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1. Introduction

n-pods are mechanical devices constituted
of two rigid bodies, the base and the
platform, which are connected by n rigid
bodies, called legs, that are anchored via
spherical joints.

An n-pod is called mobile if the platform
can move relatively to the fixed base
respecting the constraints imposed by the
legs; the distances di between pi and Pi

are preserved.
Therefore mobile n-pods are special cases
of flexible body-bar frameworks.
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Hexapod with planar platform and base
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1. Introduction

Historically the question for mobile n-pods
goes back to the Prix Vaillant of the
year 1904 posed by the French Academy
of Science, which reads as follows:
”Determine and study all displacements
of a rigid body in which distinct points of
the body move on sphericalpaths.”

Theorem 1. Merlet [1989]

An n-pod is infinitesimal flexible/mobile
if and only if the carrier lines of the n legs
belong to a linear line complex.
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Hexapod with planar platform and base
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1. Introduction

Goal of the talk.
We present a necessary condition for the mobility of n-pods, which only depends
on the geometry of the platform and the base, but not on their relative pose or the
lengths of the n legs.

We are interested in describing which are the self-motions of a given n-pod, namely
which direct isometries σ of R3 satisfy the so-called sphere condition:

‖σ(pi)− Pi‖ = di for all i ∈ {1, . . . , n}

Remark: One can embed SE3 as an open subset of a quadric hypersurface in P
7
R
,

called Study quadric. This compactification of SE3 is extremely useful in the study
of overconstrained mechanisms (e.g. Hegedüs et al [2013], Nawratil [2014a]). ⋄
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2. Special compactification X of SE(3)

But it turns out that for n-pods the following different compactification will lead
to a better comprehension of the phenomena which can arise.

Any direct isometry of R3 can be written as a pair (M,y), where M ∈ SO3 and
y ∈ R

3. We define

x := −Mty = −M−1y and r := 〈x,x〉 = 〈y,y〉,

where 〈·, ·〉 is the Euclidean scalar product. Moreover we denote

• the coordinate vector of pi with respect to the moving frame by pi = (ai, bi, ci)
t

• the coordinate vector of Pi with respect to the fixed frame by Pi = (Ai, Bi, Ci)
t.
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2. Special compactification X of SE(3)

Using this notation the sphere condition can be rewritten as

d2i = 〈Mpi + y −Pi,Mpi + y −Pi〉

= 〈Mpi,Mpi〉+ 2〈Mpi,y〉+ r + 〈Pi,Pi〉 − 2〈Mpi,Pi〉 − 2〈y,Pi〉

= 〈pi,pi〉+ 〈Pi,Pi〉+ r + 2〈pi,M
ty〉 − 2〈Mpi,Pi〉 − 2〈y,Pi〉

= 〈pi,pi〉+ 〈Pi,Pi〉+ r − 2〈pi,x〉 − 2〈y,Pi〉 − 2〈Mpi,Pi〉.

We consider the isometry (M,y) as a point in P
16
R

with coordinates:

(h : m11 : m12 : . . . : m33︸ ︷︷ ︸
entries of M

: x1 : x2 : x3︸ ︷︷ ︸
coord. of x

: y1 : y2 : y3︸ ︷︷ ︸
coord. of y

: r)

which are abbreviated by (h : M : x : y : r), where h is a homogenizing coordinate.
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2. Special compactification X of SE(3)

The group SE3 is defined by the inequality h 6= 0 and the equations

MMt = MtM = h2I, det(M) = h3,

Mty + hx = o, Mx+ hy = o,

〈x,x〉 = 〈y,y〉 = rh.

These equations define a variety X in P
16
C
, whose real points satisfying h 6= 0 are

in one to one correspondence with the elements of SE3. A direct computer aided
calculation shows that X is a projective variety of dimension 6 and degree 40.

