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CONGRUENT STEWART GOUGH PLATFORMS
WITH NON-TRANSLATIONAL SELF-MOTIONS
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ABSTRACT: It is well known that each Stewart Gough (SG) manipulator, where the platform is
congruent with the base (= congruent SG manipulator), has a 2-dimensional translational self-motion,
if all legs have equal (non-zero) length. As congruent SG platforms with planar platform and planar
base are only special cases of so-called planar affine/projective SG platforms, which were already
studied by the author in foregoing publications, we focus on the non-planar case. In this paper we give
a geometric characterization of all non-planar congruent SG platforms, which have further self-motions
beside the above mentioned translational one. The main result is obtained by means of bond theory.
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1. INTRODUCTION

The geometry of a Stewart Gough (SG) plat-
form is given by the six base anchor points
Mi with coordinates Mi := (Ai,Bi,Ci)

T with re-
spect to the fixed system and by the six plat-
form anchor points mi with coordinates mi :=
(ai,bi,ci)

T with respect to the moving system (for
i= 1, . . . ,6). Each pair (Mi,mi) of corresponding
anchor points is connected by a SPS-leg, where
only the prismatic joint (P) is active and the spher-
ical joints (S) are passive (cf. Fig. 1).

If the geometry of the manipulator is given as
well as the leg lengths, the SG platform is generi-
cally rigid. But, under particular conditions, the
manipulator can perform a n-dimensional motion
(n > 0), which is called self-motion.

Note that self-motions are also solutions to
the still unsolved problem posed by the French
Academy of Science for the ”Prix Vaillant” of the
year 1904, which is also known as Borel Bricard
problem (cf. [1], [2], [9]) and reads as follows:

”Determine and study all displacements of a rigid
body in which distinct points of the body move on
spherical paths.”

m2

M1
M2 M3

M6

m1

m6
m3

M4

M5

m4

m5

Figure 1: SG manipulator with planar platform
and planar base (= planar SG manipulator).

1.1 Bond Theory
In this section we give a short introduction into
the theory of bonds for SG manipulators pre-
sented in [18], which was motivated by publi-
cation [7]. We start with the direct kinematic
problem of parallel manipulators of SG type and
further with the definition of bonds.

Due to the result of Husty [8], it is advanta-
geous to work with Study parameters (e0 : e1 :
e2 : e3 : f0 : f1 : f2 : f3) for solving the forward
kinematics. Note that the first four homoge-
neous coordinates (e0 : e1 : e2 : e3) are the so-
called Euler parameters. Now all real points



of the 7-dimensional Study parameter space P7,
which are located on the so-called Study quadric
Ψ : ∑

3
i=0 ei fi = 0, correspond to an Euclidean dis-

placement, with exception of the 3-dimensional
subspace E of Ψ given by e0 = e1 = e2 = e3 = 0,
as its points cannot fulfill the condition N 6= 0
with N = e2

0 + e2
1 + e2

2 + e2
3. The translation

vector v := (v1,v2,v3)
T and the rotation matrix

R := (ri j) of the corresponding Euclidean dis-
placement Rx+v are given by:

v1 = 2(e0 f1− e1 f0 + e2 f3− e3 f2),

v2 = 2(e0 f2− e2 f0 + e3 f1− e1 f3),

v3 = 2(e0 f3− e3 f0 + e1 f2− e2 f1),

r11 = e2
0 + e2

1− e2
2− e2

3,

r22 = e2
0− e2

1 + e2
2− e2

3,

r33 = e2
0− e2

1− e2
2 + e2

3,

r12 = 2(e1e2− e0e3), r21 = 2(e1e2 + e0e3),

r13 = 2(e1e3 + e0e2), r31 = 2(e1e3− e0e2),

r23 = 2(e2e3− e0e1), r32 = 2(e2e3 + e0e1),

if N = 1 is fulfilled. All points of the complex
extension of P7, which cannot fulfill this nor-
malizing condition, are located on the so-called
exceptional cone N = 0 with vertex E.

