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Abstract This is a new approach to the classification of architecturally singular parallel
manipulators. We prove that a complete classification is possible in a geometric way if
we distinguish the cases whether the linear line complex spanned by the carrier lines of
the legs is always singular or not. The proof is based on the result that 5-legged planar
parallel manipulators of Stewart Gough type which belong in every possible configuration
to a singular linear line complex must possess 4 collinear anchor points. Moreover we list
all types of 5-legged planar parallel manipulators with this property.

1 Introduction

It is well known (see e.g. Merlet [5]) that parallel manipulators of Stewart Gough type are
singular if and only if the carrier lines of the prismatic legs belong to a linear line complex.
Manipulators which are singular at every possible configuration are called architecturally
singular (cf. Ma and Angeles [4]).

Karger presented in [1, Theorem 1] the four sufficient and necessary conditions for ar-
chitecturally singular planar parallel manipulators with no 4 anchor points aligned. More-
over Karger proved in [2, Theorem 1 and 2] that architecturally singular non-planar ma-
nipulators must have 4 collinear anchor points. Finally in [2, Theorem 3], all types of
architecturally singular manipulators, planar or non-planar, with 4 collinear anchor points
are listed. Considered in retrospect, one can say that Karger divided the set A of architec-
turally singular manipulators into two classes with respect to the criterion of possessing 4
collinear anchor points or not.

Another attempt for the determination of A was done by Röschel and Mick [8]. They
divided this set into planar and non-planar manipulators. But they were only able to give
a geometric characterization for the planar case, which reads as follows: Planar Stewart
Gough Platforms are architecturally singular iff (Mi,mi), i = 1, . . . ,6, are four-fold conju-
gate pairs of points with respect to a 3-dimensional linear manifold of correlations or one
of the two sets {Mi} and {mi} of anchor points is aligned.

In our approach we subdivide A with respect to the criterion whether the linear line
complex spanned by the carrier lines of the legs is always singular or not. The reclassifica-
tion done in section 4 is based on the theorem (cf. section 3) that 5-legged planar parallel
manipulators of Stewart Gough type which belong in every possible configuration to a sin-
gular linear line complex must have 4 collinear anchor points.
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2 Fundamentals

A 5-legged planar parallel manipulator of Stewart Gough type consists of two sets B :=
{M1, . . . ,M5} and P := {m1, . . . ,m5} of coplanar anchor points in the Euclidean 3-space
E3 where the carrier planes of these sets are called base Σ0 and platform Σ , respectively.
W.l.o.g. we can choose coordinate systems in Σ0 and Σ such that the points Mi and mi have
coordinates Mi = (Ai,Bi,0)T ∈ R3 and mi = (ai,bi,0)T ∈ R3, i = 1, . . . ,5, with a1 = b1 =
b2 = A1 = B1 = B2 = 0.

By using Euler Parameters (e0,e1,e2,e3) for the parametrization of the spherical motion
group the coordinates m′

i of the platform points with respect to the fixed system Σ0 can be
written as m′

i = K−1R·mi + t with

R := (ri j) =

e2
0 + e2

1− e2
2− e2

3 2(e1e2 + e0e3) 2(e1e3− e0e2)
2(e1e2− e0e3) e2

0− e2
1 + e2

2− e2
3 2(e2e3 + e0e1)

2(e1e3 + e0e2) 2(e2e3− e0e1) e2
0− e2

1− e2
2 + e2

3

 , (1)

the translation vector t := (t1, t2, t3)T and K := e2
0 + e2

1 + e2
2 + e2

3. Then Plücker coordinates
of the lines [Mi,mi] are given by li := (li, l̂i)∈R6 with li := R·mi + t−KMi and l̂i := Mi× li
for i = 1, . . . ,5.

A linear line complex C := (c, ĉ) is a three-dimensional linear manifold of lines with
Plücker coordinates (l, l̂) which satisfy the linear equation c ·̂l+ ĉ·l = 0, where (c, ĉ) 6= (0,0)
are the homogeneous coordinates of C .

If the coordinates of C meet the Plücker condition c ·̂c = 0 it is called singular (otherwise
regular). For (c, ĉ) ∈ R6, apart from a common complex factor, we call a singular linear
line complex real; for (c, ĉ)∈C6 complex. For the rest of the article we summarize real and
complex singular linear line complexes under the notation of singular linear line complexes.

