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1. What is a self-motion of a SGP?

The geometry of a SGP is given by the six
base anchor points Mi ∈ Σ0 and by the six
platform points mi ∈ Σ for i = 1, . . . , 6.

A SGP is called planar, if M1, . . . , M6 are
coplanar and m1, . . . , m6 are coplanar. The
carrier planes are denoted by πM resp. πm.

Mi and mi are connected with a SPS leg.

If all P-joints are locked, a SGP is in ge-
neral rigid. But, under particular conditions,
the manipulator can perform an n-parametric
motion (n > 0), which is called self-motion.
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1. Planar projective SGPs

Definition 1

A planar SGP is called projective, if Mi and mi are related by a non-singular
projectivity κ: mi 7→ Mi for i = 1, . . . , 6.

Theorem 1 Merlet [1]

A SGP is singular (infinitesimal flexible, shaky), if
and only if, the carrier lines of the six SPS legs
belong to a linear line complex.

A planar projective SGP is singular in every pos-
sible configuration (= architecturally singular), if
and only if, one set of anchor points is located
on a conic section (e.g. Chasles [2], Röschel and
Mick [3], Karger [4]).
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1. Related results

As architecturally singular SGPs are
redundant, they possess self-motions
in each pose (over C).
Therefore we are only interested
in non-architecturally singular planar
projective SGPs with self-motions.

πM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πm

Lemma 1 Nawratil [5]

A two-parametric set of additional legs mM with mκ = M can be attached to
non-architecturally singular planar projective SGPs without changing the direct
kinematics and singularity surface.

Moreover it was shown in [5] that non-architecturally singular planar projective
SGPs can either have pure translational self-motions or elliptic self-motions.
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2. Elliptic self-motions

As the geometry of all manipulators with translational self-motions was already
determined in [5], we focused on the study of elliptic self-motions, which can be
defined as follows, if we take into account that s denotes the line of intersection of
πM and πm in the projective extension of the Euclidean 3-space:

Definition 2

A self-motion of a non-architecturally singular
planar projective SGP is called elliptic, if in each
pose of this motion s exists with s = sκ and where
the projectivity from s onto itself is elliptic.

Moreover we can assume that s is not the ideal
line, as otherwise we get an affine planar SGP,
which was already discussed in [5].
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2. Results on Elliptic self-motions

It remains open, whether elliptic self-motions even exist, as no example is known.
In the case of existence the following theorem has to hold:

Theorem 2 Nawratil [6]

1. A non-architecturally singular planar projective SGP possesses in each pose of
an elliptic self-motion exactly two instantaneous dofs.

2. Elliptic self-motions have to be one-parametric motions.

Moreover the angle γ enclosed by the unique pair of ideal points (f,F) with fκ = F
has to remain constant during the self-motion of a planar projective SGP.

Theorem 3 Nawratil [6]

There does not exist a non-architecturally singular planar projective SGP with an
orthogonal elliptic self-motion (⇔ γ = 90◦).
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2. Conjecture

Conjecture

Non-architecturally singular planar projective SGPs with an elliptic self-motion do
not exist.

We tried to prove this conjecture analogously to Theorem 3, whose proof was done
analytically.

Indeed the problem under consideration has only one more unknown, namely the
angle γ, but exactly this additional variable effects the computational complexity
enormously. In this case we were not able to solve the problem analytically, due to
its high degree of non-linearity.

Therefore we have to come up with another idea for proving this conjecture. This
new approach is a purely geometric one, which is based on the following old
geometric/kinematic results.
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3. Elementary facts on regular ruled quadrics

The one-sheeted hyperboloid and the hyperbolic paraboloid carry two sets of
generators (regulus R and associated regulus R×). All lines within one set are skew
to each other and each line of one set is intersected by all lines of the other set.
=⇒ Regular ruled quadric is uniquely determined by three pairwise skew generators
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3. Historical results

In 1873, the following theorem was given by Henrici [7]:

Theorem 4

If the generators of a hyperboloid Φ of one sheet are constructed of rods, jointed
at the points of crossing in a way that at each intersection point one rod is
free movable about the other one, then the surface is not rigid, but permits a
deformation into a one-parametric set H of hyperboloids.

In 1899, Schur [8] presented a very elegant proof for Henrici’s theorem, which also
showed that this theorem remains valid if the one-sheeted hyperboloid is replaced
by a hyperbolic paraboloid.

Remark: Based on these results, Wiener [9] made some deformable models of
one-sheeted hyperboloids and hyperbolic paraboloids. ⋄

Computational Kinematics, May 12–15 2013, Barcelona, Spain Austrian Science Fund 9



3. Historical results

The following theorem is well known (cf. page 222 of Koenigs [10]):

Theorem 5

If three points m1, m2, m3 of a line g run on spheres,
where the centers M1, M2, M3 are also located on
a line G, then every point m of g has a spherical
trajectory, where the center M of this sphere belongs
to G and fulfills the relation:

CR(m1, m2,m3,m) = CR(M1, M2, M3, M),
where CR denotes the cross-ratio.

