Selbstbewegliche Stewart-Gough-Manipulatoren mit projektiv gekoppelter ebener Plattform und Basis

Georg Nawratil

Institut für Diskrete Mathematik und Geometrie Technische Universität Wien, Österreich

Festkolloquium, TU Wien, 25. Oktober 2012

Presented results are published in:

- [A] Self-motions of planar projective Stewart Gough platforms, Latest Advances in Robot Kinematics (J. Lenarcic, M. Husty eds.), 27–34, Springer (2012)
- [B] On elliptic self-motions of planar projective Stewart Gough platforms, Transactions of the Canadian Society for Mechanical Engineering, under review
- [C] All planar projective Stewart Gough platforms with self-motions, Technical Report No. 223, Geometry Preprint Series, TU Vienna (2012)

Acknowledgements

The research reported in [A,B,C] was supported by Grant No. I 408-N13 of the Austrian Science Fund FWF within the project "Flexible polyhedra and frameworks in different spaces", an international cooperation between FWF and RFBR, the Russian Foundation for Basic Research.

Overview

- 1. Introduction
- 2. Basic results
- **Spherical self-motions** 3.
- **Schönflies self-motions** 4. planar affine SGPs with self-motions
- 5. **Elliptic self-motions** orthogonal case and general case
- 6. Conclusion and References

1. What is a self-motion of a SGP?

The geometry of a SGP is given by the six base anchor points $M_i \in \Sigma_0$ and by the six platform points $m_i \in \Sigma$ for i = 1, ..., 6.

A SGP is called planar, if M_1, \ldots, M_6 are coplanar and m_1, \ldots, m_6 are coplanar. The carrier planes are denoted by π_M resp. π_m .

 M_i and m_i are connected with a SPS leg.

If all <u>P</u>-joints are locked, a SGP is in general rigid. But, under particular conditions, the manipulator can perform an n-parametric motion (n > 0), which is called self-motion.

1. Planar projective SGPs

Definition 1

A planar SGP is called projective if M_i and m_i are related by a non-singular projectivity κ ; i.e. $m_i \kappa = M_i$ for i = 1, ..., 6.

Theorem 1 A SGP is singular (infinitesimal flexible, shaky), if and only if, the carrier lines of the six S<u>P</u>S legs belong to a linear line complex.

A planar projective SGP is singular in every possible configuration (= architecturally singular), if and only if, one set of anchor points is located on a conic section (e.g. Chasles [1]).

1. Related result

As architecturally singular SGPs are redundant, they possess self-motions in each pose (over \mathbb{C}).

Therefore, we are only interested in non-architecturally singular planar projective SGPs with self-motions.

Theorem 2 (Proof was given by Karger [2])

A singular configuration of a non-architecturally singular planar projective SGP does not depend on the distribution of the anchor points in the platform and the base, but only on the mutual position of the planes π_M and π_m and on κ . The configuration is singular, if and only if, either one of the legs can be replaced by a leg of zero length or two legs can be replaced by aligned legs.

2. Basic results

Lemma 1 (Proof was given in [A]) A two-parametric set of additional legs $\overline{\text{mM}}$ with $m\kappa = M$ can be attached to planar projective SGPs without changing the direct kinematics and singularity surface.

Remark: Due to Lemma 1, it is clear why a singular configuration does not depend on the distribution of the anchor points in π_M and π_m (cf. Theorem 2).

Theorem 3

A self-motion of non-architecturally singular planar projective SGPs can only be:

- 1. a spherical self-motion with rotation center $m\kappa = m$,
- 2. a Schönflies self-motion, where the direction of the rotation axis is parallel to the planes $\pi_{\rm M}$ and $\pi_{\rm m}$,
- 3. an elliptic self-motion.

2. Basic results

Proof of Theorem 3

As in any pose of a self-motion of a planar projective SGP, the manipulator has to be in a singular configuration, we can apply Theorem 2. Therefore, the manipulator is singular, if and only if, one of the following cases hold:

- a) π_{M} and π_{m} coincide: $\Rightarrow \exists$ real fixed point \Rightarrow case 1 or 2.
- b) $S = S\kappa$: This real fixed point (\Rightarrow case 1 or 2) is the intersection point of the line $s := (\pi_M, \pi_m)$ and $s\kappa$.