The main feature of this choice of coordinates is that after homogenization of the
sphere condition, it becomes linear in the projective coordinates of P16

R
; i.e.:

(
〈pi,pi〉+ 〈Pi,Pi〉 − d2i

)
h+ r − 2 〈pi,x〉 − 2 〈y,Pi〉 − 2 〈Mpi,Pi〉 = 0.
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3. Action of SE(3) on X

The representation (M,y) of the direct isometry σ depends on the embedding φ
of the platform into the moving space. Taking this into consideration the sphere
condition reads as:

‖σ (φ(pi))− Pi‖ = di

Multiplication of σ from right by φ given by the direct isometry (MR,yR) is
sending (h : M : x : y : r) to

(
hhR : MMR : Mt

Rx+ hxR : hRy +MyR : hRr + hrR − 2〈x,yR〉
)

where (hR : MR : xR : yR : rR) ∈ X is the kinematic image of (MR,yR).
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3. Action of SE(3) on X

The representation (M,y) of the direct isometry σ also depends on the embedding
Φ of the base into the fixed space. Taking this into consideration the sphere
condition reads as:

‖σ(pi)− Φ(Pi)‖ = di =⇒
∥
∥Φ−1 (σ(pi))− Pi

∥
∥ = di

Multiplication of σ from left by Φ−1 given by the direct isometry (ML,yL) is
sending (h : M : x : y : r) to

(
hLh : MLM : MtxL + hLx : hyL +MLy : hrL + hLr − 2〈xL,y〉

)

where (hL : ML : xL : yL : rL) ∈ X is the kinematic image of (ML,yL).
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4. Boundary of X

The boundary B of X is defined as the closed subset of X cut out by the
linear equation h = 0. A point of B has to fulfill the following conditions:

MMt = MtM = h2I, det(M) = h3,

Mty + hx = o, Mx+ hy = o,

〈x,x〉 = 〈y,y〉 = rh

→

MMt = MtM = O, det(M) = 0,

Mty = o, Mx = o,

〈x,x〉 = 〈y,y〉 = 0

Due to MMt = MtM = O the vectors m1,m2,m3 with M := (m1,m2,m3)
span a totally isotropic subspace U ∈ C

3 with respect to 〈·, ·〉.

As dim(U) + dim(U⊥) = 3 and U ⊂ U⊥ has to hold we get:

dim(U) ≤ dim(U⊥) ⇒ 2dim(U) ≤ dim(U) + dim(U⊥) = 3 ⇒ rk(M) ≤ 1.
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4. Boundary of X

Beside the trivial case M = O we study M 6= O in more detail. Hence M = vwt

has to hold for two suitable non-zero vectors v,w ∈ C
3, which are not unique.

MMt = O ⇒ vwtwvt = O ⇒ 〈w,w〉 = 0

Mx = o ⇒ vwtx = o ⇒ 〈w,x〉 = 0

together with 〈x,x〉 = 0 we see that x,w span a totally isotropic subspace of C3

⇒ x and w are linearly dependent

MtM = O ⇒ wvtvwt = O ⇒ 〈v,v〉 = 0

Mty = o ⇒ wvty = o ⇒ 〈v,y〉 = 0

together with 〈y,y〉 = 0 we see that y,v span a totally isotropic subspace of C3

⇒ y and v are linearly dependent
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4. Boundary of X

By denoting N = rM + 2yxt (invariant under left and right translations) we can
partition the boundary in the following subsets:

1. Vertex:= {(0 : M : x : y : r) |M = O and x = y = o} is only real point of B.

2. Inversion points:= {(0 : M : x : y : r) |M 6= O and N 6= O}
By suitable left and right multiplications we can achieve the normal form

β = (0 : 1 : i : 0 : i : −1 : 0 : 0 : 0 : 0
︸ ︷︷ ︸

M

: 0 : 0 : 0︸ ︷︷ ︸
x

: 0 : 0 : 0︸ ︷︷ ︸
y

: r) with r ∈ R>0

3. Butterfly points:= {(0 : M : x : y : r) |M 6= O and N = O}
By suitable left and right multiplications we can achieve the normal form

β = (0 : 1 : i : 0 : i : −1 : 0 : 0 : 0 : 0
︸ ︷︷ ︸

M

: 0 : 0 : 0︸ ︷︷ ︸
x

: 0 : 0 : 0︸ ︷︷ ︸
y

: 0)
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4. Boundary of X

4. Similarity points:= {(0 : M : x : y : r) |M = O and x 6= o 6= y}
By suitable left and right multiplications we can achieve the normal form

β = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0︸ ︷︷ ︸
M

: γ : iγ : 0
︸ ︷︷ ︸

x

: 1 : i : 0︸ ︷︷ ︸
y

: 0) with γ ∈ R>0

5a. Left collinearity points:= {(0 : M : x : y : r) |M = O and x = o 6= y}
By suitable left and right multiplications we can achieve the normal form

β = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0︸ ︷︷ ︸
M

: 0 : 0 : 0︸ ︷︷ ︸
x

: 1 : i : 0︸ ︷︷ ︸
y

: 0)

5b. Right collinearity points:= {(0 : M : x : y : r) |M = O and x 6= o = y}
By suitable left and right multiplications we can achieve the normal form

β = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0︸ ︷︷ ︸
M

: 1 : i : 0︸ ︷︷ ︸
x

: 0 : 0 : 0︸ ︷︷ ︸
y

: 0)
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5. Directions associated with boundary points

Inversion and butterfly points: we have M = vwt with 〈v,v〉 = 〈w,w〉 = 0.

Therefore v and w can be seen as points of the conic C =
{
α2 + β2 + γ2 = 0

}
in

P
2
C
, which is isomorphic to S2 due to the following construction:

c ∈ C with c = t+ iu and t,u ∈ R
3

〈c, c〉 = 0 ⇒ 〈t, t〉 − 〈u,u〉+ 2i〈t,u〉 = 0

t,u are orthogonal vectors of equal length; w.l.o.g. we can assume t,u ∈ S2

ι : C → S2 : c 7→ s := t× u

Conversely, let s ∈ S2 then we can find vectors t,u ∈ S2 in a way that t,u, s is a
right-handed Cartesian frame.

ι−1 : S2 → C : s 7→ c := t+ iu
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5. Directions associated with boundary points

Similarity points: In this case we have M = O.

But for all boundary points the two matrices M and yxt are linear dependent, and
in the case of similarity points yxt 6= O.
Moreover x and y satisfy 〈x,x〉 = 〈y,y〉 = 0. So we can associate to a similarity
point the pair of elements of S2 coming from the vectors x and y.

Definition 1.
Via these identifications we can associate to every inversion, butterfly or similarity
point β in B a pair (l, r) of elements of S2, where the so-called

• right vector r equals ι(w) and ι(x), respectively, and

• left vector l equals ι(v) and ι(y), respectively.

Left/right collinear points are only associated with the left/right vector.
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5. Directions associated with boundary points

Left and right multiplications of the bonds imply

v︸︷︷︸
∼=l

wt
︸︷︷︸
∼=rt

7→ MLv︸ ︷︷ ︸
∼=Φ(l)

wtMR︸ ︷︷ ︸
∼=φ(r)t

y
︸︷︷︸
∼=l

7→ MLy︸ ︷︷ ︸
∼=Φ(l)

x︸︷︷︸
∼=r

7→ Mt
Rx︸ ︷︷ ︸

∼=φ(r)

⇒ left/right vector is changing correspondingly to the embedding Φ/φ of the
base/platform into the fixed/moving space.

Definition 2.
Given a unit vector s ∈ S2, we denote by

πs : R
3 −→ R

2

the orthogonal projection along s.

πsπsπsπsπsπsπsπsπsπsπsπsπsπsπsπsπs
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6a. Bond Theory: Basics

Definition 3.
Let Π be an n-pod, then the intersection of X with the hyperplanes defined by

(
〈pi,pi〉+ 〈Pi,Pi〉 − d2i

)
h+ r − 2 〈pi,x〉 − 2 〈y,Pi〉 − 2 〈Mpi,Pi〉 = 0

for i ∈ {1, . . . , n} is called the complex configuration set KΠ of the n-pod.

Definition 4.
Let Π be an n-pod, we define its set of bonds BΠ as the intersection of KΠ and
the boundary B of X.

If an n-pod Π is mobile, then dimKΠ ∩ (X \B) ≥ 1 ⇒ dimKΠ ≥ 1.
Since BΠ is an hyperplane section of KΠ, the dimension decreases at most by 1
⇒ BΠ is not empty
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6b. Bond Theory: Lemmata

Lemma 1.
Assume that β ∈ BΠ is an inversion/similarity bond of Π. Let l, r ∈ S2 be the
left and right vector of β. Then there is an inversion/similarity of R

2 mapping
πr(p1), . . . , πr(pn) to πl(P1), . . . , πl(Pn).

Conversely, let l, r ∈ S2 such that the images of (p1, . . . , pn) under πr and
of (P1, . . . ,Pn) under πl differ by an inversion/ similarity. Then Π has an
inversion/similarity bond with left vector l and right vector r.

