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Abstract In this paper, we close the study on the self-motional behavior of non-
architecturally singular parallel manipulators of Stewart Gough (SG) type, where the
planar platform and the planar base are related by a projectivity κ , by showing that
planar projective SG platforms with elliptic self-motionsdo not exist. The proof of
this result demonstrates the power of geometric and computational interaction, but
it also points out the limits of symbolic computation.
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1 Introduction

The geometry of a planar Stewart Gough (SG) platform is givenby the six base
anchor pointsMi located in the fixed planeπM and by the six platform anchor points
mi of the moving planeπm. If the geometry of the manipulator and the six leg
lengths are given, the SG platform is in general rigid, but under particular conditions,
it can perform ann-parametric motion (n> 0), which is called self-motion. Note that
these motions are also solutions of the famous Borel Bricardproblem (cf. [1, 2, 3]).

It is well known, that planar SG platforms, which are singular in every possible
configuration, possess self-motions in each pose (overC). These so-called architec-
turally singular planar SG platforms were extensively studied in [4, 5, 6, 7]. There-
fore, we are only interested in self-motions of planar SG platforms, which are not
architecturally singular. Moreover, within this paper, wefocus on the case, where
the base anchor pointsMi and the platform anchor pointsmi are related by a non-
singular projectivityκ . For the remainder of this article, we call these manipulators
planar projective SG platforms.
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2 Self-motions of planar projective SG platforms

It is well known (cf. [6, 8, 9]), that a planar projective SG platform is architecturally
singular, if and only if, one set of anchor points is located on a conic section, which
can also be reducible.

The author proved in Lemma 1 of [10] that one can attach a two-parametric
setL of additional legs to a planar projective SG platform without changing the
forward kinematics and singularity surface. The platform anchor pointsmi and the
base anchor pointsMi of these additional legs are also related byκ , i.e.κ : mi 7→Mi .

Moreover, it was also shown by the author in [10] that non-architecturally singu-
lar planar projective SG platforms can either have pure translational self-motions or
elliptic self-motions. Under consideration thats denotes the line of intersection of
πM andπm in the projective extension of the Euclidean 3-space, the latter type of
self-motions can be defined as follows (cf. Definition 1 of [10]):

Definition 1. A self-motion of a non-architecturally singular planar projective SG
platform is calledelliptic, if in each pose of this motions exists withs = sκ and the
projectivity froms onto itself is elliptic.

Note, that an elliptic projectivity of a projectively extended line (line plus its
ideal point) onto itself, is a bijective linear mapping, which does not have real fixed
points. Therefore, Definition 1 implies that neitherπM andπm nor two related points
of the platform and the base coincide during an elliptic self-motion.

As the geometry of all manipulators with translational self-motions were already
determined in [10], we focused on the study of elliptic self-motions in a recent
publication [11], where the following results were obtained.

2.1 Results on elliptic self-motions

Until now, it is an open question, whether planar projectiveSG platforms with el-
liptic self-motions even exist (cf. later given Conjecture1). In the case of existence,
these self-motions have to be one-parametric ones with instantaneously two degrees
of freedom in each pose of the self-motion (cf. Theorems 1 and2 of [11]).

It was also shown in [11], that the angleγ enclosed by the unique pair of ideal
points(f,F) with fκ = F has to remain constant during the self-motion of a planar
projective SG platform. By introducing the nomenclatureorthogonalfor elliptic
self-motions withγ = π/2, we can give Theorem 3 of [11]:

Theorem 1.There do not exist non-architecturally singular planar projective SG
platforms with an orthogonal elliptic self-motion.

The proof of this theorem was done analytically, but not in the classical way (cf.
Section 5.1 of [11]), as this approach resulted in a highly non-linear system of 17
equations in the design parameters, which we were not able tosolve explicitly.
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Fig. 1 Wiener’s models of a deformable one-sheeted hyperboloid (a) and hyperbolic paraboloid (b)
of the collection of mathematical models at the Institute ofDiscrete Mathematics and Geometry,
Vienna University of Technology (see http://www.geometrie.tuwien.ac.at/modelle).

Instead, we developed an alternative method (cf. Section 5.2 of [11]), which is
based on the algebraic formulation of two geometrically necessary conditions for
achieving an elliptic self-motion. These two conditions imply two homogeneous
polynomialsϒ1 andϒ2 of degree 12 in two Euler parameterse1 ande2, which remain
from the Study parameters, after a performed elimination process. Note, that each
of these two polynomials has 1960 terms. A necessary condition for the existence
of an orthogonal elliptic self-motion is, thatϒ1 andϒ2 are fulfilled independently of
the Euler parameterse1 ande2. Therefore, the coefficients ofϒ1 andϒ2, with respect
to e1 ande2, imply a system of 26 equations in the design parameters, which was
used to prove Theorem 1.