2. Basic results

c) $s = s\kappa$. If the restriction of κ to s is the identity, hyperbolic or parabolic, we also get at least one real fixed point (\Rightarrow case 1 or 2). The elliptic case yields:

Definition 2

A self-motion of a non-architecturally singular planar projective SGP is called elliptic, if in each pose of this motion s exists with $s = s\kappa$ and where the projectivity from s onto itself is elliptic.

3. Spherical self-motions

If a planar projective SGP has a spherical self-motion about $m\kappa = m$, the spherical image of this manipulator, with respect to the unit sphere S^2 centered in $m\kappa = m$, has to have a self-motion as well.

Therefore, the problem reduces to the determination of non-degenerated spherical 3-dof R<u>P</u>R manipulators with self-motions, where the base points M_1° , M_2° , M_3° and the platform points m_1° , m_2° , m_3° are located on great circles.

Due to Nawratil [3], there exists only one solution (after relabeling of anchor points and interchange of platform and base).

3. Spherical self-motions

This 3-dof R<u>P</u>R manipulator has a pure rotational self-motion around the axis $a := [m\kappa = m, m_1^{\circ} = m_3^{\circ} = M_2^{\circ}].$

Therefore, we can only add an additional leg $\overline{m_4^\circ M_4^\circ}$ without restricting the self-motion if $m_4^\circ = m_1^\circ$ or $M_4^\circ = M_2^\circ$ holds.

Therefore, κ has to map all platform anchor points \notin a on points of a $\Rightarrow \kappa$ is singular \Rightarrow

Theorem 4

Non-architecturally singular planar projective SGPs do not have spherical selfmotions with rotation center $m\kappa = m$.

4. Schönflies self-motions

The Schönflies motion group consists of all translations combined with all rotations about a fixed direction d, which in our case is parallel to π_M and π_m .

It is well known (e.g. Husty and Karger [4]), that platform points, being on lines parallel to d, have congruent trajectories in a Schönflies motion. Therefore, every leg can be translated in direction d without changing this motion.

4. Case $h\kappa \neq h\tau$

Now, every point $m \in h$ (with exception of m_e) can only rotate about the line $[m\tau, m\kappa] \parallel d$. Therefore, the platform cannot move in direction d during the self-motion and the problem reduces to the following planar one:

Determine all non-degenerated 3-dof RPR manipulators with self-motions, where the platform points m_1^- , m_2^- , m_3^- and base points M_1^- , M_2^- , M_3^- are collinear.

It is well known, that only two solutions exist:

• Planar analogue of the spherical self-motion:

The same arguments as in the spherical case yield again a contradiction.

4. Case $h\kappa \neq h\tau$

• <u>Circular translation:</u>

If we choose the y-axis of the moving and the fixed frame in direction of d, the matrix \mathbf{P} of the projectivity κ can be written as:

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ p_{21} & 1 & 0 \\ p_{31} & p_{32} & p_{33} \end{pmatrix} \text{ with } p_{33} \in \mathbb{R} \setminus \{0, 1\} \text{ and } p_{21}, p_{31}, p_{32} \in \mathbb{R}.$$
 (1)

As ideal points are mapped onto ideal points, κ is an affinity.

Remark: For the proof of the matrix \mathbf{P} see [A].

 \diamond

Festkolloquium, TU Wien, 25. Oktober 2012

4. Case $h\kappa = h\tau$

For this case, it can also be proven (cf. [A]) that κ has to be an affinity with the following matrix **P**:

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & 1 \end{pmatrix} \quad \text{with} \quad p_{22} \in \mathbb{R} \setminus \{0\} \quad \text{and} \quad p_{21}, p_{31}, p_{32} \in \mathbb{R}.$$
 (2)

Theorem 5

A non-architecturally singular planar projective SGP can only have a Schönflies self-motion with the direction d of the rotation axis parallel to π_{M} and π_{m} , if it belongs to the subset of planar affine SGPs.

Moreover, if we choose the y-axis of the moving and the fixed frame in direction of d, the affinity κ has to be of the form given in (1) or (2).