If the Plücker coordinates li ∈ R6 of the 5 lines are given, a linear line complex C is
uniquely determined as the solution of the linear system

c ·̂li + ĉ·li = 0 with ĉ = (c1,c2,c3),c = (c4,c5,c6) for i = 1, . . . ,5 (2)

provided the Plücker coordinates are linearly independent, i.e. rk(l1 . . . l5) = 5. In this case
we always get a real singular linear line complex C if c ·ĉ = 0 holds. As the homogeneous
coordinates of this real singular linear line complex meet the Plücker condition the 6-tuple
(c, ĉ) also corresponds to a line in E3; the so called axis. This axis may be a proper Eu-
clidean line or it may be an ideal line. Therefore a singular linear line complex consists of
all lines (l, l̂) which in the projective extension of E3 intersect the axis (c, ĉ) because the
condition c ·̂l+ ĉ·l = 0 is nothing else than the intersection condition of Sommerville.

If rk(l1 . . . l5) < 5 then there always exists a singular linear line complex (c, ĉ). We dis-
cuss this case in more detail for the obtained solution at the end of section 3.

2.1 Preparatory work and notation

The best way to compute the linear line complex C spanned by l1, . . . , l5 is as follows: If we
denote a generic line of C by g := (g4,g5,g6,g1,g2,g3) then due to the linear dependence
of g, l1, . . . , l5 the expression det(g, l1, . . . , l5) must vanish. Now the coefficient of gi in this
equation equals ci of the complex (c, ĉ) in (2).

For the computation of Q : c1c4 +c2c5 +c3c6 = 0 (with MAPLE) we use the abbreviation
ri j for the entries of the matrix (1). Using this notation the equation Q has 1043682 terms.
We denote the coefficients of t i

1t j
2tk

3 by Qi jk where i+ j ≤ 4 and i+ j + k ≤ 5 hold.
For the proof of the theorems given in section 3 we need the following 14 coefficients:
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Q005[8634], Q311[2796], Q400[774], Q310[3900], Q030[14664],
Q401[582], Q131[5154], Q040[3174], Q130[7968], Q003[70717],
Q041[2004], Q221[5364], Q301[7800], Q300[4821],

where the number in the square brackets gives the number of terms. The Euler Parameters
are substituted into these expressions at those points of the proofs where they are needed
because then some geometric constraints must hold which simplify these expressions con-
siderably. The resulting expressions will split up into several factors Fi where we denote
the coefficients of ei

0e j
1ek

2el
3 of Fi by F i jkl

i . In most cases one of these factors is the homog-
enizing factor K which we cross out.

Moreover the collinearity condition of the points x,y,z is denoted by coll(x,y,z) = 0.

3 Theorems on 5-legged planar parallel manipulators

Theorem 1. If the legs of a 5-legged planar parallel manipulator belong in every possible
configuration to a singular linear line complex C then 3 anchor points must be collinear.

Proof. Assuming no 3 points are collinear (⇒ a2b3b4b5A2B3B4B5 6= 0), the proof is done
by contradiction. Computing Q400 and Q401 yields r31a2

2C[24]F1[168] and a2C[24]F2[126].

1. F2 = F3 = 0: Computing the resultant of F2200
1 and F2200

2 with respect to b3 yields
A2B3B4B5b4b5coll(M3,M4,M5)(b4 − b5). For b4 = b5 the condition F2200

1 = 0 yields
the contradiction.

2. C = 0: In this case we calculate the resultant of C1100 and C1010 with respect to B3
which yields b3B4B5coll(m3,m4,m5)(b4B5−B4b5). This implies b4 = b5B4/B5. Now
C1100 and C1010 can only vanish without contradiction (w.c.) for b3 = b5B3/B5. Then
Q040 factors into b5G1[60]G2[28]/B4

5.

a. G2 = 0: Now G3300
2 = A2B3B4b3

5coll(M3,M4,M5) yields the contradiction.
b. G1 = 0: We compute Q311 which splits up into r13r31b5H[48]/B3

5. Now the resul-
tant of G1100

1 and H1100 with respect to a3 yields

A2B3B4B5coll(M3,M4,M5)[B5(A2a4−a2A4)+B4(a2A5−A2a5)].