By using the Study parametrization of Eu-
clidean displacements the condition that the point
mi is located on a sphere centered in Mi with ra-
dius Ri, is a quadratic homogeneous equation
according to Husty [8]. This so-called sphere
condition Λi has the following form:

Λi : (a2
i +b2

i + c2
i +A2

i +B2
i +C2

i −R2
i )N+

2[(aiAi +biBi− ciCi)e2
3− (aiAi +biBi + ciCi)e2

0

− (aiAi−biBi− ciCi)e2
1 +(aiAi−biBi + ciCi)e2

2

+2(ciBi−biCi)e0e1 +2(ai−Ai)(e0 f1− e1 f0)

−2(ciAi−aiCi)e0e2 +2(bi−Bi)(e0 f2− e2 f0)

+2(biAi−aiBi)e0e3 +2(ci−Ci)(e0 f3− e3 f0)

−2(biAi +aiBi)e1e2 +2(ai +Ai)(e3 f2− e2 f3)

−2(ciAi +aiCi)e1e3 +2(bi +Bi)(e1 f3− e3 f1)

−2(ciBi +biCi)e2e3 +2(ci +Ci)(e2 f1− e1 f2)

+2( f 2
0 + f 2

1 + f 2
2 + f 2

3 )] = 0.
(1)

Now the solution of the direct kinematics over
C can be written as the algebraic variety V of
the ideal I spanned by Ψ,Λ1, . . . ,Λ6,N = 1. In
general V consists of a discrete set of points with
a maximum of 40 elements.1

We consider the algebraic motion of the mech-
anism, which are the points on the Study quadric
that the constraints define; i.e. the common points
of the seven quadrics Ψ,Λ1, . . . ,Λ6. If the manip-
ulator has a n-dimensional self-motion then the
algebraic motion also has to be of this dimen-
sion. Now the points of the algebraic motion
with N 6= 0 equal the kinematic image of V . But
we can also consider the points of the algebraic
motion, which belong to the exceptional cone
N = 0. An exact mathematical definition of these
so-called bonds can be given as follows (cf. Re-
mark 5 of [18]):

Definition 1 For a SG manipulator the set B of
bonds is defined as:

B :=ZarClo(V ?) ∩ {(e0 : . . . : f3) ∈ P7 |
Ψ,Λ1, . . . ,Λ6,N = 0},

where V ? denotes the variety V after the removal
of all components, which correspond to pure
translational motions. Moreover ZarClo(V ?) is
the Zariski closure of V ?, i.e. the zero locus of all
algebraic equations that also vanish on V ?.

We have to restrict to non-translational motions
for the following reason: A component of V ,
which corresponds to a pure translational mo-
tion, is projected to a single point O (with N 6= 0)
of the Euler parameter space P3 by the elimina-
tion of f0, . . . , f3. Therefore the intersection of
O and N = 0 equals ∅. Clearly, the kernel of
this projection equals the group of translational
motions. Moreover it is important to note that
the set of bonds only depends on the geometry
of the manipulator and not on the leg lengths (cf.
Theorem 1 of [18]). For more details please see
[18].

1 Note that for non-planar congruent SG manipulators
this number drops to 24 according to [12] and [15].
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Figure 2: Illustration of Eq. (2) with m1 =M1.

Due to Theorem 2 of [18] a SG platform pos-
sesses a pure translational self-motion if and only
if the platform can be rotated about the center
m1 =M1 into a pose, where the vectors

−−−→
Mimi for

i = 2, . . . ,6 fulfill the condition (cf. Fig. 2):

rk(
−−−→
M2m2, . . . ,

−−−→
M6m6)≤ 1. (2)

Moreover all 1-dimensional self-motions are
circular translations, which can easily be seen
by considering a normal projection of the SG
manipulator in direction of the parallel vectors−−−→
Mimi for i = 2, . . . ,6. If all these five vectors are
zero-vectors, the platform and the base are con-
gruent and therefore we get a so-called congru-
ent SG manipulator. This type of SG manipula-
tor has a well known 2-dimensional translational
self-motion T , if all legs have equal (non-zero)
length.

Note that T is the only 2-dimensional trans-
lational self-motion and that higher-dimensional
translational self-motions do not exist (cf. [20]).

2. PRELIMINARY CONSIDERATIONS ON
CONGRUENT SG PLATFORM

In this article we are interested in designs of con-
gruent SG platforms, which can perform addi-
tional self-motions beside T . First of all we clar-
ify whether congruent SG platforms can have fur-
ther translational self-motions beside T . Clearly,
due to the result given in the last paragraph of
Section 1.1, these translational self-motions can
only be 1-dimensional ones.

mi

m2

Mi

M2
d=m1 =M1

Figure 3: Projection in direction of the axis d:
The chords of the rotation around d are parallel
if and only if d equals the line of intersection of
the planar platform and the planar base.

Lemma 1 A non-planar congruent SG platform
cannot have a 1-dimensional translational self-
motion.

