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n-pods are mechanical devices constituted
of two rigid bodies, the base and the
platform, which are connected by n rigid
bodies, called legs, that are anchored via
spherical joints.

An n-pod is called mobile if the platform
can move relatively to the fixed base
respecting the constraints imposed by the
legs; the distances d; between p, and P;
are preserved.

Therefore mobile n-pods are special cases
of flexible body-bar frameworks.
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Historically the question for mobile n-pods
goes back to the Prixz Vaillant of the
year 1904 posed by the French Academy
of Science, which reads as follows:
”Determine and study all displacements
of a rigid body tn which distinct points of
the body move on sphericalpaths.”

Theorem 1. MEgRLET [1989]

An n-pod is infinitesimal flexible/mobile
if and only if the carrier lines of the n legs
belong to a linear line complex.
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Goal of the talk.

We present a necessary condition for the mobility of n-pods, which only depends
on the geometry of the platform and the base, but not on their relative pose or the
lengths of the n legs.

We are interested in describing which are the self-motions of a given n-pod, namely
which direct isometries o of R3 satisfy the so-called sphere condition:

||O'(pz) — PzH = d; for all 7 € {1, Ce ,n}
Remark: One can embed SE; as an open subset of a quadric hypersurface in P?,

called Study quadric. This compactification of SE3 is extremely useful in the study
of overconstrained mechanisms (e.g. HEGEDUS ET AL [2013], NAwWRATIL [2014a]). <
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But it turns out that for n-pods the following different compactification will lead
to a better comprehension of the phenomena which can arise.

Any direct isometry of R® can be written as a pair (M,y), where M € SO3 and
y € R3. We define

where (-, -) is the Euclidean scalar product. Moreover we denote

e the coordinate vector of p; with respect to the moving frame by p; = (a;, b;, ¢;)?

e the coordinate vector of P; with respect to the fixed frame by P; = (A;, B;, C;)".
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Using this notation the sphere condition can be rewritten as

d? = (Mp; +y — P;,Mp; +y — P;)
Mp;, Mp;) + 2(Mp;,y) +r + (P;,P;) — 2(Mp,;, P;) — 2(y, P;)
p;, pi) + (Py, Py) + 7 + 2(p;, M'y) — 2(Mp;, P;) — 2(y, P;)

Pi, Pz‘> + <Pia Pi> +r— 2<P7;,X> - 2<Y7 Pi> - 2<Mpi7 Pz‘>-

We consider the isometry (M,y) as a point in P£® with coordinates:

(h:mllZm12:...Z?ﬂg;:i\lﬁlZ$22$§Zyliy22y§:T)

. Vo Vv VO
entries of M coord. of x coord. of y

which are abbreviated by (h: M : x : y : r), where h is a homogenizing coordinate.
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The group SE3 is defined by the inequality A # 0 and the equations

MM’ = MM = h%I, det(M) = h°,
M'y + hx =0, Mx+ hy = o,
(x,x) = (y,y) = rh.

These equations define a variety X in P1°, whose real points satisfying 1 # 0 are
in one to one correspondence with the elements of SE3. A direct computer aided
calculation shows that X is a projective variety of dimension 6 and degree 40.

The main feature of this choice of coordinates is that after homogenization of the
sphere condition, it becomes linear in the projective coordinates of PL9; i.e.:

((pi,pi) + (P, Py) —d;) h+7r —2(pi,x) — 2(y,P;) —2(Mp;,P;) = 0.
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The representation (M, y) of the direct isometry ¢ depends on the embedding ¢
of the platform into the moving space. Taking this into consideration the sphere
condition reads as:

o (¢(pi)) — Pill = d;

Multiplication of o from right by ¢ given by the direct isometry (Mg,yRr) is
sending (h-M:x:y:r)to

(th : MMy, - M%X + hxXpR : hRy + MYR : hrr + hrp — 2<X7 YR>)

where (hg : Mg :xp:ygr:7rgr) € X is the kinematic image of (Mg, yRr).
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The representation (M, y) of the direct isometry o also depends on the embedding
® of the base into the fixed space. Taking this into consideration the sphere
condition reads as:

lo(pi) = @(Py)|| = di = || " (o(ps)) — Pil| = ds

Multiplication of o from left by ®~! given by the direct isometry (My,y) is
sending (h-M:x:y:r)to