We solve the last expression for a4. Now G1100
1 and H1100 can only vanish w.c. for

a3 = [B3(a5A2−a2A5)+a2A3B5]/(A2B5). Then Q300 factors into

a2
2b5B3B4coll(M3,M4,M5)[e1e3(b5 +B5)+ e0e2(b5−B5)]L1[12]L2[214]/A3

2B3
5.

Now L2110
1 + L1201

1 = 2A2b5 as well as L2200
2 = A2

2B3B4b2
5coll(M3,M4,M5) yield

the contradiction. ut

Theorem 2. If the legs of a 5-legged planar parallel manipulator belong in every possible
configuration to a singular linear line complex C then 4 anchor points must be collinear.

Proof. Assuming no 4 anchor points are collinear, the proof is done by contradiction:
Part A: We start with the case that m1,m2,m3 as well as M1,M2,M3 are collinear and
pairwise distinct, i.e. b3 = B3 = 0. Therefore we can assume A2A3a2a3(a2 − a3)(A2 −
A3)B4B5b4b5 6= 0. Moreover we can assume that there do not exist any 3 collinear base
points Mi,M j,Mk and corresponding collinear platform points mi,m j,mk where two points
coincide, for i, j,k ∈ {1, . . . ,5}. We consider the following coefficients:

Q310 = r2
31r13a2a3B4B5(A2−A3)F1[8]F2[24], Q040 = r31F3[32]F4[140], (3)

Q311 = r31r13B4B5(a2A3−A2a3)F1[8]F2[24], Q041 = r31F3[32]F5[40]. (4)
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As F1[8] = 0 implies m4 = m5 we have to discuss the following 4 cases:

1. m4 = m5, F3 = 0: For a4 = a5 and b4 = b5 we get F1100
3 = b2

5(A4−A5)(a3A2−a2A3) and
F1010

3 = b5(A4−A5)[A2(a3a2−a5a3)+A3(a5a2−a3a2)]. For A4 = A5 the coefficient
Q131 = r31r23b5(B4 − B5)G1[12]G2[20] yields an easy contradiction. The remaining
factors of F1100

3 and F1010
3 cannot vanish without contradiction.

2. m4 = m5, F4 = F5 = 0: The resultant of F2200
4 and F1010

5 with respect to A2 yields
a2a3A3(A4B5−B4A5)(a2−a3)coll(M3,M4,M5). This expression can only vanish w.c.
for A4 = B4A5/B5. Now F2200

4 = A2A3(a2−a3)(B4−B5) yields the contradiction.
3. F2 = F4 = F5 = 0: Moreover we can assume m4 6= m5. The resultant of F1100

2 and F2200
4

with respect to a2 implies B4 = B5. Now the resultant of F1010
2 and F2200

4 with respect
to a2 yields A2B2

5a2
3(A4−A5)(A2−A3)(b4−b5).

a. A4 = A5: Now the coefficients F2020
4 = a2a3A5B5(a4 − a5)(A2 −A3) and F2110

4 =
a2a3A5B5(b4 − b5)(A2 −A3) imply A5 = 0. Then F1100

5 = A2A3B5(b4 − b5)(a2 −
a3) and F1010

5 = A2A3B5(a4−a5)(a2−a3) yield the contradiction.
b. b4 = b5, A4 6= A5: Now the resultant of F2200

4 and F2110
4 with respect to a2 yields

a2
3b5A2B2

5(A4−A5)2(A2−A3), a contradiction.

4. F2 = F3 = 0: Again we can assume m4 6= m5. Due to F1100
2 = b4b5(B4 −B5)(a2A3 −

a3A2) and F1100
3 = b4b5(A4−A5)(a2A3−a3A2) we have to distinguish two cases:

a. M4 = M5: The resultant of F1010
2 and F1010

3 with respect to a2 implies a4 = b4a5/b5.
Then F1010

2 = 0 yields the contradiction.
b. a2 = a3A2/A3, M4 6= M5: Now F1010

2 = 0 implies b4 = b5B4/B5 and from F1010
3 = 0

we get a4 = [B4(a5A3 − a3A5)− B5a3A4]/(A3B5). Then Q030 yields r31(A2 −
A3)2(A4−A5)H1[8]H2[12]H3[12]. As all factors Hi i = 1,2,3 yield an easy contra-
diction we set A4 = A5. Then Q003 splits up into r12(B4−B5)2L1[10]L2[12]L3[20].
Again all factors Li i = 1,2,3 yield an easy contradiction.

