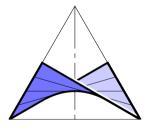
Alternative interpretation of the Plücker quadric's ambient space and its application

Georg Nawratil

Institute of Discrete Mathematics and Geometry Funded by FWF Project Grant No. P24927-N25



Basics: Line Geometry

It is well known [14] that there exists a bijection between the set \mathcal{L} of lines of the projective 3-space P^3 and all real points of the so-called Plücker quadric

 $\Psi: \quad l_{01}l_{23} + l_{02}l_{31} + l_{03}l_{12} = 0$

of P^5 , where the homogeneous 6-tuple $(l_{01} : l_{02} : l_{03} : l_{23} : l_{31} : l_{12})$ are the Plücker coordinates of the lines. The 2-dimensional generator space $L : l_{01} = l_{02} = l_{03} = 0$ of Ψ corresponds to the set of ideal lines.

A Line I of the Euclidean 3-space E^3 is represented by a real point of $\Psi \setminus L$ where:

- $\mathbf{l} := (l_{01}, l_{02}, l_{03}) \neq \mathbf{o}$ gives the direction of the line I,
- $\widehat{\mathbf{l}} := (l_{23}, l_{31}, l_{12})$ is the moment-vector computed by $\mathbf{p} \times \mathbf{l}$ with $\mathbf{p} := (p_1, p_2, p_3)$ being the coordinate vector of a point $\mathsf{P} \in \mathsf{I}$ in the Cartesian frame $(\mathsf{O}; x_1, x_2, x_3)$.

Basics: Line Geometry

The bijection $\mathcal{L} \to \Psi$ is also known as *Klein mapping*.

The extended Klein mapping identifies each point of P^5 with a linear complex $C := (c_{01} : c_{02} : c_{03} : c_{23} : c_{31} : c_{12})$ of lines fulfilling the equation:

 $c_{01}l_{23} + c_{02}l_{31} + c_{03}l_{12} + c_{23}l_{01} + c_{31}l_{02} + c_{12}l_{03} = 0.$

This set of lines equals the set of path-normals of an instantaneous motion different from the instantaneous standstill. For an instantaneous translation/rotation/screw motion the corresponding point $C \in P^5$ of the linear line complex C has the property $C \in L$ resp. $C \in \Psi \setminus L$ resp. $C \in P^5 \setminus \Psi$.

We give an alternative interpretation for the points of Ψ 's ambient space P^5 and discuss its application.

Overview

- 1. Lines in Euclidean 4-space
- 2. Alternative interpretation
- 3. Extension to line-elements
- 4. Straight lines in the ambient space
- 5. Relation to kinematics
- 6. Application
- 7. References

1. Introduction: Quaternions \mathbb{H}

 $\begin{array}{l} 1,\mathfrak{i},\mathfrak{j},\mathfrak{k}\dots\mathfrak{q} \text{uaternionic units}\\ \circ\dots\mathfrak{q} \text{uaternion multiplication}\\ \mathfrak{Q}:=q_0+q_1\mathfrak{i}+q_2\mathfrak{j}+q_3\mathfrak{k}\dots\mathfrak{q} \text{uaternion with } q_0,\dots,q_3\in\mathbb{R}\\ q_0\dots\mathfrak{s} \text{calar part}\\ \mathfrak{q}:=q_1\mathfrak{i}+q_2\mathfrak{j}+q_3\mathfrak{k}\dots\mathfrak{p} \text{ure part}\\ \widetilde{\mathfrak{Q}}:=q_0-\mathfrak{q}\dots\mathfrak{c} \text{onjugated quaternion to }\mathfrak{Q}=q_0+\mathfrak{q}\end{array}$

We embed points P of E^4 with coordinates (p_0, p_1, p_2, p_3) with respect to the Cartesian frame $(O; x_0, x_1, x_2, x_3)$ into the set of quaternions by the mapping:

$$\iota: \mathbb{R}^4 \to \mathbb{H} \quad \text{with} \quad (p_0, p_1, p_2, p_3) \mapsto \mathfrak{P} := p_0 + p_1 \mathbf{i} + p_2 \mathbf{j} + p_3 \mathbf{k} = p_0 + \mathfrak{p}.$$

1. Lines in Euclidean 4-space

The so-called *homogenous minimal coordinates* [10] of a line $I \in E^4$ can be written as $(\mathfrak{L}, \mathfrak{m})\mathbb{R}$ with $\mathfrak{m} := \widetilde{\mathfrak{L}} \circ \mathfrak{F}$ where

- $\mathfrak{F}\ldots$ corresponds to the pedal point F of I with respect to the origin O
- $\mathfrak{L}\ldots$ corresponds to the direction of $\mathsf{I}\in E^4$
- $\mathfrak{m} \dots$ is a pure quaternion

Theorem. There is a bijection between the set of lines of E^4 and the points of P^6 , which is sliced along the 2-space $l_0 = l_1 = l_2 = l_3 = 0$; i.e. $\mathfrak{L} = 0$.