PROOF: If a congruent SG manipulator has a 1-
dimensional translational self-motion there has to
exist an orientation of the platform with m1 =M1

and rk(
−−−→
M2m2, . . . ,

−−−→
M6m6) = 1. We assume that

the manipulator is in this configuration.
As the platform and the base are congruent

there exists a rotation ρ around the axis d through
m1 =M1 with Miρ =mi for i = 2, . . . ,6. There-
fore the vectors

−−−→
Mimi are chords of ρ . A projec-

tion in direction of the axis d shows immediately
the validity of this lemma (cf. Fig. 3). �

For our study we can focus on the non-planar
case, as planar congruent SG platforms were
already discussed in detail by Karger [14] and
by the author [17] as special cases of so-called
planar projective SG platforms. Therefore it re-
mains to determine all non-planar congruent SG
platforms, which possess non-translational self-
motions. This is done in the remainder of this
article, which is structured as follows:

In Section 2.1 we discuss non-planar congru-
ent SG platforms, which are architecturally sin-
gular. In Section 2.2 we demonstrate on the
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basis of a modified Wren platform that non-
architecturally singular congruent SG platforms
can have non-translational self-motions. After a
short review on cylinders of revolution in Section
3, we present a remarkable geometric characteri-
zation of all non-planar congruent SG platforms
with non-translational self-motions by means of
bond theory in Section 4. We close the paper by
discussing some non-planar congruent SG plat-
forms with remarkable self-motions in Section
5.

2.1 Architecture singularity
A SG platform is called architecturally singular if
it is singular in every possible configuration. All
manipulators which have this property are well
studied and classified (for a review on this topic
see Section 3.1 of [19]). Therefore the following
lemma can easily be proven:

Lemma 2 A non-planar congruent SG platform
is architecturally singular if and only if four an-
chor points are collinear. These manipulators
possess self-motions in each pose over C.

PROOF: The first sentence follows directly
from the list of non-planar architecturally SG
platforms given by Karger in Theorem 3 of [13].

If four anchor points are collinear, the corre-
sponding four legs belong to a regulus and one
can remove any of the four legs without chang-
ing the direct kinematics (⇒ redundant SG plat-
form). This already proves the second statement
of Lemma 2. �

Until now only a few non-architecturally sin-
gular SG platforms with self-motions are known.
A detailed review of this topic was given in
[16], which is as complete as possible to the best
knowledge of the author. Based on the body of
literature cited within this review, it is not diffi-
cult to come up with the following example of a
non-planar congruent SG platform with no four
anchor points collinear, which possesses a non-
translational self-motion.

2.2 Example: Wren platform
We start with considering a special planar congru-
ent SG manipulator, which is also known as Wren
platform (cf. [23]). As in this case the anchor
points are located on a circle (see Fig. 4, left),
the Wren platform is an architecturally singular
manipulator (cf. [2], [3], [14]). If all legs have
equal length, there also exists a 1-dimensional
Schönflies self-motion (see Fig. 5, left), beside
T (see Fig. 6, left). In the left picture of Fig. 4,
the branching singularity (cf. [6]) of these two
self-motions is displayed.

Remark 1 Due to Wohlhart [23], the Wren plat-
form is called kinematotropic, as it can change
the dimension of mobility. �

Now we consider the Wren platform in its
branching configuration (cf. Fig. 4, left). If we
translate each leg (including their anchor points)
arbitrarily in direction of its carrier line, we end
up with a configuration of the modified Wren
platform, which is still a congruent SG manip-
ulator, but not longer planar and therefore not
architecturally singular (cf. Fig. 4, right).

Clearly the modified Wren platform also has
the self-motion T (cf. Fig. 6, right). Moreover
due to Husty and Karger [10] this modification
has no influence on the Schönflies self-motion
(cf. Fig. 5, right). Therefore this is an example
of a non-translational self-motion of a non-planar
congruent SG platform, which is not architec-
turally singular. Note that this existence is not
self-evident, as planar congruent SG platforms
can only have translational self-motions if they
are not architecturally singular (cf. [17]).

Remark 2 The modified Wren platform also
demonstrates that the property of kinematotropy
is not restricted to architecturally singular ma-
nipulators. �

Motivated by this example, we are interested
in all congruent SG manipulators with non-
translational self-motions. Before they are de-
termined in Section 4, we review some known
results about cylinders of revolution.
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Figure 4: Branching singularity of the Wren plat-
form (left) and the modified one (right).

Figure 5: Schönflies self-motion of the Wren
platform (left) and the modified one (right).

Figure 6: Self-motion T of the Wren platform
(left) and the modified one (right).

