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Abstract. Due to previous publications of the author, it is already known
that one-parametric self-motions of general planar Stewart Gough plat-
forms can be classified into two so-called Darboux Mannheim (DM)
types (I and II). Moreover, the author also proved the necessity of three
conditions for obtaining a type II DM self-motion. Based on this result
we determine in the article at hand, all general planar Stewart Gough
platforms with a type II DM self-motion. This is an important step in
the solution of the famous Borel Bricard problem.
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1. Introduction

The geometry of a planar Stewart Gough (SG) platform is given by the six
base anchor points Mi with coordinates Mi := (Ai, Bi, 0)T with respect to the
fixed system Σ0 and by the six platform anchor points mi with coordinates
mi := (ai, bi, 0)T with respect to the moving system Σ. By using Study
parameters (e0 : . . . : e3 : f0 : . . . : f3) for the parametrization of Euclidean
displacements, the coordinates m′

i of the platform anchor points with respect
to Σ0 can be written as Km′

i = Rmi + (t1, t2, t3)T with

t1 = 2(e0f1 − e1f0 + e2f3 − e3f2), t2 = 2(e0f2 − e2f0 + e3f1 − e1f3),

t3 = 2(e0f3 − e3f0 + e1f2 − e2f1), K = e2
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3 6= 0 and
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Now all points of the real 7-dimensional space P 7
R, which are located on

the so-called Study quadric Ψ :
∑3

i=0 eifi = 0, correspond to a Euclidean
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displacement, with exception of the subspace e0 = . . . = e3 = 0 of Ψ, as these
points cannot fulfill the normalizing condition K = 1.

If the geometry of the manipulator is given as well as the six leg lengths,
then the SG platform is in general rigid, but it can even happen that the
manipulator can perform an n-parametric motion (n > 0), which is called
self-motion. Note that such motions are also solutions to the famous Borel
Bricard problem (cf. [1, 3, 5, 12, 25]). This still unsolved problem was posed
1904 by the French Academy of Science for the Prix Vaillant.

In this article we present all general planar SG platforms with a type II
DM self-motion. All these manipulators steam either from solution E (cf.
Corollary 5.4) or solution G (cf. Theorem 5.6) of the determined type II DM
self-motions (cf. Section 3). The solution set of SG platforms implied by solu-
tion E is 12-dimensional and can be seen as generalization of line-symmetric
Bricard octahedra (cf. Remark 5.5). The solution set of manipulators implied
by solution G is 11-dimensional and consists of special polygon platforms (cf.
Remark 5.7). Moreover, we show that the type II DM self-motions of all
presented SG platforms are line-symmetric and octahedral (cf. Theorems 4.2
and 5.6).

1.1. Types of self-motions

In this subsection and section 2 we give a very short review of the results and
ideas stated in [18], where more details and also some concrete examples can
be found.

It is already known, that manipulators which are singular in every possible
configuration, possess self-motions in each pose. These manipulators are so-
called architecturally singular SG platforms [14] and they are well studied:
For the characterization of architecturally singular planar SG platforms we
refer to [8, 16, 22, 27]. For the non-planar case we refer to [9, 17]. Therefore we
are only interested in the computation of self-motions of non-architecturally
singular SG platforms. Until now only few self-motions of this type are known,
as their computation is a very complicated task. A detailed review of these
self-motions was given by the author in [21] (see also [6]).

Moreover, it is known that if a planar SG platform with anchor points
m1, . . . ,M6 is not architecturally singular, then there exists at least a one-
parametric set L of legs, which can be attached to the given manipulator
without restricting the forward kinematics [7, 15, 21]. The underlying linear
system of equations is given in Eq. (30) of [15]. As the solvability condition
of this system is equivalent to the criterion given in Eq. (12) of [2], also the
singularity surface of the manipulator does not change by adding legs of L.
Moreover, it was shown that in general the base anchor points Mi as well as
the corresponding platform anchor points mi of L are located on planar cubic
curves C and c, respectively.
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Assumption 1.1. We assume that there exist such cubics c and C (which
can also be reducible) in the Euclidean domain of the platform and the base,
respectively.