G

M
M3

M2

M1

m1

m2

m3

m g

Moreover it is a well known fact of projective geometry that the one-parametric set
of lines [m, M] with m and M of Theorem 5 span a regulus R of a regular ruled
quadric, if g and G are skew and m1, m2,m3 and M1, M2, M3 are pairwise distinct.
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4. Proof of the Conjecture
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Due to Lemma 1 and the results
of Borras et al. [11], we can
replace the original six legs miMi

with i = 1, . . . , 6 by a new set of
six legs niNi without changing
the direct kinematics and singu-
larity surface, if niκ = Ni holds
and n1, . . . , n6 are not located
on a conic section.
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4. Proof of the Conjecture
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Due to Lemma 1 (Theorem 5),
we can add the one-parametric
set of legs nN with n ∈ g1,
N ∈ G1 and nκ = N without di-
sturbing the elliptic self-motion.

The lines g1 and G1 are
skew (⇔ n1 6= N1), as the pro-
jectivity of s onto itself is elliptic.

Computational Kinematics, May 12–15 2013, Barcelona, Spain Austrian Science Fund 12



4. Proof of the Conjecture

N1

N2

N3

N5

N6

N4

n2 n3

n1 s = sκ

n4

n5

n6

πM

πm

G1

G2

G3

g1

g2

g3

Therefore the one-parametric set
R1 of lines [n,N] is a regulus of
a regular ruled quadric Φ1.

Due to the results of Henrici
and Schur, we can add even
arbitrary lines of the associated
regulus R×

1
without restricting

the elliptic self-motion.
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4. Proof of the Conjecture

Intersection with a plane ε,

which contains s = sκ ∈ Ri.

=⇒ ε ∩ R×

i = G⋆
i
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4. Proof of the Conjecture

o
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Lemma 2

The points N⋆
4, N

⋆
5, N

⋆
6 are pairwi-

se distinct and do not belong to
s = sκ. Moreover N⋆

4
,N⋆

5
, N⋆

6
are

not collinear.

Proof of Lemma 2

See the presented paper. �
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4. Proof of the Conjecture

Lemma 3

There exists a non-singular projectivity κ⋆ with niκ
⋆ = N⋆

i for i = 1, . . . , 6.
Therefore the manipulator with platform anchor points n1, . . . , n6 and base anchor
points N⋆

1
, . . . ,N⋆

6
is also a planar projective SGP with an elliptic self-motion.

Proof of Lemma 3

Due to Lemma 2, the points N⋆
1, N

⋆
2, N

⋆
4, N

⋆
5 always form a quadrangle. Therefore

the mapping ni 7→ N⋆
i for i = 1, 2, 4, 5 uniquely defines a regular projectivity κ⋆,

which also yields n3κ
⋆ = N⋆

3
and n6κ

⋆ = N⋆
6
.

The elliptic self-motion of the manipulator n1, . . . , N6 is transmitted by the motion
of the reguli R1,R2,R3 onto the manipulator n1, . . . ,N

⋆
6
.

This resulting self-motion is elliptic too, as a fixed point of the restriction of κ⋆ on
s = sκ⋆ also has to be a fixed point of the restriction of κ on s = sκ. �
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4. Proof of the Conjecture

Construction for a special choice of ε:

S . . . finite point of s = sκ

α . . . plane spanned by [S, f, F]

β . . . plane orthogonal to f through S

t . . . intersection line of α and β

ε . . . plane spanned by t and s = sκ F

β
s = sκ

α

ε
St

f
πm

πM

As fκ⋆ equals the ideal point of t, the self-motion of the planar projective SGP
n1, . . . , N

⋆
6

is orthogonal.
Therefore Theorem 3 yields the contradiction, which proves the conjecture. �
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5. Conclusion

As the proof of the conjecture also closes the study of planar projective SGPs with
self-motions, we can give the following main theorem under consideration of the
results achieved in [5]:

Theorem 6

A planar projective SGP, which is not architecturally singular, can only have a
self-motion, if the projectivity is an affinity Mi = a + Ami, where the singular
values s1 and s2 of the 2 × 2 transformation matrix A with 0 < s1 ≤ s2 fulfill the
condition s1 ≤ 1 ≤ s2.
All one-parametric self-motions are circular translations. Moreover the self-motion
is a two-dimensional translation, if and only if, the platform and the base are
congruent and all legs have equal length.

Computational Kinematics, May 12–15 2013, Barcelona, Spain Austrian Science Fund 18



6. References

[1] Merlet JP (1989) Singular configurations of parallel manipulators and Grassmann geometry, International Journal
of Robotics Research 8(5):45-56
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