(th MM : MtXL +hpx:hyr, +Mpy : hrp + hpr — 2<XL,y>)

where (hy : My :xp 1y : ) € X is the kinematic image of (Mp,yr).
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The boundary B of X is defined as the closed subset of X cut out by the
linear equation h = 0. A point of B has to fulfill the following conditions:

MM’ = M'M = h°I, det(M) = h?, MM’ = M'M = O, det(M) = 0,
M'y + hx =0, Mx+ hy = o, — M'y =0, Mx = o,
<X>X> — <Y7Y> =rh <X>X> — <Y7Y> =0

Due to MM! = M!M = O the vectors mj, my, m3 with M := (mj, my, m3)
span a totally isotropic subspace U € C? with respect to (-, ).

As dim(U) + dim(U+) = 3 and U C U~ has to hold we get:

dim(U) < dim(U+) = 2dim(U) < dim(U) + dim(U+) =3 = rk(M) < 1.
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Beside the trivial case M = O we study M # O in more detail. Hence M = vw!
has to hold for two suitable non-zero vectors v, w € C3, which are not unique.

MM’ =0 = vw'wvi = O = (w,w) =0
Mx =o0 = vw'x = o = (w,x) =0

together with (x,x) = 0 we see that x, w span a totally isotropic subspace of C*
= x and w are linearly dependent

M'M = O = wvivw! = O = (v,v) =0

v,V
My = o = wv'y = o = (v,y) =0

together with (y,y) = 0 we see that y, v span a totally isotropic subspace of C*
= y and v are linearly dependent
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By denoting N = rM + 2yx’ (invariant under left and right translations) we can
partition the boundary in the following subsets:

1. Vertex={(0: M :x:y:7)[M =0 and x =y = o} is only real point of B.

2. Inversion points:= {(0: M :x:y:7)|M# O and N # O}
By suitable left and right multiplications we can achieve the normal form

B=0:1:4:0:4:—-1:0:0:0:0:0:0:0:0:0:0:7r) with reRyg

\
"~ "~

M X Yy

3. Butterfly points:= {(0: M :x:y:7)|M# O and N = O}
By suitable left and right multiplications we can achieve the normal form
B=0:1:4:0:9:—-1:0:0:0:0:0:0:0:0:0:0:0)

Ve Ve

M X y
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ha.

5b.

Similarity points:={(0: M :x:y:7)|[M =0 and x # o #y}

By suitable left and right multiplications we can achieve the normal form
=(0:0:0:0:0:0:0:0:0:0:~v:2y:0:0:2:0:0 ith R

B=(0:( 0 0: iy i ) wi v € Ryg

S——
M X y

Left collinearity points:={(0: M :x:y:7)|M =0 and x =0 # y}
By suitable left and right multiplications we can achieve the normal form
B=(0:0:0:0:0:0:0:0:0:0:0:0:0:1:47:0:0)

"~

M X y

Right collinearity points:= {(0: M :x:y:7)|[M =0 and x# 0=y}
By suitable left and right multiplications we can achieve the normal form
B=0:0:0:0:0:0:0:0:0:0:1:4:0:0:0:0:0)

~"

M X y
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Inversion and butterfly points: we have M = vw' with (v,v) = (w, w) = 0.

Therefore v and w can be seen as points of the conic C = {oz2 + B2+ 4% = O} in
P%, which is isomorphic to S# due to the following construction:

ceC with c=t+iu and t,ueR’

(c,c) =0= (t,t) — (u,u) + 2i(t,u) =0
t, u are orthogonal vectors of equal length; w.l.o.g. we can assume t,u € S?

L: O —=8%: crs:=txu

Conversely, let s € S? then we can find vectors t,u € S? in a way that t,u,s is a
right-handed Cartesian frame.

L1 8§82 50 s cei=t+iu
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5. Directions associated with boundary points

Similarity points: In this case we have M = O.

But for all boundary points the two matrices M and yx® are linear dependent, and
in the case of similarity points yx! # O.

Moreover x and y satisfy (x,x) = (y,y) = 0. So we can associate to a similarity
point the pair of elements of S? coming from the vectors x and y.

Definition 1.
Via these identifications we can associate to every inversion, butterfly or similarity
point 8 in B a pair (1,r) of elements of S?, where the so-called

e right vector r equals «(w) and ¢(x), respectively, and

e left vector 1 equals «(v) and t(y), respectively.