Due to the above cited results, we had good reasons to close the paper [11] with
the following conjecture:

Conjecture 1.Non-architecturally singular planar projective SG platforms with an
elliptic self-motion do not exist.

Clearly, the first idea to prove this conjecture, is to do it similarly to Theorem 1.
Indeed, the problem under consideration has only one more unknown, namely the
angleγ, but exactly this additional variable effects enormously the computational
complexity: The two corresponding polynomialsϒ1 andϒ2 of the alternative method
can be computed with MAPLE on a high capacity computer (78GB RAM). Each of
these two expressions has 8259 terms and is again of degree 12in e1 ande2 (cf.
Remark 4 of [11]). We tried hard to solve the resulting systemof 26 equations
explicitly, but we failed due to its high degree of non-linearity.

Therefore, we have to come up with another idea for proving this conjecture. This
new approach, presented in Section 4, is a purely geometric one, which is based on
some old geometric/kinematic results listed in Section 3. Note, that the given proof
also finishes the study of planar projective SG platforms with self-motions, whose
results are summed up within the conclusions (cf. Section 5).
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3 Related historical work

Before we list related historical results, we repeat some elementary facts on reg-
ular ruled quadrics, which are the one-sheeted hyperboloidand the hyperbolic
paraboloid (see Fig. 1): Both surfaces carry two sets of generators, which are called
regulusR and associated regulusR×, respectively. Moreover, it should be noted
that all lines within one set are skew to each other and that each line of one set is
intersected by all lines of the other set. Therefore, a regular ruled quadric is uniquely
determined by three pairwise skew generators. For more details, we refer to [12].

In 1873 the following theorem was given by Henrici (cf. [13]):

Theorem 2. If the generators of a hyperboloidΦ of one sheet are constructed of
rods, jointed at the points of crossing in a way that at each intersection point one
rod is free movable about the other one, then the surface is not rigid, but permits a
deformation into a one-parametric setH of hyperboloids.

Moreover, Greenhill remarked in 1878 thatH consists of confocal hyperboloids
and that the trajectory of a point ofΦ is orthogonal to this system of confocal hyper-
boloids. A proof of Greenhill’s statement was given in 1879 by Cayley [14]. In 1899
Schur [15] presented a very elegant proof for Henrici’s theorem and Greenhill’s ad-
dendum, which also showed that these results remain valid ifthe one-sheeted hy-
perboloid is replaced by a hyperbolic paraboloid.

Finally, it should be noted that Wiener, who made some very nice models of these
deformable one-sheeted hyperboloids and hyperbolic paraboloids (see Fig. 1), also
gave a detailed review of this topic in Section 9 of [16].

Beside the cited results on the deformation of regular ruledquadrics, the follow-
ing theorem is well known to the kinematic community (cf. page 222 of [17]):

Theorem 3. If three pointsm1,m2,m3 of a lineg run on spheres, where the centers
M1,M2,M3 are also located on a lineG, then every pointm of g has a spherical
trajectory, where the centerM of this sphere belongs toG and fulfills the relation:
CR(m1,m2,m3,m) = CR(M1,M2,M3,M), where CR denotes the cross-ratio.

Moreover, it is a well known fact of projective geometry, that the one-parametric
set of lines[m,M] with m andM of Theorem 3 span a regulusR of a regular ruled
quadric, ifg andG are skew andm1,m2,m3 andM1,M2,M3 are pairwise distinct.

4 Proof of Conjecture 1

The proof of this conjecture is done by contradiction. We assume that a non-
architecturally singular planar projective SG platform with base anchor points
M1, . . . ,M6 and platform anchor pointsm1, . . . ,m6 exists, which possesses an el-
liptic self-motionE . Without loss of generality, we can assume that the manipulator
is in a pose ofE whereπm andπM are not parallel, as this would imply thatκ is an
affinity. But this affine case was already discussed in Theorem 5 of [10].
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Fig. 2 Sketch and notation of the points, lines and planes used for the proof of Conjecture 1.