4. Planar affine SGPs with self-motions

Theorem 6

Assume a non-architecturally singular planar affine SGP is determined by $\mathbf{M}_i = \mathbf{a} + \mathbf{A}\mathbf{m}_i$. Then, this manipulator has a self-motion, if and only if, the singular values s_1 and s_2 of \mathbf{A} with $0 < s_1 \leq s_2$ fulfill $s_1 \leq 1 \leq s_2$.

Proof of Theorem 6

First of all, we prove that planar affine SGPs cannot have elliptic self-motions: If $s = s\kappa$ is not the ideal line, then at least the ideal point of $s = s\kappa$ is a fixed point. Therefore, $s = s\kappa$ has to be the ideal line during the whole elliptic self-motion. Hence, the self-motion is a Schönflies motion with d orthogonal to $\pi_M \parallel \pi_m$.

As all points of π_m have to run on spherical paths, this Schönflies motion can only be the Borel Bricard motion due to Husty and Karger [4]. Therefore, the corresponding points of π_m and π_M have to be related by an inversion (\neq projectivity).

4. Planar affine SGPs with self-motions

Therefore, planar affine SGPs with self-motions have to be of type (1) or (2). We consider the image of the unit vectors $\mathbf{c} = (\cos \varphi, \sin \varphi) \in \pi_{\mathsf{m}}$ for $\varphi \in [0, 2\pi]$. Clearly, the tie points of the vectors \mathbf{Ac} are located on an ellipse k.

Now, it can easily be seen (cf. [A]), that the necessary and sufficient condition for an affinity of type:

(1) is that k and c have a common tangent,

(2) is that k and c have a common point.

Clearly, we only get real common points and tangents of k and the unit circle c, if the singular values $0 < s_1 \leq s_2$ of **A** fulfill $s_1 \leq 1 \leq s_2$. \Box

4. Example

 $\mathbf{M}_1 = (0,0)$ $\mathbf{M}_2 = (1,0)$ $M_3 = (0, 1)$ $\mathbf{m}_1 = (0,0)$ $\mathbf{m}_2 = (1, 1)$ $\mathbf{m}_3 = (0, 1)$ $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ $s_1 = (\sqrt{5} - 1)/2$ $s_2 = (\sqrt{5} + 1)/2$

4. Remarks on self-motions of planar affine SGPs

- As all self-motions of planar affine SGPs are pure translations (cf. Karger [2]), the trajectories of all platform anchor points are congruent.
- For one-dimensional self-motions the trajectories are circles.
 ⇒ All one-parametric self-motions are circular translations.
- The self-motion is two-dimensional, if and only if, the platform and the base are congruent and all legs have equal length.
- Theorem 6 also implies the result of Karger [5], that non-architecturally singular planar equiform SGPs cannot have self-motions, as $s_1 = s_2 \neq 1$ holds.

5. Elliptic self-motions

It remains open, whether elliptic self-motions even exist, as no example is known. In the case of existence the following theorem has to hold:

Theorem 7

A non-architecturally singular planar projective SGP possesses in each pose of an elliptic self-motion exactly two instantaneous degrees of freedom.

Proof of Theorem 7

Due to Lemma 1 and the results of Borras et al. [6], we can replace the original six legs $\overline{m_i M_i}$ by a new set of six legs $\overline{n_i N_i}$ without changing the direct kinematics and singularity surface, if:

- $n_i \kappa = N_i$ holds for $i = 1, \ldots, 6$ and
- n_1, \ldots, n_6 are not located on a conic section.

5. Elliptic self-motions

Therefore, n_1, \ldots, n_6 can be selected as shown in the figure.

As the carrier lines of the legs $\overline{n_1N_1}$, $\overline{n_2N_2}$ and $\overline{n_3N_3}$ coincide, the lines $[n_i, N_i]$ with $i = 1, \dots, 6$ can only span a linear congruence of lines.