Left/right collinear points are only associated with the left/right vector.
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Left and right multiplications of the bonds imply

¢ t — M
W = Mpvw Mg y —Mpry X MRX
aY) = R
= IO ~p(l) Ze(r)t ~] = (1) - =¢(r)

= left/right vector is changing correspondingly to the embedding ®/¢ of the
base/platform into the fixed /moving space.

Definition 2. 1
Given a unit vector s € S?, we denote by .
S
s R? — R? /\1!\1
the orthogonal projection along s. /\\ ///
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Definition 3.
Let II be an n-pod, then the intersection of X with the hyperplanes defined by

((pi, Pi) + (P, Ps) —di) h+r — 2(ps,x) — 2(y,P;) —2(Mp;,P;) = 0
fori € {1,...,n} is called the complex configuration set Ky of the n-pod.

Definition 4.
Let II be an n-pod, we define its set of bonds By as the intersection of K and
the boundary B of X.

If an n-pod II is mobile, then dm KyN (X \ B)>1 = dimKyg> 1.
Since By is an hyperplane section of Ky, the dimension decreases at most by 1
= Dr Is not empty
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Lemma 1.

Assume that 3 € By is an inversion/similarity bond of II. Let 1,r € S? be the
left and right vector of 3. Then there is an inversion/similarity of R? mapping

Te(P1)y - -, T (pPn) to m(P1), ..., m(Py).

Conversely, let 1,r € S? such that the images of (p1,...,p,) under 7. and
of (P1,...,P,) under m differ by an inversion/ similarity. Then II has an
inversion /similarity bond with left vector 1 and right vector r.

Proof: We can apply left and right multiplications such that 3 is in normal form:

B=0:1:72:0:4:—1:0:0:0:0:0:0:0:0
Y X

ﬁz(O:0:O:O:0:6:0:010:0:’7:27:0:'1
which yields 1 =r = (0,0, 1).

Q:7r) with 7€ Ryg

-0
y
T

0:0) with &Ry
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m : (Ai, Bi, C;) — (A;, B;), Ty ¢ (@i, b, ¢i) — (@i, b;).
Moreover the sphere condition simplifies to:
r—2(Mp;,P;) =0 r—2(p;,x) —2(y,P;) = 0,

which implies:

azAz—szz:% :>G,—|—Zb_ % A:—’)/CL
biA; +a;B; =0 ' 'A; 4B, B=—vb

This is an inversion (plus reflection with respect to the real axis) and a similarity,
respectively.

The converse can be proven by going backwards in the previous arguments. []
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Lemma 2.
Assume that 8 € By is a butterfly bond of II. Let 1,r € S? be the left and right
vector of 5. Then, up to permutation of indices, there exists m < n such that

P1,--.,Pm are collinear on a line parallel to r, and P,y1,...,P, are collinear on a
line parallel to 1.

Conversely, let 1.r € S? such that py,...,pm are collinear on a line parallel to
r, and P,,11,...,P, are collinear on a line parallel to 1. Then II has a butterfly

bond with left vector 1 and right vector r.

Proof: Plugging the normal form of the butterfly bond

: (0 :0)

Ve

B=0:1:7:0:4:—-1:0:0:0:0:0:0:0:0:
M X

0
y
into the sphere condition implies
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{ 0B+ by =0 = (@bi) = (0.0)
which shows the result. By reversing the
arguments we get the converse. []

Remark: The existence of a butterfly bond is
already sufficient for the existence of n leg lengths
such that the n-pod is mobile: If the platform is
located in a way that the carrier line of p1,...,pm
coincides with the carrier line of P,,11,...,Py,
then the platform can rotate freely about this line.
T he nomenclature goes back to KARGER [2010]. ©
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Lemma 3a.
Assume that B € By is a left collinearity bond of II. Let 1 € S? be the left vector
of 3. Then Pq,...,P,, are collinear on a line parallel to 1.

Conversely, if Pq,...,P,, are collinear on a line parallel to 1, then II has a left

collinearity bond with left vector 1.
Proof: Plugging the normal form normal form of the left collinearity bond

B=(0:0:0:0:0:

:0:0:0:0:0:0:0:1:7:0:0)

0
M y

into the sphere condition implies
which shows the result. By reversing the arguments we get the converse. ]
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Lemma 3b.
Assume that 3 € By is a right collinearity bond of II. Let r € S? be the right
vector of 3. Then p1,...,p, are collinear on a line parallel to r.