Proof: We can apply left and right multiplications such that β is in normal form:

β = (0 : 1 : i : 0 : i : −1 : 0 : 0 : 0 : 0
︸ ︷︷ ︸

M

: 0 : 0 : 0︸ ︷︷ ︸
x

: 0 : 0 : 0︸ ︷︷ ︸
y

: r) with r ∈ R>0

β = (0 :
︷ ︸︸ ︷
0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :

︷ ︸︸ ︷
γ : iγ : 0 :

︷ ︸︸ ︷
1 : i : 0 : 0) with γ ∈ R>0

which yields l = r = (0, 0, 1).
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6b. Bond Theory: Lemmata

πl : (Ai, Bi, Ci) 7→ (Ai, Bi), πr : (ai, bi, ci) 7→ (ai, bi).

Moreover the sphere condition simplifies to:

r − 2 〈Mpi,Pi〉 = 0 r − 2 〈pi,x〉 − 2 〈y,Pi〉 = 0,

which implies:

{
aiAi − biBi =

r
2

biAi + aiBi = 0
⇒ ai + ibi =

r
2

Ai + iBi

{
A = −γ a
B = −γ b

This is an inversion (plus reflection with respect to the real axis) and a similarity,
respectively.

The converse can be proven by going backwards in the previous arguments. �
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6b. Bond Theory: Lemmata

Lemma 2.
Assume that β ∈ BΠ is a butterfly bond of Π. Let l, r ∈ S2 be the left and right
vector of β. Then, up to permutation of indices, there exists m ≤ n such that
p1, . . . , pm are collinear on a line parallel to r, and Pm+1, . . . ,Pn are collinear on a
line parallel to l.

Conversely, let l, r ∈ S2 such that p1, . . . , pm are collinear on a line parallel to
r, and Pm+1, . . . ,Pn are collinear on a line parallel to l. Then Π has a butterfly
bond with left vector l and right vector r.

Proof: Plugging the normal form of the butterfly bond

β = (0 : 1 : i : 0 : i : −1 : 0 : 0 : 0 : 0
︸ ︷︷ ︸

M

: 0 : 0 : 0︸ ︷︷ ︸
x

: 0 : 0 : 0︸ ︷︷ ︸
y

: 0)

into the sphere condition implies

Geometric rigidity theory and applications, May 30 – June 3 2016, Edinburgh Austrian Science Fund 20



6b. Bond Theory: Lemmata

{
aiAi − biBi = 0
aiBi + biAi = 0

⇒ (ai, bi) = (0, 0) or (Ai, Bi) = (0, 0).

which shows the result. By reversing the
arguments we get the converse. �

Remark: The existence of a butterfly bond is
already sufficient for the existence of n leg lengths
such that the n-pod is mobile: If the platform is
located in a way that the carrier line of p1, . . . , pm
coincides with the carrier line of Pm+1, . . . ,Pn,
then the platform can rotate freely about this line.
The nomenclature goes back to Karger [2010]. ⋄

Octahedral Hexapod
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6b. Bond Theory: Lemmata

Lemma 3a.
Assume that β ∈ BΠ is a left collinearity bond of Π. Let l ∈ S2 be the left vector
of β. Then P1, . . . ,Pn are collinear on a line parallel to l.

Conversely, if P1, . . . ,Pn are collinear on a line parallel to l, then Π has a left
collinearity bond with left vector l.

Proof: Plugging the normal form normal form of the left collinearity bond

β = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0︸ ︷︷ ︸
M

: 0 : 0 : 0︸ ︷︷ ︸
x

: 1 : i : 0︸ ︷︷ ︸
y

: 0)

into the sphere condition implies

−2(Ai + iBi) = 0 ⇒ Ai = Bi = 0

which shows the result. By reversing the arguments we get the converse. �
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6b. Bond Theory: Lemmata

Lemma 3b.
Assume that β ∈ BΠ is a right collinearity bond of Π. Let r ∈ S2 be the right
vector of β. Then p1, . . . , pn are collinear on a line parallel to r.

Conversely, if p1, . . . , pn are collinear on a line parallel to r then Π has a
collinearity bond with right vector r.