5. Basic quadrangles (a, b, c, d) and (A, B, C, D) of κ

w ... ideal line of $\pi_{\rm m}$ W ... ideal line of $\pi_{\rm M}$

(o, x, y) and (O, X, Y) are Cartesian coordinate systems in π_m resp. π_M .

a = (1:0:0) b = (0:1:0) $c = (1:0:\beta)$ d = (0:1:1)f = (0:0:1) A = (0:0:1) B = (1:0:0) C = (0:1:1) $D = (1:\alpha:0)$ F = (0:1:0)

We can eliminate the factor of similarity by setting $\alpha = 1$. Therefore, the matrix **P** of κ only depends on $\beta \in \mathbb{R} \setminus \{0\}$.

5. The special legs aA, bB, cC, dD, fF

- The attachment of the special leg aA (resp. cC) corresponds with the so-called Darboux constraint (cf. [7]), that the platform anchor point a (resp. c) moves in a fixed plane orthogonal to A (resp. C).
- The attachment of the special leg bB (resp. dD) corresponds with the so-called Mannheim constraint (cf. [7]), that a plane of the moving system orthogonal to b (resp. d) slides through the point B (resp. D).
- The attachment of the special leg $\overline{\text{FF}}$ corresponds with the so-called angle constraint (cf. [B]), that the ideal points f and F enclose a constant angle.

5. Study parameters $e_0 : ... : e_3 : f_0 : ... : f_3$

They represent an Euclidean displacements, if $\Phi : \sum_{i=0}^{3} e_i f_i = 0$ and K = 1 hold with $K := e_0^2 + e_1^2 + e_2^2 + e_3^2$. The rotational matrix is given by:

$$\mathbf{R} := (r_{ij}) = \begin{pmatrix} e_0^2 + e_1^2 - e_2^2 - e_3^2 & 2(e_1e_2 - e_0e_3) & 2(e_1e_3 + e_0e_2) \\ 2(e_1e_2 + e_0e_3) & e_0^2 - e_1^2 + e_2^2 - e_3^2 & 2(e_2e_3 - e_0e_1) \\ 2(e_1e_3 - e_0e_2) & 2(e_2e_3 + e_0e_1) & e_0^2 - e_1^2 - e_2^2 + e_3^2 \end{pmatrix}.$$

The translation vector $\mathbf{t} = (t_1, t_2, t_3)$ equals:

$$t_1 := 2(e_0f_1 - e_1f_0 + e_2f_3 - e_3f_2),$$

$$t_2 := 2(e_0f_2 - e_1f_3 - e_2f_0 + e_3f_1),$$

$$t_3 := 2(e_0f_3 + e_1f_2 - e_2f_1 - e_3f_0).$$

Moreover, we define the following 3 variables:

$$\overline{t}_1 := 2(e_0f_1 - e_1f_0 - e_2f_3 + e_3f_2),$$

$$\overline{t}_2 := 2(e_0f_2 + e_1f_3 - e_2f_0 - e_3f_1),$$

$$\overline{t}_3 := 2(e_0f_3 - e_1f_2 + e_2f_1 - e_3f_0).$$

5. Algebraic formulation of the constraints

With respect to the special coordinate systems (o, x, y) and (O, X, Y), introduced in π_m and π_M , respectively, the constraints can be written as follows (cf. [B]):

5. Orthogonal elliptic self-motions

Based on the six constraints Ω_A^a , Ω_C^d , Π_B^b , Π_D^d , \triangleleft_F^f , Φ we can prove the following:

Theorem 8 (Proof was given in [B]) An elliptic self-motion of a non-architecturally singular planar projective SGP has to be a one-parametric motion.

We introduce a geometric classification of elliptic self-motions as follows:

Definition 3 An elliptic self-motion is called orthogonal, if the angle enclosed by the unique pair of ideal points (f, F) with $f\kappa = F$ equals $\pi/2$ ($\Leftrightarrow \gamma = 0$).

Theorem 9

There does not exist a non-architecturally singular planar projective SGP with an orthogonal elliptic self-motion.

5. Proof of Theorem 9: classical approach

An elliptic self-motion corresponds with a common curve of the seven hyperquadrics Ω^{a}_{A} , Ω^{c}_{C} , Π^{b}_{B} , Π^{d}_{D} , \triangleleft^{f}_{F} , Φ , Θ^{m}_{M} of the 7-dimensional projective Study parameter space.