Part B: We discuss the case m1 = m2 and M1,M2,M3 collinear, i.e. a2 = b3 = B3 = 0.
Moreover we can assume a3b4b5A2B4B5(a4b5−a5b4) 6= 0. Now Q040 splits up into

a2
3A2

2r31(a5r31 +b5r32)(a4r31 +b4r32)coll(M3,M4,M5)N[12]. (5)

1. N = 0: From N1100 we get A4 = A5. Then N1010 implies A3 = A4 = A5, i.e. the
collinearity of M3,M4,M5. Now Q311 factors into r13r31a2

3A2
2B4B5P1[8]P2[8]. As P1 = 0

implies m4 = m5, a contradiction, we consider P1100
2 which yields B4 = B5. From

P1100
2 = B4(a4b5−a5b4) we get the contradiction.

2. M3,M4,M5 collinear: Moreover we can exclude the case A3 = A4 = A5.

a. B4 6= B5: Under this assumption we can compute A3 from the collinearity condi-
tion. Then Q041 factors into r31a2

3A2
2B4B5(A4 −A5)P1[8]P2[8]/(B4 −B5)2. As the

Pi = 0 for i = 1,2 imply contradictions we set A4 = A5 which yields A3 = A4 = A5.
b. B4 = B5: Now the collinearity condition immediately implies A4 = A5. We com-

pute again Q041 which yields a2
3A2

2B5(A3 −A5)(a4b5 − a5b4)P1[8]r2
31. As P1 = 0

yields a contradiction we get again the case A3 = A4 = A5.

W.l.o.g. we can assume for the remaining two parts that there do not exist any 3 legs
those base anchor points and platform anchor points are collinear.

Part C: We consider the case where three platform points m1,m2,m3 are collinear (⇒
b3 = 0, A2B3 6= 0) and pairwise distinct. Moreover we assume that there do not exist two
coinciding platform or base points. Therefore we can assume a2a3(a2−a3)b4b5A2B3 6= 0.
We start by considering Q400 = r31a2

2B3S1[12]S2[112] and Q401 = a2B3S1[12]S3[90].

1. S1 = 0: S1100
1 implies B4 = B5. Then S1010

1 simplifies to B4coll(m3,m4,m5). From the
collinearity condition we compute a4 and insert it into Q310 which yields r13r31(b5r32 +
(a3−a5)r31)T1[28]T2[24]/b5. The coefficients T 1100

i i = 1,2 imply easy contradictions.
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2. S2 = S3 = 0: The coefficients S2200
i i = 2,3 immediately imply the contradiction.

Part D: Now we consider the case m1 = m2 and M1,M2,M3 not collinear. We can assume
A2B3a3b4b5 6= 0. As in part B we consider Q040 given in (5).

1. Again N = 0 can only vanish for A3 = A4 = A5. Then the coefficient Q311 splits up into
r31a3A2

2U1[12]U2[56]. Now the coefficients of both factor yield easy contradictions.
2. M3,M4,M5 collinear: Moreover we can exclude the case A3 = A4 = A5. As we can

assume w.l.o.g. that A4 6= A5 we compute B3 form the collinearity condition and plug
it into Q041 which yield again easy contradictions. ut

This theorem is sufficient for the reclassification done in the next section. The following
theorem is given for the sake of completeness.

Theorem 3. If the legs of a 5-legged planar parallel manipulator belong in every possible
configuration to a singular linear line complex C then it is one of the following cases (after
permutation of indices and exchanging B and P):

1. m1, . . . ,m5 are collinear,
2. m1 = m2 = m3,
3. m1 = m2,m3,m4 collinear and M3 = M4,
4. m1 = m2, m3 = m4, M1,M2,M5 collinear and M3,M4,M5 collinear,
5. m1, . . . ,m4 and M1, . . . ,M4 collinear and pairwise distinct with CR(m1, . . . ,m4) =

CR(M1, . . . ,M4) where CR denotes the cross ratio.