Now, we consider the complex projective extension P 3
C of the Euclidean 3-

space E3, i.e.

ai =
xi

wi
, bi =

yi

wi
, Ai =

Xi

Wi
, Bi =

Yi

Wi
. (1.1)

Note that ideal points are characterized by wi = 0 and Wi = 0, respectively.
Therefore we denote in the remaining part of this article the coordinates of
anchor points, which are ideal points, by xi, yi and Xi, Yi, respectively. For
all other anchor points we use the coordinates ai, bi and Ai, Bi, respectively.

The correspondence between the points of C and c in P 3
C, which is determined

by the geometry of the manipulator m1, . . . ,M6, can be computed according
to [7, 15] or [2] under consideration of Eq. (1.1). As this correspondence has
not to be a bijection, a point ∈ P 3

C of c resp. C is in general mapped to a
non-empty set of points ∈ P 3

C of C resp. c. We denote this set by the term
corresponding location and indicate this fact by the usage of brackets { }.

In P 3
C the cubic C has three ideal points U1,U2,U3, where at least one of these

points (e.g. U1) is real. The remaining points U2 and U3 are real or conjugate
complex. Then we compute the corresponding locations {u1} , {u2} , {u3} of
c (⇒ {u1} contains real points). We denote the ideal points of c by u4, u5, u6,
where again one (e.g. u4) has to be real. The remaining points u5 and u6

are again real or conjugate complex. Then we compute the corresponding
locations {U4} , {U5} , {U6} of C (⇒ {U4} contains real points).

Assumption 1.2. For guaranteeing a general case, we assume that each of
the corresponding locations {u1}, {u2}, {u3} , {U4}, {U5}, {U6} consists of a
single point. Moreover, we assume that no 4 collinear platform anchor points
uj or base anchor points Uj (j = 1, . . . , 6) exist.

Example. The cubics C and c of an octahedral manipulator (C and c split
up into three lines) are illustrated in Fig. 1. Moreover, the points ui and Ui

(i = 1, . . . , 6) are displayed as well as as some additional legs of L.

Now the basic idea can simply be expressed by attaching the special legs
uiUi ∈ L with i = 1, . . . , 6 to the manipulator m1, . . . ,M6. The attachment
of the special leg uiUi for i ∈ {1, 2, 3} corresponds with the so-called Dar-
boux constraint, that the platform anchor point ui moves in a plane of the
fixed system orthogonal to the direction of the ideal point Ui. Moreover, the
attachment of the special leg uiUi for i ∈ {4, 5, 6} corresponds with the so-
called Mannheim constraint, that a plane of the moving system orthogonal
to ui slides through the point Ui.

By removing the originally six legs miMi with i = 1, . . . , 6 we remain with
the manipulator u1, . . . ,U6, which is uniquely determined due to Assumption
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Figure 1. Octahedral manipulator: (a) Cubic C of base an-
chor points. (b) Cubic c of platform anchor points.

1.1 and 1.2. Moreover, under consideration of Assumption 1.1 and 1.2, the
following statement holds (cf. [18]):

Theorem 1.3. The manipulator u1, . . . ,U6 is redundant and therefore archi-
tecturally singular. Moreover, all anchor points of the platform u1, . . . , u6 and
as well of the base U1, . . . ,U6 are distinct.

It was also proven in [18] that there only exist type I and type II Darboux
Mannheim (DM) self-motions, where the definition of types reads as follows:

Definition 1.4. Assume M is a one-parametric self-motion of a SG platform
m1, . . . ,M6, which is not architecturally singular. Then M is of the type n
DM if the corresponding architecturally singular manipulator u1, . . . ,U6 has
an n-parametric self-motion.