 Θ_{M}^{m} is the so-called sphere constraint (cf. Husty [8]), that $m \in \pi_{m}$ is located on a sphere with radius R and center $M := m\kappa$ in π_{M} . In order to get a very compact expression, we choose $\mathbf{m} = (1 : -\beta : 0)$ and $\mathbf{M} = (1 : 0 : -1)$, which yields:

$$\Theta_{\mathsf{M}}^{\mathsf{m}}: \ (R^2 - \beta^2 - 1)K - 4(f_0^2 + f_1^2 + f_2^2 + f_3^2) - 2t_2 + 2\beta(\overline{t}_1 + r_{21}) = 0.$$

An elimination process yields the polynomial $\Upsilon[24685]$ of degree 16 in e_1 and e_2 . For an elliptic self-motion the coefficients of $\Upsilon[24685]$ have to vanish identically. We were not able to solve the resulting system of 17 equations in $L_a, L_c, g_b, g_d, \beta, R$.

5. Proof of Theorem 9: alternative approach

u ... ideal point of $\pi_m \setminus \{f\}$... $\mathbf{u} = (0:1:u)$ V ... ideal point of $\pi_M \setminus \{F\}$... $\mathbf{V} = (0:v:1)$ u and V are the ideal points of s and s κ iff:

$$u = V \quad \iff \quad u = -\frac{r_{31}}{r_{32}}, \quad v = -\frac{r_{23}}{r_{13}},$$
$$V\kappa^{-1} \in \pi_{\mathsf{M}} \quad \iff \quad \Xi_{1} : \ r_{12}t_{3} - \beta r_{23}r_{32} = 0,$$
$$u\kappa \in \pi_{\mathsf{m}} \quad \iff \quad \Xi_{2} : \ r_{32}\overline{t}_{3} + r_{13}r_{31} = 0.$$

 $\pi_{\rm M}$

 Ξ_1, Ξ_2 are quartic equations in the Study parameters, but only linear in f_0, \ldots, f_3 . $\Omega^a_A, \Omega^c_C, \Pi^b_B, \Pi^d_D, \triangleleft^f_F, \Phi, \Xi_i \implies \Upsilon_i[1960]$ of degree 12 in e_1 and e_2 for i = 1, 2Coefficients imply a much more simpler system of 26 equations in $L_a, L_c, g_b, g_d, \beta$. This system can be used to prove Theorem 9. For details see [B].

5. Conjecture

Conjecture

Non-architecturally singular planar projective SGPs with an elliptic self-motion do not exist.

Clearly, the first idea to prove this conjecture, is to do it similarly to Theorem 9. There is only one more unknown, namely the variable γ :

The two corresponding polynomials Υ_1 and Υ_2 can be computed with MAPLE on a high capacity computer (78GB RAM). Each of these two expressions has 8259 terms and is again of degree 12 in e_1 and e_2 . We tried hard to solve the resulting system of 26 equations, but we failed due to its high degree of non-linearity.

Remark: Note that with the classical approach, we were not even able to compute Υ with MAPLE, as the high capacity computer ran out of memory.

5. Historical results

In 1873, the following theorem was given by Henrici [9]:

Theorem 10

If the generators of a hyperboloid Φ of one sheet are constructed of rods, jointed at the points of crossing in a way that at each intersection point one rod is free movable about the other one, then the surface is not rigid, but permits a deformation into a one-parametric set \mathcal{H} of hyperboloids.

In 1899, Schur [10] presented a very elegant proof for Henrici's theorem, which also showed, that this theorem remains valid if the one-sheeted hyperboloid is replaced by a hyperbolic paraboloid.

Based on these results, Wiener [11] made some deformable models of one-sheeted hyperboloids and hyperbolic paraboloids.

Due to Lemma 1, we can add the one-parametric set of legs \overline{nN} with $n \in g_1$, $N \in G_1$ and $n\kappa = N$ without disturbing the elliptic self-motion.

The lines g_1 and G_1 are skew ($\Leftrightarrow n_1 \neq N_1$), as the projectivity of s onto itself is elliptic.

Therefore, the one-parametric set \mathcal{R}_1 of lines [n, N] is a regulus of a regular ruled quadric Φ_1 .