Proof. For the proof we assume that no 5 points are collinear and that no 3 points coincide,
which correspond to the trivial cases 1 and 2, respectively.
Part A: In this part we assume that the 4 collinear points m1,m2,m3,m4, i.e. b3 = b4 = 0,
are pairwise distinct. Moreover we assume that there do not exist any four collinear base
or platform points where two points coincide. Therefore b5a2a3a4(a2−a3)(a2−a4)(a3−
a4) 6= 0 must hold. Computation of Q401 yields r31a2(a2−a3)b5B3B4F [36].

1. We assume B3B4 6= 0 and compute the resultant of F1100 and F1010 with respect to A3
which yields a2b5B3B4B5(a3−a4)[a2(A5B4−A4B5)−a4A2(B4−B5)]. As for B5 = 0
the conditions F1100 = 0 and F1010 = 0 yield a contradiction we can assume B5 6= 0.
Now we can express A4 from the last factor of the resultant without loss of generality.
Then F1100 implies A3 = (a3A2(B5 −B3) + a2B3A5)/(a2B5). Now Q400 factors into
r3

31a2B3B4b5(a3 − a4)A2G[44]. As for A2 = 0 we get M1 = M2,M3,M4,M5 collinear
we compute the resultant of G1100 and G1010 with respect to B3 which implies B4 = B5.
From G1100 we get the contradiction.

2. B3 = 0: Now Q040 splits up into r3
31b5R[6]H[44] with

R := A2A3(a2a4−a3a4)+A2A4(a3a4−a2a3)+A3A4(a2a3−a2a4), (6)

expressing the cross ratio relation CR(m1,m2,m3,m4) = CR(M1,M2,M3,M4).

a. H = 0, R 6= 0: We compute the resultant of H1100 and H1010 with respect to A2
which yields a2a3a2

4b5A3A5B4(a2−a3)coll(M3,M4,M5).
i. B4 = 0: From H1100 we get b5B5R, a contradiction.

ii. A3 = 0, B4 6= 0: Now H1100 implies A5 = A4B5(a2−a4)/(a4B4). Then H110 =
a2a3A2A4B5(a2−a4) cannot vanish without contradiction.

iii. A5 = 0, A3B4 6= 0: Now H1100 implies B5 = a4A2A3B4(a2−a3)/R. Then Q041
yields an easy contradiction.

iv. A3A5B4 6= 0: W.l.o.g. we can compute A5 from coll(M3,M4,M5) = 0. Then
H1100 implies B4 = B5(A3a4−a3A4)/(a4A3). H1010 yields the contradiction.

b. R = 0: This cases splits up into the following subcases:
i. a4(A4A3−A2A3)+a3(A2A4−A3A4) 6= 0: Under this assumption we can com-

pute a2 from R = 0. Then Q310 can only vanish w.c. for



6 Georg Nawratil

• B4 = 0: This yields item 5 of Theorem 3.
• B5 = 0, B4 6= 0: Now Q005 yields r13r31a2

3a4A2
2B2

4b5A3(A2 − A3)2(a3 −
a4)L[20]. Then the resultant of L1100 and L1010 with respect to A4 yields
a3a4b5A3A5(a3−a4)(A3−A5), a contradiction.

ii. a4(A4A3 −A2A3)+ a3(A2A4 −A3A4) = 0, a3A4 −a4A3 6= 0: Now we can ex-
press A2. Then R can only vanish w.c. for
• A4 = 0: For this case Q130 yields an easy contradiction.
• A3 = A4 6= 0: Now Q130 implies A3 = A4 = A5. Q005 yields the contradiction.

iii. a4(A4A3−A2A3)+a3(A2A4−A3A4) = 0, A3 = a3A4/a4: Then the first equa-
tion implies A4 = 0. Again Q130 yields an easy contradiction.

Part B: In this part we have 4 collinear points where two coincide. W.o.l.g. we set
a2 = b3 = b4 = 0. We can assume A2a3a4b5 6= 0. Then the computation of Q040 yields
r3

31A2
2a2

3a2
4b5(A3−A4)(a5r31 +b5r32)coll(M3,M4,M5).