2. Type II DM self-motions

In the remainder of the article we focus on type II DM self-motions. The
author [18] was already able to compute the set of equations yielding a type
II DM self-motion explicitly. This was only possible by the usage of the
analytical versions of the Darboux and Mannheim constraints, which are
repeated next:

Darboux constraint: The constraint that the platform anchor point ui (i =
1, 2, 3) moves in a plane of the fixed system orthogonal to the direction of the
ideal point Ui can be written as (cf. [18])

Ωi : Xi(air11 + bir12 + t1) + Y i(air21 + bir22 + t2) + LiK = 0,

with Xi, Yi, ai, bi, Li ∈ C. This is a homogeneous quadratic equation in the
Study parameters where Xi and Y i denote the conjugate complex of Xi and
Yi, respectively.
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Mannheim constraint: The constraint that the plane orthogonal to ui (i =
4, 5, 6) through the platform point (gi, hi, 0) slides through the point Ui of
the fixed system can be written as (cf. [18])

Πi : xi[Air11 + Bir21 − giK − 2(e0f1 − e1f0 − e2f3 + e3f2)]+

yi[Air12 + Bir22 − hiK − 2(e0f2 + e1f3 − e2f0 − e3f1)] = 0,

with xi, yi, Ai, Bi, gi, hi ∈ C. This is again a homogeneous quadratic equation
in the Study parameters where xi and yi denote the conjugate complex of xi

and yi, respectively.

The content of the following lemma was also proven in [18]:

Lemma 2.1. Without loss of generality (w.l.o.g.) we can assume that the alge-
braic variety of the two-parametric self-motion of the manipulator u1, . . . ,U6

is spanned by Ψ,Ω1,Ω2,Ω3,Π4,Π5. Moreover, we can choose following spe-
cial coordinate systems in Σ0 and Σ w.l.o.g.: X1 = Y2 = Y3 = x4 = y5 = 1
and a1 = b1 = y4 = A4 = B4 = Y1 = h4 = g5 = 0.

Moreover, the author has already proven the following result (see [19, 20]):

Theorem 2.2. The corresponding manipulator u1, . . . ,U6 of a general planar
SG platform (fulfilling Assumptions 1.1, 1.2 and Lemma 2.1) with a type II
DM self-motion has to fulfill either the three conditions

L1(X2−X3)−L2+L3 = X2a2−X3a3+b2−b3 = X2b2−X3b3−a2+a3 = 0,
(2.1)

or the three conditions

L1(X2−X3)−L2+L3 = X2a2−X3a3−b2+b3 = X2b2−X3b3+a2−a3 = 0.
(2.2)

Based on Theorem 2.2 we determine all type II DM self-motions in section 3.
In section 4 we investigate these self-motions in more detail and in section 5
we present all SG platforms with a type II DM self-motion. Finally, we close
the paper with an concrete example.

Before we can start with section 3, one more preparatory work has to be
done: It was pointed out by Karger [12], that the rotations about the x-, y-,
and z-axis with angle π, which are represented in the Euler parameter space
by the transformation:

(e0, e1, e2, e3) 7→ (−e1, e0,−e3, e2),

(e0, e1, e2, e3) 7→ (−e2, e3, e0,−e1),

(e0, e1, e2, e3) 7→ (−e3,−e2, e1, e0),
(2.3)

represent equivalences for planar SG platforms (either change of the orienta-
tion of the normal of the plane of the platform or of the base or change of the
orientation of axes in the plane of the platform or in the plane of the base).

As the two triples of necessary conditions given in Eqs. (2.1) and (2.2) are
connected by a rotation about the x-axis with angle π (see [20]), we can
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restrict ourselves to one solution. W.l.o.g. we choose the conditions given in
Eq. (2.2). Note that a geometric interpretation of these necessary conditions
was given in [20].

3. Determination of type II DM self-motions

In order to determine all type II DM self-motions, we distinguish three main
cases, which are given in the subsections 3.1, 3.2 and 3.3, respectively.

3.1. (e0e2 − e1e3)e0e3 6= 0

Under this assumption we can solve the linear system of equations Ψ, Ω1,
Ω2, Π4 for f0, . . . , f3 and plug the obtained expressions in the remaining two
equations. This yields in general two homogeneous polynomials Ω[40] and
Π[96] in the Euler parameters of degree 2 and 4, respectively. The number in
the square brackets gives the number of terms.