Let us identify E^3 with the hyperplane $x_0 = 0$.

2. Alternative interpretation

In the following we are only interested in the subset \mathcal{M} of lines of E^4 , which are orthogonal to the x_0 -direction. As a consequence \mathfrak{L} has to be a pure quaternion, i.e. the *homogenous minimal coordinates* of a line $I \in \mathcal{M}$ read as:

$(\mathfrak{l},\mathfrak{m})\mathbb{R}.$

Lines of \mathcal{M} belonging to E^3 (given by $x_0 = 0$) are determined by the fact that \mathfrak{F} is a pure quaternion, which is equivalent with the Plücker condition.

Therefore the following alternative interpretation of $P^5 \setminus L$ can be given:

Theorem. There is a bijection between the set \mathcal{M} and the points of P^5 , which is sliced along the 2-space L: $l_1 = l_2 = l_3 = 0$; i.e. $\mathfrak{l} = 0$. The lines of \mathcal{M} belonging to E^3 correspond to the points of $\Psi \setminus L$.

2. Projection on the Plücker quadric

Recall that every point $(\mathbf{c}, \widehat{\mathbf{c}})\mathbb{R}$ of $P^5 \setminus L$ corresponds to the path-normals of a instantaneous rotation/screw motion. The Plücker coordinates of the so-called axis of this instantaneous rotation/screw motion are given by $(\mathbf{a}, \widehat{\mathbf{a}})\mathbb{R}$.

Therefore we can consider the mapping:

$$\mu: P^5 \setminus L \to \Psi \setminus L \quad \text{with} \quad (\mathbf{c}, \widehat{\mathbf{c}}) \mathbb{R} \mapsto (\mathbf{a}, \widehat{\mathbf{a}}) \mathbb{R}.$$

What is the geometric meaning of μ in terms of our alternative interpretation?

Answer: μ corresponds to the orthogonal projection of the line $I \in \mathcal{M}$ onto E^3 . We denote this orthogonal projection $E^4 \to E^3$ by π .

3. Line-elements in Euclidean 3-space

For some applications (e.g. 3D shape recognition and reconstruction [6]) it is superior to study so-called line-elements instead of lines. As these geometric objects consist of a line I and a point P on it, we write them as (I, P).

Moreover we call a ruled surface together with a curve on it a *ruled surface strip*.

According to [14] the Plücker coordinates of lines can be extended for line-elements of E^3 by:

 $(\mathbf{l},\widehat{\mathbf{l}},l)\mathbb{R}$ with $l:=\langle \mathbf{p},\mathbf{l}
angle.$

Theorem. There is a bijection between the set of line-elements of E^3 and all real points of P^6 located on a cone Λ over Ψ , which is sliced along the 3-dimensional generator space G: $l_{01} = l_{02} = l_{03} = 0$ of Λ .

3. Line-elements in Euclidean 4-space

The set \mathcal{N} of line-elements (I, P) of E^4 , where I is orthogonal to the x_0 -direction, can be written in terms of *homogenous minimal coordinates* [10] by:

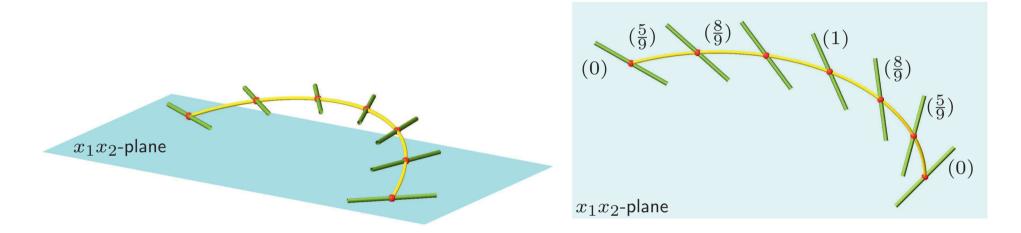
 $(\mathfrak{l}, l + \mathfrak{m})\mathbb{R}.$

A straight forward extension of results for lines to line-elements yields:

Theorem. There is a bijection between the set \mathcal{N} and the points of P^6 , which is sliced along the 3-space G: $l_1 = l_2 = l_3 = 0$; i.e. $\mathfrak{l} = 0$. Moreover line-elements of \mathcal{N} belonging to E^3 are located on the cone $\Lambda \setminus G$.

Moreover, the extension of the mapping μ to the set \mathcal{N} corresponds to the orthogonal projection π of the line-element $(I, P) \in \mathcal{N}$ onto E^3 .

3. Lower-dimensional analogue



Consider the set Q of line-elements of E^3 , those lines are orthogonal to the x_3 -direction, and its subset \mathcal{P} of line-elements, which are contained in the x_1x_2 -plane.

If we apply an orthogonal projection along the x_3 -direction on the x_1x_2 -plane (analogue of π) to line-elements of Q, we obtain line-elements of P.

We label the line-elements in the top view by the x_3 -coordinate. In German such a map is known as "*kotierte Projektion*".