1. A3 = A4: Q301 splits up into r31r23A2
2a2

3a2
4b5(B3 −B4)2(A4 −A5)(a5r31 + b5r32). As

M3 = M4 yields item 3 of Theorem 3 we can assume M3 6= M4 for the remaining case
study. If A3 = A4 = A5 holds Q221 factors into r23r2

31a3a4b5A2
2(B3−B4)N[20]. Then the

resultant of N1100 and N1010 with respect to B5 yields a3a4b5B3B4(B3−B4)(a3−a4).

a. B3 = 0: Now N1100 = a3b5B4B5. For B5 = 0 we get a special case of item 3.
b. a3 = a4: Then N1100 yields a3b5B5(B3−B4). This yields again B5 = 0 and we get

a special case of item 4 of Theorem 3.

2. M3,M4,M5 collinear, A3 6= A4: We express B5 from the collinearity condition. Now
Q131 equals r2

31A2
2a3a4b5(r13(A3 − A4) + 2(B3 − B4)r23)P[24]. Then the resultant of

P1100 and P1010 with respect to B4 yield a3a4b5B3B4(a3−a4)(A3−A5).

a. B3 = 0: In this case we get P1100 = a3b5B4(A5−A3). This implies A3 = A5, which
is again a special case of item 3 of Theorem 3.

b. A3 = A5, B3 6= 0: Now P1100 cannot vanish without contradiction.
c. a3 = a4, B3(A3−A5) 6= 0: We get P1100 = a4b5(−B3A5 +B3A4 +B4A5−B4A3). If

the last factor vanishes we get item 4 of Theorem 3. ut

In the following we give a geometric interpretation of the 5 cases listed in Theorem 3: In the
cases 1-4 the five carrier lines [Mi,mi] always belong to a real singular linear line complex.

ad 1) The axis equals [m1, . . . ,m5].
ad 2) The axis is given by the intersection line of the planes [m1,M4,m4] and [m1,M5,m5].
ad 3) The axis equals [m1 = m2,s] where s denotes the intersection point, which may be an

ideal point, of the line [M5,m5] and the plane [m3,m4,M3 = M4].
ad 4) The axis is determined by the intersection line of the planes [M1,M2,m1 = m2] and

[M3,M4,m3 = m4] which passes through M5.
ad 5) The lines [M1,m1], . . . , [M4,m4] belong to a regulus R. We must distinguish 3 cases:

a. If [M5,m5] intersects R in real points si then the 5 lines belong to 2 real singular
linear line complexes Ci, i = 1,2. The axis of Ci corresponds to the line of the
complementary regulus R ′ of R which contains si.

b. If [M5,m5] touches R in the point s then the 5 lines belong to a real singular
linear line complex C . The axis equals the generator of R ′ which contains s.

c. If [M5,m5] intersects R in conjugate complex points s and s then the 5 lines
belong to conjugate complex singular linear line complexes C and C . Therefore
all 5 lines intersect two conjugate complex lines (cf. [7]).

Remark 1. An interesting question arises: Can the free parameters of the base and platform
points of the 5th case be chosen such that the five lines always belong to a real singular
linear line complex, if neither all base nor all platform points are collinear? This problem
remains open and is dedicated to future research.
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4 Reclassifying architecturally singular parallel manipulators

For a classification of A it is sufficient to classify all architecturally singular parallel ma-
nipulator with rk(l1, . . . , l6) = 5 because manipulators with rk(l1, . . . , l6) < 5 can only be
special cases of those. In the following we want to subdivide A with respect to the crite-
rion if the legs belong in every possible configuration to a real singular linear line complex
(subset AS) or not (subset AR). Now the classification can be done as follows:

Corollary 1. An architecturally singular parallel manipulator with rk(l1, . . . , l6) = 5 be-
longs to the subset AS if it fulfills one of the following conditions (after permutation of
indices and exchanging Mi with mi for i = 1, . . . ,6):

(a) m1, . . . ,m6 are collinear,
(b) m1 = m2 = m3 and M4 = M5 = M6,
(c) m1 = m2 = m3, m1, . . . ,m5 are collinear and M4 = M5,
(d) m1 = m2 = m3 = m4,
(e) m1 = m2, m3 = m4, M5 = M6, M1,M2,M5 and M3,M4,M5 are collinear.

