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Abstract. This paper deals with the old and classical problem of determining necessary
conditions for the overconstrained mobility of some mechanical device. Methods from
algebraic geometry have already been used to investigate these mobility conditions, and
we propose some tools specifically developed for the so–called n–pods. In particular, we
focus on the conditions which are imposed on an n–pod by the existence of points of
particular kind, which lie on the boundary of the set of self–motions of the n–pod when we
consider a specific compactification of the group of direct isometries of R3. Furthermore
we set up a photogrammetry–like technique which allows to establish necessary conditions
for movability of 5–pods.

Introduction

The objects we focus on in this paper are mechanical manipulators called n–pods. As de-
scribed in [2], the geometry of this kind of devices is defined by the coordinates of the n base
anchor points pi = (ai, bi, ci) ∈ R3 and of the n platform anchor points Pi = (Ai, Bi, Ci) ∈ R3

in one of their possible configurations. All pairs of points (pi, Pi) are connected by a rigid
body, called leg, so that for all possible configurations the distance di = ‖pi − Pi‖ is pre-
served.

Notation. We think of an n–pod L as a triple

L =
(

(p1, . . . , pn), (P1, . . . , Pn), (d1, . . . , dn)
)

where pi, Pi and di are defined as above.

We are interested in describing the self–motions of a given n–pod L, namely which direct
isometries σ of R3 satisfy the condition

(1) ‖σ(pi)− Pi‖ = ‖pi − Pi‖ = di for all i ∈ {1, . . . , n}

In particular we want to understand what is the dimension of the set of these isometries,
namely the mobility of L, and what conditions we have to impose on the base and platform
points to reach a prescribed mobility.

We first study some geometric properties of the group of direct isometries of R3, and in
particular we notice that it is possible to embed it in projective space in a way specifically
tuned for dealing with n–pods (Section 1). At this point, we prove that the inspection of
boundary points of the set of self–motions of an n–pod L gives information on base and
platform points (Section 2). Eventually, we develop a photogrammetry theory based on
identifications (under Möbius transformations) of 2D projections of 3D configurations of
points, and we use it to establish a result on pentapods with mobility 2 (Section 3).
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Kinematical main results. From the kinematical point of view this paper contains the
following two main results:

Result 1. If the mobility of a pentapod is 2 or higher, then one of the following conditions
holds:

(a) The platform and the base are similar.
(b) The platform and the base are planar and affine equivalent.
(c) There exists m ≤ 5 such that p1, . . . , pm are collinear and Pm+1, . . . , P5 are equal,

up to permutation of indices and interchange of platform and base.

Result 2. If an n–pod is mobile, then one of the following conditions holds:
(i) There exists at least one pair of orthogonal projections πl and πr such that the pro-

jections of the platform points p1, . . . , pn by πl and of the base points P1, . . . , Pn by
πr are Möbius equivalent.

(ii) There exists m ≤ n such that p1, . . . , pm are collinear and Pm+1, . . . , Pn are collinear,
up to permutation of indices.

1. A new compactification of SE3

The elements of the group SE3 of direct isometries of R3 correspond bijectively to points
in an open subset of the Study quadric in P7

R (where we take as coordinates the so–called
Study parameters of the isometries), defined as the set

{
e0f0+e1f1+e2f2+e3f3 = 0

}
. This

embedding of SE3 turns out to be very useful in the study of mobility properties of objects
coming from kinematics. However, in our situation a different compactification will lead
us to a better comprehension of the phenomena which can appear. We introduce another
projective embedding of (the complexification of) SE3 considering the following polynomials:

(2)


n0 = f20 + f21 + f22 + f23 ,

cij = eiej for 0 ≤ i ≤ j ≤ 3,

bij = eifj − ejfi for 0 ≤ i < j ≤ 3.

They give rise to a rational map

Φ : P7
C︸︷︷︸

coordinates (e0:...:e3:f0:...:f3)

99K P16
C︸︷︷︸

coordinates (n0:{bij}:{cij})

Definition 1.1. We define X to be the Zariski closure of the image of SE3 (embedded
in P7

C) via Φ.

Lemma 1.2. The variety X is a compactification of SE3 and Equation (1) becomes linear
in the new coordinates. We denote by B the boundary of X, namely the set X \ SE3.

Using the newly created compactification we can define the concepts of configuration set,
mobility (also known as internal mobility or internal degrees of freedom) and bond of an
n–pod.

Definition 1.3. The configuration set KL of an n–pod L is defined as:

KL =
{
σ ∈ SE3 satisfying Equation (1) for all (pi, Pi)

}
⊆ X

The mobility of an n–pod L is defined as the dimension of KL.
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Definition 1.4. The set of bonds BL of an n–pod L is defined as the intersection of the
Zariski closure of KL with the boundary B of X.

