 : f_0 : f_1 : f_2 : f_3)$.

Therefore the direct kinematic problem corresponds to the solution of the system $\Lambda_1, \ldots, \Lambda_6, \Psi$ where Ψ denotes the equation of the Study quadric.

If a planar SGP is not architecturally singular, then at least a 1-parametric set of legs $\lambda_1 \Lambda_1 + \ldots + \lambda_6 \Lambda_6$ can be added without changing the direct kinematics [N,O].

As the solvability condition of the underlying linear system of equations (Eq. (30) of [O]) is equivalent with the criterion given in Eq. (12) of [P], also the singularity surface of the SGP does not change by adding legs of this 1-parametric set.

[2a] **Redundant planar SGPs**

Moreover, it was shown [N,O] that in general the base anchor points M_i as well as the corresponding platform anchor points m_i are located on planar cubic curves C and c, which can also split up.

[2b] Assumptions and basic idea

Assumption 1

We assume, that there exist such cubic curves c and C in the Euclidean domain of the platform and the base, respectively.

As the correspondence between c and C has not to be a bijection, a point $\in P^3_{\mathbb{C}}$ of c resp. C is in general mapped to an non-empty set of points $\in P^3_{\mathbb{C}}$ of C resp. c. We denote this set by the term *corresponding location* and indicate this fact by the usage of brackets $\{ \}$.

Assumption 2

For guaranteeing a general case, we assume that each of the corresponding locations $\{u_1\}, \{u_2\}, \{u_3\}, \{U_4\}, \{U_5\}, \{U_6\}$ consists of a single point. Moreover, we assume that no four collinear platform points u_i or base points U_i for i = 1, ..., 6 exist.

Basic idea: Attach the special "legs" $\overline{u_i U_i}$ with $i = 1, \ldots, 6$ to SGP m_1, \ldots, M_6 .

[2c] **Darboux constraint**

The attachment of the "legs" $\overline{u_i U_i}$ with i = 1, 2, 3 corresponds with the so-called Darboux constraint, that the platform anchor point u_i moves in a plane of the fixed system orthogonal to the direction of the ideal point U_i .

The Darboux constraint can be written as a homogeneous quadratic equation Ω_i in the Study parameters (for details see [1]).

Note that Ω_i depends only linearly on f_0, f_1, f_2, f_3 .

Remark: Due to Assumption 2 not both points u_i and U_i can be ideal points. \diamond

[2c] Mannheim constraint

The attachment of the "leg" $\overline{u_j U_j}$ with j = 4, 5, 6 corresponds with the so-called Mannheim constraint, that a plane of the moving system orthogonal to u_j slides through the point U_j .

The Mannheim constraint can be written as a homogeneous quadratic equation Π_j in the Study parameters (for details see [1]).

Note that Π_j depends only linearly on f_0, f_1, f_2, f_3 .

Remark: Due to Assumption 2 not both points u_j and U_j can be ideal points. \diamond

[2d] Implication of the assumptions

Theorem 2

Given is a planar SGP m_1, \ldots, M_6 which is not architecturally singular and which fulfills Assumption 1 and 2. Then the resulting manipulator u_1, \ldots, U_6 is redundant and therefore architecturally singular.

Proof: As the points U_i and u_i are corresponding points of C and c we get:

$$\Omega_i = \sum_{k=1}^6 \lambda_{i,k} \Lambda_k \quad \text{and} \quad \Pi_j = \sum_{k=1}^6 \lambda_{j,k} \Lambda_k \quad \text{for} \quad i = 1, 2, 3 \quad \text{and} \quad j = 4, 5, 6.$$

As Ω_i and Π_j are only linear in f_0, \ldots, f_3 , in contrast to Λ_k which contains the term $4(f_0^2 + f_1^2 + f_2^2 + f_3^2)$, the equations can be rewritten as:

$$\Omega_i = \sum_{k=2}^6 \delta_{i,k} \Delta_k$$
 and $\Pi_j = \sum_{k=2}^6 \delta_{j,k} \Delta_k$ with $\Delta_k = \Lambda_1 - \Lambda_k$.

Therefore the set of the six polynomials $\Omega_1, \Omega_2, \Omega_3, \Pi_4, \Pi_5, \Pi_6$ is redundant.

[3a] Types of self-motions

Definition 1

Assume \mathcal{M} is a 1-parametric self-motion of a non-architecturally singular SGP m_1, \ldots, M_6 . Then \mathcal{M} is of type n DM (Darboux Mannheim) if the corresponding architecturally singular manipulator u_1, \ldots, U_6 has an n-parametric self-motion \mathcal{U} .

Note that \mathcal{U} includes \mathcal{M} , because if we attach the "legs" $\overline{u_i U_i}$ for $i = 1, \ldots, 6$ to m_1, \ldots, M_6 , we do not change the direct kinematics and singularity surface. Therefore also \mathcal{M} remains unchanged. By removing the legs $\overline{m_i M_i}$ the self-motion \mathcal{M} can only be enlarged.