Conversely, if py,...,p, are collinear on a line parallel to r then II has a

collinearity bond with right vector r.
Proof: Plugging the normal form normal form of the left collinearity bond

B=(0:0:0:0:0:

0:0:0:0:0:1:4:0:0:0:0:0)
M x v

X

into the sphere condition implies
—2(0,7;—|—z'b@-) =0=a;=0,=0
which shows the result. By reversing the arguments we get the converse. [
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Finally the vertex cannot be contained in By as the insertion of its coordinates into
the sphere condition implies the contradiction 1 = 0. This result and Lemmata 1,
2, 3a and 3b imply the following:

Main Theorem.
If an n-pod is mobile, then one of the following conditions holds:

e There exists at least one pair of orthogonal projections m and 7, such that the
projections of the base points Pq,...,P, by m and platform points p1,...,pn
by 7, differ by an inversion or a similarity.

e There exists m < n such that pq,...,p; are collinear and P,,1,...,P, are
collinear, up to permutation of indices.
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Corollary.
Let II be an n-pod with mobility 2 or higher. Then one of the following holds:

(a) there are infinitely many pair (1,r) € S? x S? such that the points
m(pP1), - .-, 7e(pn) and m(P1),...,m(P,) differ by an inversion or a similarity;

(b) there exists m < n such that py,...,p,, are collinear and P, 1 = ... = Py,
up to permutation of indices and interchange between base and platform;

(c) there exists m with 1 < m < n — 1 such that, up to permutation of indices,
* P1,---,Pm lieon aline g and py41,-..,pn lieon aline g’ || g, and
* Py,...,P,, lieon aline Gand P,,11,...,P, lieon aline G’ || G.

Proof: Since II has mobility at least 2, it has infinitely many bonds.
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e II admits one collinearity bond = (b) with m =n

e II admits infinitely many butterfly points: There exists m < n such that
P1,--.,Pm are collinear and P,,,11,..., P, lie on infinitely many lines = (b)

e II admits infinitely many inversion/similarity bonds:

* These bonds provide infinitely many different

left and right vectors = (a) P3

x Otherwise infinitely many inversion /similarity
points have the same left and right vector.
The fact that an inversion/similarity is
completely specified if we prescribe the image
of three/two points implies (c). (] 5-pod of case (c) for m = 3
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As pods with mobility greater than 2 were already determined by NAwWRATIL

[2014b], we used this Corollary as the starting point for a complete classification of
pentapods with mobility 2.

By means of Mobius photogrammetry given in:

GALLET M., NAWRATIL G., SCHICHO J. [2015a] Mobius Photogrammetry. Journal of
Geometry 106(3):421-442

we were able to achieve the following

Specification of case (a).
For a pentapod with mobility 2 of case (a) one of the following holds:

(i) The platform and the base are similar.

(i) The platform and the base are planar and affine equivalent.

Geometric rigidity theory and applications, May 30 — June 3 2016, Edinburgh Austrian Science Fund LLIF 27



(iii) The following triples of points are collinear:

P17P27P37 P37P47 P57 P3, P1, Pi, P3, Pj, Pk,

with pairwise distinct ¢, j, k € {2,4,5}. Moreover the points My, ..., M5
are pairwise distinct as well as the points mq,..., ms.

P3

P2

P4 P5

lllustration of item (iii) for ¢ =5, j = 2 and k = 4.
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Based on this preparatory work a full classification of pentapods with mobility 2:

e with a collinearity bond were listed in:

NAWRATIL G., SCHICHO J. [in press| Self-motions of pentapods with linear platform.
Robotica

e without a collinearity bond were listed in:

NAWRATIL G., ScHICHO J. [2015] Pentapods with Mobility 2. ASME Journal of
Mechanisms and Robotics 7(3):031016

with exception of the case (a)(iii), which was studied in:

NAWRATIL G., SCHICHO J. [2016] Addendum to Pentapods with Mobility 2. arXiv:
1602.00952
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The presented results are contained in:

GALLET M., NAWRATIL G., SCHICHO J. [2015b] Bond theory for pentapods and hexapods.
Journal of Geometry 106(2):211-228
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