1. X3 6= ±i: Under this assumption we can solve the three equations given
in Eq. (2.2) for a3, b3 and L3. As for a2 = b2X3 the condition Ω = 0
cannot be fulfilled without contradiction (w.c.) we can assume b2X3 −
a2 6= 0. Under this assumption we can solve Ω for e0 which yields

e0 =
(V − b2 − a2X3)e3

b2X3 − a2

with V = ±
√

(a2
2 + b2

2)(X
2

3 + 1). (3.1)

Now we plug the expression for e0 into Π, which yields in the numerator
e3F [650]. As e3 = 0 yields a contradiction, F = 0 has to vanish indepen-
dently of the remaining Euler parameters. We denote the coefficients of
ei
1e

j
2e

k
3 of F by Fijk. Then we can express h5 from F300 = 0, B5 from

F030 = 0, A5 from F210 = 0 and g4 from F120 = 0. Now the numerator
of F012 factors into (V − b2 − a2X3)G1[192] and the numerator of the
last remaining coefficient F102 factors into (b2X3 − a2)G2[192]. There-
fore G1 = G2 = 0 has to hold. Now G1 + G2 = 0 can only vanish w.c.
for:

a. b2 = 0: Now the remaining condition G1 = 0 can only vanish w.c.
for:

i. x5 = −X3: This yields solution A.
ii. x5 = a3

b3
: This yields solution B.

b. X2 = (V +a2−a2X3−b2−b2X3)(V−a2−a2X3−b2+b2X3)

2(V−b2−a2X3)(b2X3−a2)
and b2 6= 0: Now

the remaining condition G1 = 0 can only vanish w.c. for:
i. x5 = −X2: This yields solution C.
ii. x5 = a2

b2
: This yields solution D.

2. X3 = −i: This immediately implies X2 = i. Then we can solve the three
equations given in Eq. (2.2) for a2, a3 and L3, which yields:

L3 = L2 + 2iL1, a2 = ib2, a3 = −ib3.
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As for b2 = b3 the condition Ω = 0 cannot be fulfilled w.c. we can
assume b2 6= b3. Under this assumption we can solve Ω for e0 which
yields

e0 =
(ib2 + ib3 − 2V )e3

b2 − b3
with V = ±

√
−b2b3.

Note that (ib2 − V ) or (ib3 − V ) cannot vanish w.c., and therefore we
can assume (ib2 − V )(ib3 − V ) 6= 0. Now we plug the expression for
e0 into Π, which yields in the numerator e3F [325]. As e3 = 0 yields a
contradiction, F = 0 has to vanish independently of the remaining Euler
parameters. We denote the coefficients of ei

1e
j
2e

k
3 of F by Fijk. Then we

can express h5 from F300 = 0 and B5 from F030 = 0.
a. x5 6= ±i: Under this assumption we can express A5 from F210 = 0.

Then the numerator of F120 = 0 factors into (ib2−V )(ib3−V )G[11].
We compute L2 from G = 0, but this yields A5 = B5 = 0, a
contradiction.

b. x5 = −i: Now we can express L2 from F210 = 0. Then F012 can only
vanish w.c. for A5 = ib2. Finally, F102 = 0 yields the contradiction.

c. x5 = i: Again we can express L2 from F210 = 0. Then the differ-
ence of the only non-contradicting factors of F012 and F102 yields
ib2(ib2 − V )2. This expression cannot vanish w.c..

3. X3 = i: It can be proven analogously to item 2, that there exist no
solution.

3.2. e0e2 − e1e3 6= 0, e0e3 = 0

There are two possible cases, namely e0 = 0, e1e3 6= 0 or e3 = 0, e0e2 6= 0. As
these two cases correspond to each other by a rotation about the z-axis with
angle π (cf. Eq. (2.3)), we can restrict ourselves to the discussion of the case
e0 = 0, e1e3 6= 0. Notwithstanding this case1 was already discussed by the
author in [18], we repeat its short discussion for the sake of completeness:

W.l.o.g. we can solve the three equations of Eq. (2.2) for a2, a3 and L3.
Then Ω equals (b2 − b3)e2

3, which implies b2 = b3. Now the numerator of Π
factors into e3F [34]. As e3 = 0 yields a contradiction, F = 0 has to vanish
independently of the remaining Euler parameters. We denote the coefficients
of ei

1e
j
2e

k
3 of F by Fijk. Then F012 implies L1 = −g4. Then we can express L2

from F300 = 0 and A5 from F210 = 0. Now F120 − F102 implies B5 = b3 and
F120 can only vanish w.c. for:

a. x5 = X2: This yields solution E.
b. x5 = X3: This yields solution F.