3. CYLINDERS OF REVOLUTION
A cylinder of revolution Φ equals the set of all
points, which have equal distance to its rotation
axis s (finite line). Under the assumption that Φ

has at least one real point, we can distinguish the
following four cases:

1. s is real and Φ is not reducible: Φ is a cylin-
der of revolution over R.

2. s is real and Φ is reducible: Φ equals a pair
of isotropic planes2 γ1 and γ2, which are
conjugate complex. Trivially s carries the
only real points of Φ.

3. s is imaginary and Φ is not reducible: Φ is
a cylinder of revolution over C. The real
points of Φ are located on the 4th order in-
tersection curve of Φ and its conjugate Φ.

4. s is imaginary and Φ is reducible: In this
case Φ equals a pair of isotropic planes γ1
and γ2, which are not conjugate complex.
Moreover Φ contains two real lines gi (i =
1,2), which are the intersections of γi and its
isotropic conjugate γ i.

Remark 3 It is a well known fact from projective
geometry that the axis s is the line, where the
tangent planes γ1 and γ2 through s onto Φ are
isotropic planes. �

3.1 Computation of cylinders of revolution
In this section we focus on the determination of
all cylinders of revolution through a given set of
real points X1, . . . ,Xn. There exist many papers
on this well studied problem (see e.g. [5], [22],
[24] and the references therein).

In the following we want to use the compu-
tational approach of Schaal [22], which was fur-
thered by Zsombor-Murray and El Fashny in [24].
They pointed out that this problem is equivalent
with the solution of the following system of equa-
tions if X1 equals the origin U of the reference
frame:

s2 = 1, (3)
ϒ : s · t = 0, (4)

Ωi : (xi× s)2−2s2(xi · t) = 0, (5)

for i = 2, . . . ,n, where xi is the coordinate vec-
tor of the point Xi, s := (s1,s2,s3)

T the direction
2A plane is called isotropic if its ideal line is tangent to

the absolute quadric.
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Figure 7: Notation used for computation.

vector of the rotation axis s, and t := (t1, t2, t3)T

the coordinate vector of the footpoint T on s with
respect to U= X1 (cf. Fig. 7).

The rough procedure for solving this system
of equations is as follows: In the first step, one
solves the equations ϒ,Ω2, . . . ,Ωn, which already
gives the solutions up to a common factor; i.e. we
get s1 : s2 : s3 : t1 : t2 : t3. In the second step,
we normalize these 6-tuples with respect to the
normalizing condition given in Eq. (3). This nor-
malization is always possible as the axis cannot
be isotropic3, because it is the intersection of two
isotropic planes (cf. Remark 3).

Remark 4 For n = 5 there exist in general six
cylinders of revolution over C (e.g. [24]). There
even exist examples, where all six cylinders are
real (e.g. [5]). For n > 5 no solution exists, if
X1, . . . ,Xn are in general configuration. �

4. MAIN THEOREM
Based on these considerations regarding cylin-
ders of revolution, we can formulate the follow-
ing main theorem:

Theorem 1 A non-planar congruent SG manip-
ulator can have a real non-translational self-
motion only if the six base (resp. platform) anchor
points have equal distance to a finite line s, i.e.
they are located on a cylinder of revolution of
type 1, 3 or 4 listed in Section 3. Moreover this
condition is also sufficient for the existence of
self-motions over C.

3The line is called isotropic if its ideal point is located
on the absolute quadric.

PROOF: The proof of this theorem is based
on the following fact: If a non-translational self-
motion exists, then the bond-set has to be non-
empty. Therefore we have to determine the con-
ditions for which the set of bonds consists of
at least one element. The computation of these
conditions is outlined next.

Without loss of generality (w.l.o.g.) we can
choose Cartesian coordinate systems in the plat-
form and base with ai = Ai, bi = Bi, ci = Ci for
i = 1, . . .6 and a1 = b1 = b2 = c1 = c2 = c3 = 0.
In order to eliminate the factor of similarity we
can set a2 = 1. Clearly we assume for the re-
mainder of this article that all anchor points are
distinct, as otherwise two legs coincide due to the
congruence of the platform and the base. More-
over we can assume (after a possible necessary
reindexing of anchor points) that the first four
points are not coplanar; i.e. b3c4 6= 0. We distin-
guish three cases.

4.1 No three anchor points are collinear
According to [18] the set of bonds can be com-
puted as follows: We compute ∆ j,i := Λ j−Λi,
which is only linear in the Study parameters
f0, . . . , f3. We distinguish three cases.