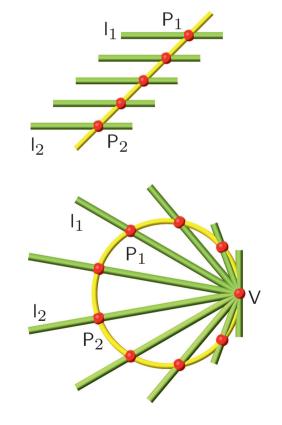
4. Straight lines in $P^6 \setminus G$ resp. $P^5 \setminus L$

Two distinct line-elements $(I_i, P_i) \in \mathcal{N}$ (i = 1, 2) span a straight line q in $P^6 \setminus G$. If the underlying lines I_1 and I_2 are:

- coplanar, then we can distinguish two cases:
- * $I_1 \parallel I_2$: q corresponds to a ruled surface strip which consists of a parallel line pencil (spanned by I_1 and I_2) with a line on it.

Special case $I_1 = I_2$: q corresponds to the set of lineelements which have the same carrier line $I_1 = I_2$.

* $I_1 \not\parallel I_2$: q corresponds to a ruled surface strip consisting of a line pencil, where the vertex V is the intersection point of I_1 and I_2 , and a circle on it, which is determined by V, P_1 , P_2 .



4. Properties of (Γ, k)

• skew, then q corresponds to a ruled surface strip (Γ, k) .

Theorem. Γ is a ruled cubic conoidal 2-surface (with director hyperplane $x_0 = 0$).

Remark: The image of Γ under π is the *Plücker conoid* (= *cylindroid*) [3]. \diamond

Theorem. Γ possesses a rational quadratic parametrization and is a LN-surface.

LN-property: For any 3-space there exists a unique parallel tangent plane of Γ . \diamond

Theorem. k is a circle, which implies that Γ carries a 2-parametric set of circles. The striction curve s of Γ is a circle and it is a geodesic curve of Γ .

Remark: Note that $\pi(s)$ coincides with the common normal of $\pi(I_1)$ and $\pi(I_2)$. All other circles k on Γ are mapped to ellipses $\pi(k)$.

5. Kinematic relevance of Γ

Now we want to study the one-parametric motion in E^4 , which is generated by reflecting the coordinate frame in the one-parametric set of Γ 's rulings. Such a motion is called line-symmetric and Γ is the corresponding *basic surface* (cf. [1]).

In this context the following theorem can be proven:

Theorem. The line-symmetric motion in E^4 with basic surface Γ is a circular Darboux 2-motion, which is neither spherical nor a pure translation, and vice versa.

Circular Darboux 2-motion: All points have circular trajectories. This motion can be interpreted as a straight line in the ambient space of the Study quadric. For more details please see [12]. \diamond

6. Application

We perform a projective De Casteljau algorithm in the projective space of dimension:

• 5 for the design of rational ruled surfaces using

 $(l_{01}: l_{02}: l_{03}: l_{23}: l_{31}: l_{12})$

• 6 for the design of rational ruled surface-strips using

 $(l_{01}: l_{02}: l_{03}: l_{23}: l_{31}: l_{12}: l)$

• 7 for the design of rational ruled surface-patches using

 $(l_{01}: l_{02}: l_{03}: l_{23}: l_{31}: l_{12}: l_1: l_2)$ with $l_i := \langle \mathbf{p}_i, \mathbf{l} \rangle$ for i = 1, 2

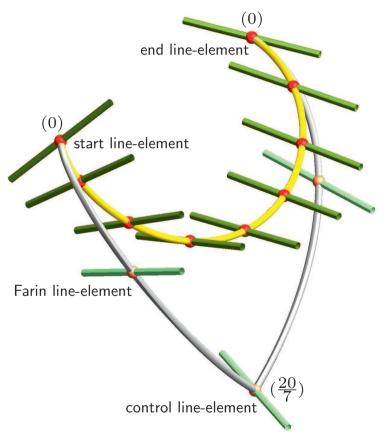
where p_i are the two boundary points of the patch along the ruling.

6. Application

Projective de Casteljau construction:

The resulting curve $\in P^{5/6/7}$ can be interpreted as a conoidal ruled 2-surface/surfacestrip/surface-patch in E^4 with director hyperplane $x_0 = 0$. By applying the orthogonal projection π in x_0 -direction we obtain the desired ruled surface/surface-strip/surface-patch in E^3 .

By labeling the projected lines/line-elements/linesegments by the x_0 -coordinate, the user can modify very intuitively the control structure; i.e. the Farin and control lines/line-elements/linesegments can be changed by *mouse action* and their x_0 -heights by the *scroll wheel*.



7. References

Finally we referred to

- [12], where an analogue algorithm for an user-friendly design of rational motions in E^3 is described,
- [13], where the proofs of the presented theorems are given (due to the limitation of pages).

All references refer to the list of publications given in the presented paper:

NAWRATIL, G.: Alternative interpretation of the Plücker quadric's ambient space and its application. In Proc. of ICGG 2018 (L. Cocchiarella, Ed.), pages 918–929, Springer Nature (2019)