Proof: Plugging the normal form normal form of the left collinearity bond

β = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0︸ ︷︷ ︸
M

: 1 : i : 0︸ ︷︷ ︸
x

: 0 : 0 : 0︸ ︷︷ ︸
y

: 0)

into the sphere condition implies

−2(ai + ibi) = 0 ⇒ ai = bi = 0

which shows the result. By reversing the arguments we get the converse. �
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6c. Bond Theory: Main Theorem

Finally the vertex cannot be contained in BΠ as the insertion of its coordinates into
the sphere condition implies the contradiction 1 = 0. This result and Lemmata 1,
2, 3a and 3b imply the following:

Main Theorem.
If an n-pod is mobile, then one of the following conditions holds:

• There exists at least one pair of orthogonal projections πl and πr such that the
projections of the base points P1, . . . ,Pn by πl and platform points p1, . . . , pn
by πr differ by an inversion or a similarity.

• There exists m ≤ n such that p1, . . . , pm are collinear and Pm+1, . . . ,Pn are
collinear, up to permutation of indices.
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6c. Bond Theory: Corollary

Corollary.
Let Π be an n-pod with mobility 2 or higher. Then one of the following holds:

(a) there are infinitely many pair (l, r) ∈ S2 × S2 such that the points
πr(p1), . . . , πr(pn) and πl(P1), . . . , πl(Pn) differ by an inversion or a similarity;

(b) there exists m ≤ n such that p1, . . . , pm are collinear and Pm+1 = . . . = Pn,
up to permutation of indices and interchange between base and platform;

(c) there exists m with 1 < m < n− 1 such that, up to permutation of indices,

⋆ p1, . . . , pm lie on a line g and pm+1, . . . , pn lie on a line g′ ‖ g, and

⋆ P1, . . . ,Pm lie on a line G and Pm+1, . . . ,Pn lie on a line G′ ‖ G.

Proof: Since Π has mobility at least 2, it has infinitely many bonds.
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6c. Bond Theory: Corollary

• Π admits one collinearity bond ⇒ (b) with m = n

• Π admits infinitely many butterfly points: There exists m ≤ n such that
p1, . . . , pm are collinear and Pm+1, . . . ,Pn lie on infinitely many lines ⇒ (b)

• Π admits infinitely many inversion/similarity bonds:

⋆ These bonds provide infinitely many different
left and right vectors ⇒ (a)

⋆ Otherwise infinitely many inversion/similarity
points have the same left and right vector.
The fact that an inversion/similarity is
completely specified if we prescribe the image
of three/two points implies (c). �

P1
P2 P3

P4P5

p1
p2

G

p3

p4p5

G′

g

g′

5-pod of case (c) for m = 3
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7. Outline of Pentapods with Mobility 2

As pods with mobility greater than 2 were already determined by Nawratil

[2014b], we used this Corollary as the starting point for a complete classification of
pentapods with mobility 2.

By means of Möbius photogrammetry given in:

Gallet M., Nawratil G., Schicho J. [2015a] Möbius Photogrammetry. Journal of

Geometry 106(3):421–442

we were able to achieve the following

Specification of case (a).
For a pentapod with mobility 2 of case (a) one of the following holds:

(i) The platform and the base are similar.

(ii) The platform and the base are planar and affine equivalent.
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7. Outline of Pentapods with Mobility 2

(iii) The following triples of points are collinear:

P1,P2,P3, P3,P4,P5, p3, p1, pi, p3, pj, pk,

with pairwise distinct i, j, k ∈ {2, 4, 5}. Moreover the points M1, . . . ,M5

are pairwise distinct as well as the points m1, . . . ,m5.

P1 P2 P3

P5
P4

p4 p5

p2 p1

p3

Illustration of item (iii) for i = 5, j = 2 and k = 4.
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7. Outline of Pentapods with Mobility 2

Based on this preparatory work a full classification of pentapods with mobility 2:

• with a collinearity bond were listed in:

Nawratil G., Schicho J. [in press] Self-motions of pentapods with linear platform.

Robotica

• without a collinearity bond were listed in:

Nawratil G., Schicho J. [2015] Pentapods with Mobility 2. ASME Journal of

Mechanisms and Robotics 7(3):031016

with exception of the case (a)(iii), which was studied in:

Nawratil G., Schicho J. [2016] Addendum to Pentapods with Mobility 2. arXiv:

1602.00932
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