General case e3 6= 0. Assuming a real motion
we can solve the linear system of equations
Ψ,∆2,1,∆3,1 for f1, f2, f3 without loss of gen-
erality. We plug the obtained expressions for
f1, f2, f3 into ∆4,1,∆5,1,∆6,1 and consider their
numerators, which are homogeneous polynomi-
als P4,P5,P6 of degree three in the Euler parame-
ters. Note that these polynomials do not depend
on f0. Therefore f0 can be calculated from Λ1,
but this is not of interest for the further computa-
tion.

We eliminate e0 from Pi and N = 0 by comput-
ing the resultant Qi of these two expressions for
i = 4,5,6. Qi factors into 16F2

i with

Fi = ∑
j+k+l=3

g jkle
j
1ek

2el
3 and j,k, l ∈ {0, . . . ,3} .
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Moreover the coefficients g jkl are given by:

g210 = cib2
3, g201 = b3(b2

i −b3bi + c2
i ),

g300 = 0, g012 = ci(b2
3 +a2

3−a3−2b3bi),

g120 = b3ci(1−2a3), g102 = b3ci(1−2ai),

g111 = 2b3bi(a3−ai), g030 = a3ci(a3−1),

g021 = a2
i b3−aib3 +a3bi−a2

3bi + c2
i b3,

g003 = a3bi−a2
3bi +a2

i b3 +b2
i b3−aib3−bib2

3.

We proceed with the computation of the resultant
Uk of Fi and Fj with respect to e1 for pairwise
distinct i, j,k ∈ {4,5,6}. From each Uk we can
factor out b2

3e2
3 and remain with an expression Vk

with 3827 terms. Moreover Vk is a homogeneous
polynomial of degree 6 in the remaining Euler
parameters e2,e3.

Now the necessary condition for the existence
of a bond is that V4,V5,V6 have a common solu-
tion; i.e. the resultant Wk of Vi and Vj with respect
to e2 with pairwise distinct i, j,k ∈ {4,5,6}, has
to be fulfilled identically for all e3. Due to the
large number of terms and the high degree, Wk
cannot be computed in general, and therefore it
seems that we cannot prove the theorem.

But due to the example of the modified Wren
platform, we conjecture that bonds can only exist
if the six anchor points are located on a cylinder
of revolution. Therefore we consider the system
of equations ϒ,Ω2, . . . ,Ω6 given in Eqs. (4) and
(5) with respect to the six anchor points.

Under the assumption s3 6= 0, we can solve
ϒ,Ω2,Ω3, which are linear in t1, t2, t3, for these
unknowns. We plug the obtained expressions into
Ω4,Ω5,Ω6 and consider their numerators, which
are homogeneous polynomials F?

4 ,F
?
5 ,F

?
6 . For

the substitution si↔ ei for i = 1,2,3 the polyno-
mial F?

j equals Fj for j = 4,5,6.
Therefore the existence of a cylinder of revo-

lution through the six anchor points implies the
existence of a bond and vice versa. This already
closes the general case.

Special case e3 = 0, e2 6= 0. The procedure
for this case only differs slightly from the gen-
eral one. Assuming a real motion we can solve

Ψ,∆2,1,∆4,1 for f1, f2, f3 without loss of gener-
ality. Then we plug the obtained expressions
into ∆3,1,∆5,1,∆6,1 and consider their numerators,
which are homogeneous polynomials P3,P5,P6 of
degree two in the Euler parameters. We eliminate
e0 from Pi and N = 0 by computing the resultant
Qi of these two expressions for i = 3,5,6. Qi
factors into 16e2

2F2
i with Fi = g20e2

1 + g11e1e2 +
g02e2

2 and

g20 = cic2
4 + cib2

4−b2
i c4− c2

i c4,

g11 = 2aibic4−bic4 + cib4−2cia4b4,

g02 = cia2
4− cia4− c2

i c4 +aic4 + cic2
4−a2

i c4.

Now we proceed with the computation of the
cylinders of revolution with s3 = 0 and s2 6= 0.
W.l.o.g. we can solve ϒ,Ω2,Ω4 for t1, t2, t3. We
plug the obtained expressions into Ω3,Ω5,Ω6
and consider their numerators, which are homo-
geneous polynomials F?

3 ,F
?
5 ,F

?
6 . Again the sub-

stitution si↔ ei for i = 1,2 shows that F?
j equals

Fj for j = 3,5,6. Therefore we can draw the
same conclusion as in the general case.