3.3. e0e2 − e1e3 = 0

We split this case up into the following three subcases:

1Another approach for self-motions characterized by e0 = 0 was given by Karger in [10, 11].
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1. As e0 = e1 = e2 = e3 = 0 does not correspond with a Euclidean motion,
we start the case study by considering the following four cases:

e0 = e1 = e2 = 0, e0 = e1 = e3 = 0, e0 = e2 = e3 = 0, e1 = e2 = e3 = 0.

We only discuss the case e0 = e1 = e2 = 0 in more detail because the
other three are equivalent to this case with respect to a rotation of the
platform about the x-, y-, and z-axis with the angle π (cf. Eq. (2.3)).

Now Ψ = 0 implies f3 = 0. Then Ω1 = 0 yields an expression for
f2 and Ω2 = 0 implies an expression for f1. This cannot yield a two-
parametric self-motion as only the homogeneous parameters e3 and f0

are free.
2. In this part we discuss the following four special cases:

a. e0 = e1 = 0: Due to item 1 we can assume e2e3 6= 0. We can
compute f2 from Ψ = 0. Then Ω1 implies f3 = −L1e2/2. Then
Π4 can only vanish w.c. for g4 = −L1. Moreover, we can express
f1 from Π5. Finally, the coefficients of e2f0 of Ω2 and Ω3 cannot
vanish w.c..

b. e2 = e3 = 0: This case is equivalent to the last one as these cases
correspond to each other by a rotation about the y- resp. z-axis
with the angle π (cf. Eq. (2.3)).

c. e0 = e3 = 0: Due to item 1 we can assume e1e2 6= 0. We can com-
pute f1 from Ψ = 0. Then we can express f0 from Π4 = 0. More-
over, we can compute f3 from Π5 = 0. Now Ω1, Ω2 and Ω3 have
to vanish independently of the choice of the unknowns e1, e2, f2.
The coefficient of e4

1 of Ω2 implies an expression for h5. Then we
get L2 from the coefficient of e1

1e
3
2 of Ω2 and L3 from the coefficient

of e4
1 of Ω3. Then the coefficients of e4

1 and e4
2 of Ω1 imply L1 =

g4 = 0. Now we can compute a2 from the coefficient of e1
1e

3
2 of

Ω1. Moreover, the coefficient of e3
1e

1
2 of Ω1 implies B5 = x5A5 and

from the coefficient of e1
1e

3
2 of Ω3 we get a3 = A5(1 + x2

5)−X3b3.
Then the coefficient of e2

1e
2
2 of Ω1 can only vanish w.c. for:

(i) x5 = i: Then Ω2 = 0 implies X2 = −i and from Ω3 = 0 we
get X3 = i. This yields solution G.

(ii) x5 = −i: Then Ω2 = 0 implies X2 = i and from Ω3 = 0 we
get X3 = −i. This yields solution H.

d. e1 = e2 = 0: This case is equivalent to the last one as these cases
correspond to each other by a rotation about the x-axis with the
angle π (cf. Eq. (2.3)).

3. Due to the discussion of the special cases in item 1 and item 2, we now
assume e0e1e2e3 6= 0. Therefore we can solve e0e2 − e1e3 = 0 for e2.
Moreover, we can solve Ψ,Ω1,Π4,Π5 for f0, f1, f2, f3.

Now Ω2 and Ω3 have to vanish independently of the choice of the
unknowns e0, e1, e3. Therefore the coefficient of e6

0 of Ω2 implies L1 = g4.
Then the coefficient of e5

0e3 of Ω2 yields an expression for L2. Now we
get g4 = 2a2 − 2X2b2 from the coefficient of e4

0e
2
3 of Ω2. Moreover, we
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get a2 = X2b2 from the coefficient of e2
1e

4
3 of Ω2. Finally, the coefficient

of e3
0e

2
1e3 of Ω2 cannot vanish w.c..

This finishes the case study for the determination of all type II DM self-
motions. A closer inspection of the obtained solutions A-G is given in section
4.