4.1 Definition of a special planar projective SG platform

Due to Lemma 1 of [10] and the results of [18], we can replace the original six legs
miMi with i = 1, . . . ,6 by a new set of six legsniNi without changing the direct
kinematics and singularity surface, ifniκ = Ni holds andn1, . . . ,n6 are not located
on a conic section. Therefore,n1, . . . ,n6 can be selected as follows (cf. Fig. 2):

We chose three linesg1,g2,g3 ∈ πm in a way thatg1,g2,g3,s are pairwise dis-
tinct and that no three of them belong to a pencil of lines. Then we can defineni

as the intersection point ofgi ands = sκ for i = 1,2,3. Moreover, the intersection
point of gi andg j is noted bynk+3 with pairwise distincti, j,k ∈ {1,2,3}. By ap-
plying κ to n1, . . . ,n6, we get the corresponding base anchor pointsN1, . . . ,N6. It
can easily be checked, that the resulting special planar projective SG platform is not
architecturally singular. Moreover, we denotegiκ by Gi for i = 1,2,3.

Now we consider the one-parametric set of legsnN with n ∈ g1, N ∈ G1 and
nκ = N. Due to Lemma 1 of [10], all these legsnN can be added to the manipulator
without disturbing the elliptic self-motionE .1 Moreover, the two linesg1 andG1 are
skew (⇔ n1 6= N1), as the projectivity ofs onto itself is elliptic. As a consequence,
the one-parametric setR1 of lines [n,N] is a regulus of a regular ruled quadric
Φ1. Due to the results of Henrici and Schur, we can even add arbitrary lines of the
associated regulusR×

1 to the mechanism without restricting the elliptic self-motion
E . Note, that the linesg1 andG1 also belong toR×

1 .
Clearly, analogous considerations forgi,Gi yield the corresponding results for

the reguliRi ,R
×
i of the regular ruled quadricΦi for i = 2,3.

1 Note, that this can also be concluded as follows: As the crossratio is invariant under projectivities
the relationCR(n1,n5,n6,n) = CR(N1,N5,N6,N) holds. Then Theorem 3 yields the results.
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Fig. 3 (a) Sketch for the proof of the second part of Lemma 1. (b) Sketch of the construction for
the special choice of the planeε .

4.2 Planar intersection ofΦ1

In the general case the planar intersection ofΦ1 is a conic section. But, if we assume
that the planeε contains the lines = sκ , which belongs to the regulusR1, then the
conic degenerates into two distinct lines, which ares = sκ itself and a lineG⋆

1 which
belongs to the associated regulusR

×
1 . Note, thatε is the tangent plane ofΦ1 in the

intersection point ofs = sκ andG⋆
1, which is denoted byN⋆

1.
Clearly, analogous considerations hold for the surfacesΦ2 andΦ3, which also

yield the pointsN⋆
2 andN⋆

3, respectively. Moreover, we introduce the notationN⋆
k+3

for the intersection point ofG⋆
i andG⋆

j with pairwise distincti, j,k ∈ {1,2,3}. For
these three pointsN⋆

4,N
⋆
5,N

⋆
6 the following statement holds:

Lemma 1. The pointsN⋆
4,N

⋆
5,N

⋆
6 are pairwise distinct and do not belong tos = sκ .

Moreover,N⋆
4,N

⋆
5,N

⋆
6 are not collinear.

Proof. The pointN⋆
k+3 is located on the line[nk+3,Nk+3], which belongs to the

reguliRi andR j for pairwise distincti, j,k ∈ {1,2,3}. Therefore, these three lines
[n4,N4], [n5,N5], [n6,N6] are pairwise skew and not located within the platformπm.
As a consequence, the pointsN⋆

4,N
⋆
5,N

⋆
6 are pairwise distinct and not located on

s = sκ .
Now, we prove the second part of this lemma by contradiction.We assume that

N⋆
4,N

⋆
5,N

⋆
6 are located on a lineL (cf. Fig. 3a). We denote the intersection point of

L and s = sκ by o. It should be noted, thato = N⋆
1 = N⋆

2 = N⋆
3 holds. Moreover,

L belongs to the associated regulusR
×
4 of the regular ruled quadricΦ4 defined by

the regulusR4, which is spanned by the pairwise skew lines[n4,N4], [n5,N5] and
[n6,N6]. Now, the unique line ofR4 througho has to bes = sκ , as otherwise this
point has to be a fixed point of the projectivity ofs onto itself, which contradicts the
definition of an elliptic self-motion. Therefore, the intersection ofΦ4 with πm has
to consist ofs = sκ and a second line containing the pointsn4,n5,n6, which already
contradicts our assumptions of Section 4.1. �



Non-existence of planar projective Stewart Gough platforms with elliptic self-motions 7

4.3 Concluding the proof

In order to verify Conjecture 1, we need one more lemma, whichis given below:

Lemma 2. There exists a non-singular projectivityκ⋆ with niκ⋆ = N⋆
i for i =

1, . . . ,6. Therefore, the manipulator with platform anchor pointsn1, . . . ,n6 and base
anchor pointsN⋆

1, . . . ,N
⋆
6 is also a planar projective SG platform with an elliptic

self-motionE ⋆.