Very special case e2 = e3 = 0. If e1 = 0 holds,
the platform has the same orientation during
the whole self-motion. As a consequence we
can only end up with a translational self-motion,
which has to be 2-dimensional due to Lemma 1.

Assuming a real motion with e1 6= 0 we can
solve Ψ,∆3,1,∆4,1 for f1, f2, f3 without loss of
generality. Then we plug the obtained expres-
sions into ∆2,1,∆5,1,∆6,1 and consider their nu-
merators, which are homogeneous polynomials
P2,P5,P6 of degree two in the Euler parameters.
Note that P2 factors into N(R1−R2). Therefore
we only have to compute the resultant Qi of N = 0
and Pi with respect to e0 for i = 5,6. Qi factors
into 16b2

3F2
i with Fi = g2e2

1 and

g2 = b3cib4 +b2
i c4 + c2

i c4− cic2
4− c3cic4− cib2

4.

Now we proceed with the computation of the
cylinders of revolution with s2 = s3 = 0 and
s1 6= 0. W.l.o.g. we can solve ϒ,Ω3,Ω4 for
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t1, t2, t3. If we plug the obtained expression into
Ω2, we see that it is fulfilled identically. There-
fore we consider the numerators of Ω5,Ω6, which
are homogeneous polynomials F?

5 ,F
?
6 . Again the

substitution s1↔ e1 shows that F?
j equals Fj for

j = 5,6. Therefore we can draw the same conclu-
sion as in the general case.

Remark 5 One also has to check in the general,
special and very special case that Qi can always
be computed by means of resultant. This is true
if the coefficient Hi of e2

0 in Pi does not vanish.4

As the bonds are independent of the leg lengths,
Hi has to vanish independently from R1, . . . ,R6.
It can easily be seen that this cannot be the case
without contradicting our assumptions. �

This closes the study of cases, where no three
anchor points are collinear. Clearly in this case
we can only obtain cylinders of revolution of type
1 and 3 of the list given in Section 3.

4.2 Three anchor points are collinear but no
four anchor points are collinear

We assume that the first, second and fifth anchor
points are collinear, which implies b5 = c5 = 0.
We distinguish again the following three cases:

General case e3 6= 0. Everything can be done
similarly to the general case of Section 4.1.

Special case e3 = 0, e2 6= 0. Everything can be
done similarly to the special case of Section 4.1.

Very special case e2 = e3 = 0. Everything can
be done similarly to the very special case of Sec-
tion 4.1. It should only be noted that in this
case also P5 factors into N(R1−R5). As a con-
sequence not only Ω2 is fulfilled identically in
the corresponding computation of the cylinders
of revolution, but also Ω5.

Due to the collinearity of three anchor points
and the exclusion of architecturally singular de-
signs, we can only obtain cylinders of revolution

4There are no terms with e3
0 and e0 in Pi.

S1 S3 = S1

S2 = S4

S2

G2

G1

γ1∩ω

γ2∩ω

γ1∩ω

γ2∩ω

absolut quadric

Figure 8: Sketch of the situation in the ideal plane
ω: Gi denotes the ideal point of the line gi for
i = 1,2. Moreover S1, . . . ,S4 denote the ideal
points of the axes s1, . . . ,s4 of the four different
cylinders of revolution of type 4. Note that the
first and third solution as well as the second and
fourth one are conjugate complex.

of type 4 of the list given in Section 3 if the carrier
line of the three collinear points is no generator
of Φ (general case and special one). Then the
six points have to be located on two skew lines
g1 and g2, where each line carries three pairwise
distinct anchor points. For this non-planar con-
gruent SG manipulator there always exists four
cylinders of revolution of type 4 (cf. Section 5.1),
which can easily be seen on basis of Fig. 8.

In the very special case, the carrier line of the
three collinear points is a generator of Φ, thus we
can only obtain a cylinder of revolution of type 1
of the list given in Section 3.

4.3 Four anchor points are collinear
As the anchor points are located on two skew
lines, there also exist the above mentioned four
cylinders of revolution of type 4 (cf. Fig. 8).
Moreover there is one cylinder of revolution Φ of
type 1, where the carrier line of the four collinear
anchor points is a generator of Φ. The cylinder
Φ is of multiplicity two, thus in sum this redun-
dant manipulator (cf. Proof of Lemma 2) has the
expected six solutions (cf. Remark 4).
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The existence of bonds follows trivially from
the second part of Lemma 2.