Remark 1.5. Belonging to the boundary, bonds do not represent direct isometries of R3, but
we will see in Section 2 that we can give a precise geometric meaning to their presence.

The following result is the key tool to prove all theorems in Section 2:

Proposition 1.6. The natural left and right actions of SE3 on itself extend to linear actions
on X.

2. Geometric interpretation of Bonds

According to the local behavior of the variety X, bonds can be classified into four groups:
inversion bonds: at least one cij–coordinate is not zero, and n0 6= 0 (X is smooth at

these points);
butterfly bonds: at least one cij–coordinate is not zero, and n0 = 0 (these are double

points of X);
similarity bonds: all cij–coordinates are zero and the following matrix has rank 2

M =
(

b01 b02 b03 b12 b13 b23
b23 −b13 b12 b03 −b02 b01

)
collinearity bonds: all cij–coordinates are zero and the matrix M has rank 1.

The presence of some kind of bond implies precise conditions on base and platform points
of an n–pod. In the following, if ε ∈ S2 is a unit vector in R3, we denote by πε the orthogonal
parallel projection along ε.

Theorem 2.1. Assume that β ∈ BL is an inversion/similarity bond of L. Then there exist
directions l, r ∈ S2 (depending on β) such that, if for i = 1, . . . , n we set qi = πl(pi) and
Qi = πr(Pi), then there is an inversion/similarity of R2 mapping q1, . . . , qn to Q1, . . . , Qn.

Theorem 2.2. Assume that β ∈ BL is a butterfly bond of L. Then there exist directions
l, r ∈ S2 (depending on β) such that, up to permutation of indices 1, . . . , n, there exists
m ≤ n so that p1, . . . , pm are collinear on a line parallel to l, and Pm+1, . . . , Pn are collinear
on a line parallel to r.

Theorem 2.3. Assume that β ∈ BL is a collinearity bond of L. Then p1, . . . , pn are collinear
or P1, . . . , Pn are collinear (or both).

The technique we adopt to show the previous results is to use left and right actions of
SE3 on X in order to find “good” representatives for the orbits of all kind of bonds, and
then to perform explicit computations. Altogether, these theorems give Result 2 presented
in the Introduction.

3. Möbius Photogrammetry

This Section deals with a mathematically freestanding problem, which we call Möbius
Photogrammetry. Unlike traditional photogrammetry, which tries to recover a set of points
from a finite collection of central projections, here we consider the problem of reconstruct-
ing a vector of 5 points in R3 starting from finitely many orthogonal parallel projections,
assuming that we know them only up to Möbius transformations.
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If we denote byM5 the moduli space of 5 points in P1
C, and we fix a vector ~A = (A1, . . . , A5)

of points in R2, it is possible to define a photographic map

f ~A : S2 −→M5

associating to each unit vector ε ∈ S2 the equivalence class of the projection along ε of the
points in ~A. Here we identify the plane R2, on which the points are projected, with the
complex plane C, and we embed the latter in P1

C. Using the results in [1] we can write down
explicitely an embeddingM5 ⊆ P5

C and the polynomials defining f ~A, and prove the following
two lemmata:

Lemma 3.1. Let ~A = (A1, . . . , A5) be a 5–tuple of points that are not coplanar. Then the
photographic map f ~A : S2 −→M5 is birational to a rational curve of degree 10 or 8 in M5.

Lemma 3.2. Let ~A = (A1, . . . , A5) be a 5–tuple of planar points, not collinear. Then the
photographic map f ~A : S2 −→M5 is 2 : 1 to a rational curve of degree 5, 4, 3, or 2 in M5.

Finally, taking into account the geometrical properties ofM5 (which is a Del Pezzo surface
of degree 5) one can prove that the set of images under the photographic map can be used
to determine, up to similarities, the vector of points we started with.

Theorem 3.3. Let ~A and ~B be two 5–tuples of points in R3 such that no 4 points are
collinear. Assume that f ~A(S2) and f ~B(S2) are equal as curves in M5. If ~A is coplanar, then
~B is also coplanar and affine equivalent to ~A. If ~A is not coplanar, then ~B is similar to ~A.

Now Theorem 3.3, together with the theorems of Section 2, yields Result 1 of the Intro-
duction (for example, the hypotheses of parts (a) and (b) in Result 1 imply the existence
of infinitely many inversion/similarity bonds, which in turn forces the images f~p(S2) and
f~P (S2) to be equal).
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