Due to the results of Henrici and Schur, we can add even arbitrary lines of the associated regulus \mathcal{R}_1^{\times} without restricting the elliptic self-motion.

Lemma 2

There exists a non-singular projectivity κ^* with $n_i\kappa^* = N_i^*$ for $i = 1, \ldots, 6$. Therefore, the manipulator with platform anchor points n_1, \ldots, n_6 and base anchor points N_1^*, \ldots, N_6^* is also a planar projective SGP with an elliptic self-motion.

Proof of Lemma 2

It can easily be seen that $N_1^*, N_2^*, N_4^*, N_5^*$ always form a quadrangle. Therefore, the mapping $n_i \mapsto N_i^*$ for i = 1, 2, 4, 5 uniquely defines a regular projectivity κ^* , which also yields $n_3\kappa^* = N_3^*$ and $n_6\kappa^* = N_6^*$.

The elliptic self-motion of the manipulator n_1, \ldots, N_6 is transmitted by the motion of the reguli $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$ onto the manipulator n_1, \ldots, N_6^{\star} .

This resulting self-motion is elliptic too, as a fixed point of the restriction of κ^* on $s = s\kappa^*$ also has to be a fixed point of the restriction of κ on $s = s\kappa$.

Construction for a special choice of ε :

- S ... finite point of $s = s\kappa$
- $\alpha \ \ldots$ plane spanned by $[{\sf S},{\sf f},{\sf F}]$
- $\beta \ \ldots$ plane orthogonal to f through S
- t $\ \ldots$ intersection line of α and β
- ε ... plane spanned by t and s = s κ

 $f\kappa^*$ equals the ideal point of t and therefore, the self-motion of the planar projective SGP n_1, \ldots, N_6^* is orthogonal. Theorem 9 yields the contradiction.

6. Conclusion

Theorem 11

A planar projective SGP, which is not architecturally singular, can only have a self-motion if the projectivity is an affinity $\mathbf{M}_i = \mathbf{a} + \mathbf{A}\mathbf{m}_i$, where the singular values s_1 and s_2 of the 2×2 transformation matrix \mathbf{A} with $0 < s_1 \leq s_2$ fulfill the condition $s_1 \leq 1 \leq s_2$.

All one-parametric self-motions are circular translations. Moreover, the self-motion is a two-dimensional translation, if and only if, the platform and the base are congruent and all legs have equal length.

Der Wissenschaftsfonds.

6. References

- Chasles M (1861) Sur les six droites qui peuvent étre les directions de six forces en équilibre, Comptes Rendus des Séances de l'Académie des Sciences 52:1094–1104
- [2] Karger A (2002) Singularities and self-motions of a special type of platforms, In: Lenarcic J, Thomas F (eds) Advances in Robot Kinematics: Theory and Applications, Springer, pp 155–164
- [3] Nawratil G (2011) Self-motions of planar projective Stewart Gough platforms, Technical Report No. 221, Geometry Preprint Series, TU Vienna
- [4] Husty ML, Karger A (2002) Self motions of Stewart-Gough platforms: an overview, In: Gosselin CM, Ebert-Uphoff I (eds) Proc. of the workshop on fundamental issues and future research directions for parallel mechanisms and manipulators, pp 131–141
- [5] Karger A (2001) Singularities and self-motions of equiform platforms, Mech Mach Theory 36(7):801-815
- [6] Borras J, Thomas F, Torras C (2010) Singularity-invariant leg rearrangements in doubly-planar Stewart-Gough platforms, Proc. of Robotics Science and Systems, Zaragoza, Spain
- [7] Nawratil G (conditionally accepted) Types of self-motions of planar Stewart Gough platforms, Meccanica
- [8] Husty ML (1996) An algorithm for solving the direct kinematics of general Stewart-Gough platforms, Mech Mach Theory 31(4):365–379
- [9] Dycks W (1892) Katalog mathematischer Modelle, Wolf, München
- [10] Schur F (1899) Die Deformation einer geradlinigen Fläche zweiten Grades ohne Änderung der Längen ihrer Geraden, Zeitschrift für Mathematik und Physik **44**:62–64
- [11] Wiener H (1907) Abhandlungen zur Sammlung mathematischer Modelle, Teubner, Leipzig