Remark 6 With exception of this architecturally
singular case, there are no examples known to the
author, where the anchor points are located on
more than four cylinder of revolution (cf. Sections
5.1 and 5.2). �

4.4 Sufficiency
In this section we want to point out that the con-
dition that the six points are located on a cylinder
of revolution of type 1, 3 or 4 is already sufficient
for the existence of a self-motion over C. Geo-
metrically this is clear, as for each cylinder of rev-
olution there exists the corresponding Schönflies
self-motion, which was recognized for the modi-
fied Wren platform (cf. Section 2.2). This circum-
stance can also easily be verified algebraically as
follows:

As for this Schönflies self-motion all legs have
to have equal length, we set R1 = . . .= R6. Then
we do not have to eliminate e0 by applying the
resultant with N = 0, but Pi already equals Fi up
to a non-zero factor. Therefore e0 remains free
and parametrizes the self-motion. This finishes
the proof of Theorem 1. �

5. SELF-MOTIONS
From the algebraic proof of the sufficiency given
in Section 4.4, it also follows that the Schönflies
self-motion is real if and only if the points are
located on a real cylinder of revolution, as the
direction (s1 : s2 : s3) of the axis s equals the
direction (e1 : e2 : e3) of the rotation axis of the
Schönflies self-motion.

But we cannot conclude from Theorem 1 that
the Schönflies self-motions are the only non-
translational self-motions, which can be per-
formed by the manipulators characterized in The-
orem 1. A trivial counter example is the archi-
tecture singularity, as the self-motions are the
motions of the 5-legged manipulator, which re-
sults from the removal of one of the four legs,
whose anchor points are collinear (cf. Lemma 2).

Further counter examples read as follows:

5.1 Butterfly self-motions
If M1,M2,M3 are collinear and M4,M5,M6 are
collinear, then there also exist the following self-
motion: If the platform is placed in a way that
m4,m5,m6 (resp. m1,m2,m3) are located on the
carrier line g of M1,M2,M3 (resp. M4,M5,M6),
then we get a pure rotational self-motion about g,
which is called butterfly motion.

It is already known (cf. Examples 1 and 2
of [18]) that a Schönflies self-motion possesses
only one bond (up to conjugation of coordi-
nates), which is singular5, and that a butterfly
self-motion is given by two 1-parametric bonds
(up to conjugation of coordinates).

As there are two butterfly self-motions we get
four 1-parametric bonds (up to conjugation of co-
ordinates). They possess four singular bonds (up
to conjugation of coordinates), which correspond
with the four cylinders of revolution of type 4
(cf. Fig. 8) implying four complex Schönflies
self-motions.

5.2 New self-motions
We study non-planar congruent SG platforms
which are plane-symmetric, i.e. the fourth, fifth
and sixth anchor point are obtained by reflecting
the first, second and third one on a plane ε . There-
fore there always exists a cylinder of revolution
Φ of type 1 with generators orthogonal to ε .

W.l.o.g. we can assume that ε is the xy-plane
and that the rotation axis of Φ is the z-axis. More-
over we can eliminate the factor of similarity by
setting the radius of Φ equal to 1. Finally we can
rotate the coordinate system about the z-axis in a
way that the i-th and j-th anchor point have the
same y-coordinate, which results in the following
coordinatization:

ai = ai+3 = sin(µ), bi = bi+3 = cos(µ),
a j = a j+3 = sin(−µ), b j = b j+3 = cos(µ),
ak = ak+3 = sin(λ ), bk = bk+3 = cos(λ ),

ci =−ci+3 6= 0, c j =−c j+3 6= 0, ck =−ck+3 6= 0

5A bond is called singular if it is located in the vertex
space E of N = 0.
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with pairwise distinct i, j,k ∈ {1,2,3} and the
angles µ ∈ (0,π) and λ ∈ [0,2π).

Due to the plane-symmetry these six anchor
points are located on further three cylinders of
revolution6 beside Φ, whose three axes of rota-
tion are located within ε . Therefore the bond-set
of this plane-symmetric congruent SG platform
consists (up to conjugation of coordinates) of the
four singular bonds of the Schönflies self-motions
implied by the four cylinders of revolution. But
beside these self-motions there exist the follow-
ing ones characterized by e3 = 0, which are new
to the best knowledge of the author:

As we can assume e2 6= 0 w.l.o.g.7, the
unknowns f1, f2, f3 can be computed from
Ψ,∆ j,i,∆i+3,i. If we plug the obtained expres-
sions into ∆ j+3,i, it can easily be seen that it van-
ishes for

R2
j+3 =

c j

ci
(R2

i+3−R2
i )+R2

j .