Theorem 3 (Proof is given in [1]) All 1-parametric self-motions of non-architecturally singular planar SGPs fulfilling Assumption 1 and 2 are type I or type II DM self-motions.

[3b] **Computation of type II DM self-motions**

W.I.o.g. we can assume that the variety of a 2-parametric DM self-motion is spanned by $\Psi, \Omega_1, \Omega_2, \Omega_3, \Pi_4, \Pi_5$ (otherwise we can consider the inverse motion).

Lemma 1 (Proof is given in [1]) W.l.o.g. we can choose coordinate systems in Σ_0 and Σ with $X_2(X_2 - X_3)x_5 \neq 0$, $a_1 = b_1 = y_4 = A_4 = B_4 = Y_1 = h_4 = g_5 = 0$, $X_1 = Y_2 = Y_3 = x_4 = y_5 = 1$, where $(0: X_i: Y_i: 0)$ and $(0: x_i: y_i: 0)$ are the projective coordinates of the ideal points U_i and u_i , respectively.

We solve $\Psi, \Omega_1, \Omega_2, \Pi_4$ for f_0, \ldots, f_3 and plug the obtained expressions in the remaining two equations which yield $\Omega_3^{\star}[40]$ (degree 2) and $\Pi_5^{\star}[96]$ (degree 4).

Finally, we compute the resultant of Ω_3^* and Π_5^* with respect to one of the Euler parameters. For e_0 this yields $\Gamma[117652]$ (degree 8).

[3b] Computation of type II DM self-motions

In the following, we list the coefficients of $e_1^i e_2^j e_3^k$ of Γ , which are denoted by Γ_{ijk} :

$\Gamma_{080} = F_1[8]F_2[18]^2$,	$\Gamma_{800} = (b_2 - b_3)^2 (L_1 + b_3)^2 (L_2 + b_3)^2 (L_1 + b_3)^2 (L_2 + b_3)^2 (L_1 + b_3)^2 (L_2 + b_3)^2 (L_2 + b_3)^2 (L_3 + b_3)^2 (L_3$	$(-g_4)^2 F_3[8],$
$\Gamma_{170} = F_2[18]F_4[283],$		$\Gamma_{710} = (b_2 - b_3)(L_1 - g_4)F_5[170],$	
$\Gamma_{620}[2054],$	$\Gamma_{602}[1646],$	$\Gamma_{260}[6126],$	$\Gamma_{062}[4916],$
$\Gamma_{026}[5950],$	$\Gamma_{116}[3066],$	$\Gamma_{530}[4538],$	$\Gamma_{512}[4512],$
$\Gamma_{152}[6514],$	$\Gamma_{440}[7134],$	$\Gamma_{422}[6314],$	$\Gamma_{242}[7622],$
$\Gamma_{044}[6356],$	$\Gamma_{314}[6934],$	$\Gamma_{224}[7096],$	$\Gamma_{134}[6656],$
$\Gamma_{206}[5950],$	$\Gamma_{350}[7166],$	$\Gamma_{404}[5766],$	$\Gamma_{332}[6982].$

Based on these 24 equations $\Gamma_{ijk} = 0$ (in 14 unknowns), we were already able to compute first results for type II DM self-motions in [5], which raise the hope of giving a complete classification of these self-motions in the future.

[3b] **SGPs with type II DM self-motions**

Assuming we have computed a 2-parametric DM self-motion, the question remains open how to construct a SGP with a 1-parametric self-motion from it.

Clearly, we can attach an arbitrary finite leg $\overline{m_6M_6}$ to the manipulator u_1, \ldots, U_5 . The resulting planar manipulator $u_1, \ldots, U_5, m_6, M_6$ is not architecturally singular as $(m_6, M_6) \neq (u_6, U_6)$ holds.

Analogous considerations as in [N,O] yield that we can attach at least a 1-parametric set \mathcal{L} of legs to $u_1, \ldots, U_5, m_6, M_6$, without changing the direct kinematics.

Replace "legs" $\overline{u_i U_i}$ bei finite legs $\overline{m_i M_i}$ (i = 1, ..., 5) of \mathcal{L} such that the resulting SGP $m_1, ..., M_6$ is not architecturally singular.

[4] Known examples of type II DM self-motions

The self-motions \mathcal{K} computed by Karger [2,10] with $e_0 = 0$ are of type II DM.

Karger [10] wrote that the general condition for the geometry of the SGP yielding a self-motion of \mathcal{K} is a very complicated algebraic condition (approx. 1000 terms).

Moreover, he noted that it would be interesting to find further special cases beside the original SGP [K] and the homological configuration [6,7], for which the condition has a geometric interpretation.

Based on our approach we can give easily a nice geometric interpretation for a subset of \mathcal{K} as follows: If we set $e_0 = 0$ the equations Ω_3^* and Π_5^* have to vanish identically. Doing so, we only cover a subset \mathcal{S} of \mathcal{K} as for the general case U_1 must not be located on the x-axis of the fixed frame.