Otherwise it belongs to the subset AR. Then the point pairs (Mi,mi), i = 1, . . . ,6 are ex-
actly 11-fold conjugate pairs of points with respect to a 10-dimensional linear manifold of
correlations, i.e. rk(u1, . . .u6) = 5 with

ui := (1,ai,bi,ci,Ai,Bi,Ci,aiAi,aiBi,aiCi,biAi,biBi,biCi,ciAi,ciBi,ciCi)T ,

where (ai,bi,ci) and (Ai,Bi,Ci) are the coordinates of the platform resp. base points.

Proof. Due to Theorem 2 and the result of Karger [2, Theorem 1 and 2] there do not exist
architecturally singular parallel manipulators with no 4 points collinear which belong in
each configuration to a singular linear line complex.

On the other hand all types of architecturally singular parallel manipulators with 4 points
collinear were listed by Karger [2, Theorem 3]. For the items 1-10 of this list the conditions
given for the classification are also sufficient conditions for an manipulator to be architec-
turally singular. For the entries 11 and 12 (the degenerated planar cases) such sufficient
conditions where given by the author in [6]. It can easily be checked by computations that
these conditions yield rk(l1, . . . , l6) = 5 in all 12 cases.

Moreover it is not difficult to determine the line (axis) intersecting all legs of the ma-
nipulators given in (a)-(e), which correspond to the entries 1, 2, 4, 5, 9 of Karger’s list. For
more details see [2, Subsection 5.1].

Now we prove the second part of this corollary. For the planar cases (i.e. architecturally
singular parallel manipulators with no 4 points on a line plus the entries 3, 11 and 12
of Karger’s list) rk(u1, . . .u6) = 5 follows from the geometric characterization given by
Röschel and Mick [8]. For the remaining non-planar cases (i.e. entries 6, 7, 8, 10 of Karger’s
list) rk(u1, . . .u6) = 5 can be verified by computation. Now we must show that for the cases
3, 6, 7, 8, 10, 11, 12 the carrier lines of the legs do not belong to a real singular linear line
complex in every possible configuration. The proof can easily be done by contradiction as
follows:

If the manipulator belongs in every possible configuration to a singular linear line com-
plex then the 5-legged manipulator1 which results from removing the ith leg must also
have this property. Hence, we compute the linear line complex (c, ĉ) ∈R6 and the equation
Qi : c ·ĉ = 0 as described in subsection 2.1. Now for each of the above mentioned cases the
equations Qi for i = 1, . . . ,6 must be fulfilled identically.

By means of computation it can be verified that this is not the case. ut

Remark 2. We hope that the subdivision of A into AS and AR can be helpful for finding a
purely geometric way for the determination of A .

1 Note that the platform and the base of the resulting 5-legged parallel manipulator must not be planar.
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5 Future work

1. Determining all 5-legged non-planar parallel manipulators which belong in every pos-
sible configuration to a singular linear line complex. We conjecture that this problem
only has the solutions 1-3 of Theorem 3.

2. It would also be interesting to determine the whole set S of parallel manipulators
possessing the following property: In each singular configuration of the manipulator
the carrier lines of the legs belong to a (real) singular linear line complex. This set
S is not empty because the set AS is a subset of S . But S also contains parallel
manipulators which are not architecturally singular, e.g. the following one:

• m1 = m2 = m3, the base is planar and M4,M5,M6 are collinear.

Due to the examples known to the author, we conjecture that all parallel manipulators
belonging to the set S have 4 collinear anchor points.

3. Solving the problems formulated in Remark 1 and 2.

6 Conclusion

We presented a new approach to the classification of the set A of architecturally singular
parallel manipulators. We proved that a complete classification is possible in a geometric
way (cf. Corollary 1) if we subdivide A with respect to the criterion if the legs belong
in every possible configuration to a real singular linear line complex (subset AS) or not
(subset AR).

The proof was based on the fact that 5-legged planar parallel manipulators of Stewart
Gough type which belong in every possible configuration to a singular linear line complex
must possess 4 collinear anchor points (cf. Theorem 1 and 2). Moreover we listed all types
of 5-legged planar parallel manipulators with this property (cf. Theorem 3).
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