Proof. Due to Lemma 1 the pointsN⋆
1,N

⋆
2,N

⋆
4,N

⋆
5 always form a quadrangle. There-

fore, the mappingni 7→ N⋆
i for i = 1,2,4,5 uniquely defines a regular projectivity

κ⋆. It can easily be seen by the collinearity properties of the anchor points, that also
n3κ⋆ = N⋆

3 andn6κ⋆ = N⋆
6 hold.

Moreover, the elliptic self-motionE of the manipulator with platform anchor
pointsn1, . . . ,n6 and base anchor pointsN1, . . . ,N6 is transmitted by the motion of
the reguliR1,R2,R3 onto the manipulator with platform anchor pointsn1, . . . ,n6

and base anchor pointsN⋆
1, . . . ,N

⋆
6. This resulting self-motion denoted byE ⋆ has to

be elliptic, as a fixed point of the restriction ofκ⋆ on s = sκ⋆ also has to be a fixed
point of the restriction ofκ on s = sκ . As this would contradict our assumption that
E is an elliptic self-motion, we are done. �

Now the proof of the conjecture can be closed by giving the construction for a
special choice of the planeε (cf. Fig. 3b):

We consider any finite pointS ∈ s = sκ . This point spans together with the ideal
pointsf ∈ πm andF ∈ πM (cf. Section 2.1) the planeα.2 Now we intersectα with
a planeβ , which containsS and is orthogonal to the directionf. We denote the line
of intersection byt. Then we choseε as the plane spanned bys = sκ andt.

Due to Lemma 2, the resulting planar projective SG platform with platform an-
chor pointsn1, . . . ,n6 and base anchor pointsN⋆

1, . . . ,N
⋆
6 possesses an elliptic self-

motion E ⋆. According to the given construction,fκ⋆ equals the ideal point oft
and thereforeE ⋆ is orthogonal. As planar projective SG platforms with such aself-
motion do not exist (cf. Theorem 1), we end up with a contradiction. �

5 Conclusion

In this paper, we identified that the method based on the interaction of geometry
and symbolic computation, which was used to prove Theorem 1,fails for solving
the generalized problem formulated in Conjecture 1, due to the resulting computa-
tional complexity. By pure geometric reasonings, based on some historical results,
we were able to verify Conjecture 1 by reducing the problem tothe already solved
one given in Theorem 1. This is a prime example for the fact that geometry is es-
sential for solving advanced problems within the field of computational kinematics.

2 Note, thatf ∈ s or F ∈ sκ cannot hold as this yieldsf = F, a contradiction.
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As the proof of Conjecture 1 also closes the study of planar projective SG plat-
forms with self-motions, we can give the following main theorem under considera-
tion of the results achieved in [10]:

Theorem 4.A planar projective SG platform, which is not architecturally singular,
can only have a self-motion if the projectivity is an affinitya+Ax, where the singu-
lar values s1 and s2 of the2×2 transformation matrixA with 0 < s1 ≤ s2 fulfill the
condition s1 ≤ 1 ≤ s2. All one-parametric self-motions of these manipulators are
circular translations. Moreover, the self-motion is a two-dimensional translation, if
and only if, the platform and the base are congruent and all legs have equal length.
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Fund FWF within the project “Flexible polyhedra and frameworks in different spaces”, an interna-
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Comptes Rendus des Séances de l’Académie des Sciences52 1094–1104 (1861)

9. Karger, A.: Singularities and self-motions of a special type of platforms, Advances in Robot
Kinematics: Theory and Applications (J. Lenarcic, F. Thomas eds.), 155–164, Springer (2002)

10. Nawratil, G.: Self-motions of planar projective Stewart Gough platforms, Latest Advances in
Robot Kinematics (J. Lenarcic, M. Husty eds.), 27–34, Springer (2012)

11. Nawratil, G.: On elliptic self-motions of planar projective Stewart Gough platforms, Transac-
tions of the Canadian Society for Mechanical Engineering37 (1) in press (2013)

12. Pottmann, H., Wallner, J.: Computational Line Geometry, Springer (2001)
13. Dycks, W.: Katalog mathematischer Modelle, Wolf, München (1892)
14. Cayley, A.: On the deformation of a model of a hyperboloid, Messenger of Mathematics8

51–52 (1879)
15. Schur, F.: Die Deformation einer geradlinigen Fläche zweiten Grades ohnëAnderung der
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