Moreover, if additionally

R2
k+3 =

ck

ci
(R2

i+3−R2
i )+R2

k

is fulfilled, ∆k,i = ∆k+3,i holds. The numera-
tor of this condition is a homogeneous poly-
nomial Pk of degree 3 in the Euler parameters
e0,e1,e2. Note that Pk does not depend on f0,
which is determined by the only remaining equa-
tion Λi = 0. Hence, for given five design pa-
rameters ci,c j,ck,µ,λ , the cubic Pk implies a 4-
parametric set S of self-motions, as it depends
on the four leg lengths Ri,R j,Rk,Ri+3.

Subset X of S . For the following special
choice of R j and Rk:

R2
j =

c j

2ci
(R2

i −R2
i+3)+

1
2
(R2

i +R2
i+3),

R2
k =

ck

2ci
(R2

i −R2
i+3)+

1
2
(R2

i +R2
i+3),

6Either all three are real (type 1) or one is real and the
remaining two are conjugate complex (type 3).

7If e2 = 0 holds, the self-motion is a Schönflies motion,
where the rotation axis is parallel to the x-axis. But in
this case i, j,k can be permuted (⇒ change of coordinate
system) in a way that this parallelism vanishes (⇒ e2 6= 0).

Pk does not depend on the Euler parameter e0 and
the remaining leg lengths Ri and Ri+3. For rea-
sons given later on, the three solutions of the cu-
bic equation Pk = 0 with respect to e1 and e2 have
to equal the axial directions of the three cylinder
axes located in ε . Therefore each of these three
directions determines a 2-parametric set X of
Schönflies self-motions, as the leg lengths Ri and
Ri+3 can still be chosen arbitrarily. Note that the
choice of Ri and Ri+3 only influences the transla-
tional component of the Schönflies self-motion.

For the extra condition Ri = Ri+3 we obtain the
1-parametric set X− of Schönflies self-motions
with equal leg lengths R1 = . . .= R6, which were
recognized for the modified Wren platform (cf.
Section 2.2). This proves the validity of the above
given solutions of Pk = 0, as this cubic equation
(and therefore its solutions) does not depend on
Ri and Ri+3.

Remark 7 Due to the limitation of length, a dis-
cussion of exemplary self-motions generated by a
plane-symmetric congruent SG platform can be
downloaded from the author’s homepage. Fur-
thermore animations of these self-motions are
provided as supplementary data. �

5.3 Addendum
After finishing this paper the author became
aware of Example 3.3.8 given by Husty et al.
[11], where a full discussion of the self-motions
of the following special congruent SG platform
is given:

a1 =−a2 6= 0, b3 =−b4 6= 0, c5 =−c6 6= 0,

and all remaining coordinates are zero.
Beside the 2-dimensional translational self-

motion T , there exist Schönflies self-motions8

and more complicated self-motions of 4th order,
which possess exact six points with spherical tra-
jectories. The latter self-motions were firstly re-
ported by Dietmaier in [4] and have the property
R1 = R2, R3 = R4 and R5 = R6.

8Due to the symmetry of the manipulator there always
exist cylinders of revolution through the six anchor points,
which imply the Schönflies self-motions.
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6. CONCLUSIONS AND OUTLOOK
The first research on cylinders of revolution
through a given non-planar set of points by
Schaal [22] was motivated kinematically. Af-
ter a pure geometric and algebraic study done
by several researchers (see e.g. [5], [24] and the
references therein), it was shown within the paper
at hand that this problem is strongly connected
with the following one, which is again kinematic:
The determination of all non-planar congruent
SG platforms with a real non-translational self-
motion. It turns out that the six base (resp. plat-
form) anchor points have to be located on a cylin-
der of revolution (cf. Theorem 1). Note that this
geometric characterization is also sufficient for
the existence of self-motions over C. Based on
the modified Wren platform given in Section 2.2,
this main theorem was proven by means of bond
theory.

Although this result is known, a complete list
of all possible non-translational self-motions of
congruent SG platforms is still missing. All
known examples are given in Section 5, where
also a family of new self-motions is presented
(cf. Section 5.2). Moreover a restriction of the
sufficiency condition with respect to R remains
also open.

In the future we are interested in the general-
ization of the presented result with respect to the
linear coupling κ of the non-planar platform and
the base. Based on the paper at hand, this was
already done in [21] for the case that κ is a sim-
ilarity. The problem for the case, where κ is an
affinity or even a projectivity, remains open.
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[7] G. Hegedüs, J. Schicho, and H-P.
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