[4] Known examples of type II DM self-motions

Theorem 4 (Proof is given in [1]) The self-motions S fulfilling Assumption 1 and 2 are line-symmetric motions and can be parametrized with respect to the homogeneous parameter $e_1 : e_2$.

Moreover, the self-motions \mathcal{S} fulfilling Assumption 1 and 2 are octahedral.

Definition 2

A DM self-motion is called octahedral if following triples of points are collinear: $(u_1, u_2, u_6), (u_1, u_3, u_5), (u_2, u_3, u_4),$ $(U_4, U_5, U_3), (U_5, U_6, U_1), (U_4, U_6, U_2).$

[4] Known examples of type II DM self-motions

Theorem 5 (Proof is given in [1]) Assume that a self-motion of S is given which fulfills Assumption 1 and 2. If all anchor points of the corresponding manipulator u_1, \ldots, U_6 are real then it is always possible to attach a leg (e.g. u_2U_4) to u_1, \ldots, U_6 such that we get a self-motion of a type 1 Bricard octahedron.

Corollary 1

All Bricard octahedra of type 1 have a type II DM self-motion.

Therefore we can construct easily non-architecturally singular SGP with a type II DM self-motion from any Bricard octahedron of type 1.

Remark: As all self-motions of type I DM and II DM, known to the speaker, are octahedral, the question arises if this property is a necessary condition for a general planar SGP (cf. Assumption 1 and 2) in order to have a 1-parametric self-motion?

[4] Example

Remark: m_1, \ldots, M_6 is a non-architecturally singular SGP with a 1-parametric self-motion. m_2, \ldots, M_7 is an architecturally singular SGP with a 1-parametric self-motion, where $e_0 = 0$ characterizes only one branch of the self-motion. For more details see [1].

[5] **References**

For [1-10] see the abstract. The remaining references [A-P] are as follows:

[A] Karger A (2003) Architecture singular planar parallel manipulators. Mech Mach Theory 38(11):1149–1164

[B] Nawratil G (2008) On the degenerated cases of architecturally singular planar parallel manipulators. J Geom Graphics 12(2):141–149

[C] Röschel O, Mick S (1998) Characterisation of architecturally shaky platforms. In: Lenarcic J, Husty ML (eds) Advances in Robot Kinematics: Analysis and Control, Kluwer, pp 465–474

[D] Wohlhart K (2010) From higher degrees of shakiness to mobility. Mech Mach Theory 45(3):467-476

[E] Karger A (2008) Architecturally singular non-planar parallel manipulators. Mech Mach Theory 43(3):335–346

[F] Nawratil G (2009) A new approach to the classification of architecturally singular parallel manipulators. In: Kecskemethy A, Müller A (eds) Computational Kinematics, Springer, pp 349–358

[G] Husty ML, Zsombor-Murray P (1994) A Special Type of Singular Stewart Gough platform. In: Lenarcic J, Ravani B (eds) Advances in Robot Kinematics and Computational Geometry, Kluwer, pp 439–449

[H] Zsombor-Murray P, Husty M, Hartmann D (1995) Singular Stewart-Gough Platforms with Spherocylindrical and Spheroconical Hip Joint Trajectories. In: Proceedings of 9th IFToMM World Congress on the Theory of Machines and Mechanisms, Milano, Italy (1995) pp 1886–1890

[I] Krames J (1937) Die Borel-Bricard-Bewegung mit punktweise gekoppelten orthogonalen Hyperboloiden (Über symmetrische Schrotungen VI). Mh Math Phys 46:172–195

[5] **References**

[J] Husty ML, Karger A (2002) Self motions of Stewart-Gough platforms: an overview. In: Proceedings of the workshop on fundamental issues and future research directions for parallel mechanisms and manipulators Quebec City, Canada (2002) pp 131–141

[K] Karger A, Husty M (1998) Classification of all self-motions of the original Stewart-Gough platform. Comput Aided Des 30(3):205–215

[L] Nawratil G (2011) Self-motions of parallel manipulators associated with flexible octahedra. Austrian Robotics Workshop, Hall in Tyrol, Austria (2011)

[M] Husty ML (1996) An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech Mach Theory 31(4):365–380

[N] Husty M, Mielczarek S, Hiller M (2002) A redundant spatial Stewart-Gough platform with a maximal forward kinematics solution set. In: Lenarcic J, Thomas F (eds) Advances in Robot Kinematics: Theory and Applications, Springer, pp 147–154

[O] Mielczarek S, Husty ML, Hiller M (2002) Designing a redundant Stewart-Gough platform with a maximal forward kinematics solution set. In: Proceedings of the International Symposium of Multibody Simulation and Mechatronics, Mexico City, Mexico (2002).

[P] Borras J, Thomas F, Torras C (2010) Singularity-invariant leg rearrangements in doubly-planar Stewart-Gough platforms. In: Proceedings of Robotics Science and Systems, Zaragoza, Spain (2010).