4. Discussion of the solutions A-G

We split up the discussion of the solutions into the following two parts:

4.1. Discussing solutions A-F

It can immediately be seen, that the solutions A and C correspond to each
other just by a relabeling (switching index 2 and 3) of the anchor points. The
same holds for the solutions B and D as well as for the solutions E and F.
Therefore we can restrict ourselves to the solutions A, B and E.

For solution E it was already shown by the author in [18] that the self-
motion is a line-symmetric motion. This follows directly from the property
e0 = f0 = 0 under consideration of the result given by Selig and Husty [23].

In the following we show that the self-motions of the solutions A and B are
also line-symmetric ones. We will prove this by using the characterization
given in [23], that each motion which is located in the intersection of the Study
quadric and a 5-plane, is a line-symmetric motion. Therefore we have to show
that the Study parameters of the self-motions fulfill two linear equations.

Ad solution A. The first linear relation is the one of Eq. (3.1). Moreover, it
is not difficult to see, that the linear relation ν0f0 + ν1e1 + ν2e2 + ν3f3 = 0
holds with
ν0 = a3

2 + a2(a2x5 + V )2, ν2 = (a2x5 + V )(V X2 + a2x5X2 − a2)a2
2,

ν1 = −(a2x5 + V )(V + a2x5 + a2X2)a2
2, ν3 = a2

2(a2x5 + V ) + (a2x5 + V )3.

Ad solution B. The first linear relation is again the one of Eq. (3.1). Moreover,
the linear relation ν0f0 + ν1e1 + ν2e2 + ν3f3 = 0 holds with

ν0 = a3
2 + a2(V − a2X3)2, ν2 = (V − a2X3)(V X2 − a2X2X3 − a2)a2

2,

ν1 = (a2X3 − V )(V + a2X2 − a2X3)a2
2, ν3 = a2

2(V − a2X3) + (V − a2X3)3.

As the self-motions of solution A, B and E are line-symmetric motions, we
can apply Theorem 6 of Krames [13]. Therefore the cubics c and C in the
platform and the base have to be congruent. This result implies that either
the points U2, U3, u5, u6 are real or that U2 and U3 as well as u5 and u6 are
conjugate complex.2 Before we discuss these two cases separately, we repeat
the following notation introduced in [18]:

2This can also be seen directly from the conditions computed in section 3.
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Definition 4.1. A DM self-motion is called octahedral if the following triples
of points are collinear for i 6= j 6= k 6= i and i, j, k ∈ {1, 2, 3}:

(ui, uj , u6), (ui, uk, u5), (uj , uk, u4), (4.1)

(U4,U5,Uk), (U5,U6,Ui), (U4,U6,Uj). (4.2)

The reason for this nomenclature is that all octahedral manipulators have
such a point-configuration. For i = 1, j = 2 and k = 3 this can be seen in
Fig. 1.

4.1.1. U2, U3, u5, u6 are real.

Ad solution A. It can immediately be seen that the following triples of points
are collinear: (u1, u2, u4), (u2, u3, u5) and (U2,U4,U5). As u1, . . . ,U6 is an ar-
chitectural singular manipulator (cf. Theorem 1.3) we can apply Lemma 2 of
[8], which implies that the triples (U3,U5,U6), (U1,U4,U6) and (u1, u3, u6) are
also collinear. These three collinearity conditions also determine the points
U6 and u6 uniquely (as we can assume y6 = 1 w.l.o.g.). Moreover, these
collinearity conditions show that the self-motion is octahedral. Finally, it can
easily be checked by direct computations that the triangles 4(u1, u2, u3) and
4(U5,U6,U4) are congruent.

Ad solution B. It can immediately be seen that the following triples of points
are collinear: (u1, u2, u4), (u1, u3, u5) and (U1,U4,U5). Again we can apply
Lemma 2 of [8], which implies that the triples (U3,U5,U6), (U2,U4,U6) and
(u2, u3, u6) are also collinear. These three collinearity conditions again deter-
mine the points U6 and u6 and prove that the self-motion is octahedral. In
this case the triangles 4(u1, u2, u3) and 4(U6,U5,U4) are congruent. This
already shows that the solutions A and B are equivalent because they corre-
spond to each other by a relabeling (switching indices 5 and 6) of the anchor
points.

Ad solution E. It can immediately be seen that the triples of points (u1, u3, u5),
(u2, u3, u4) and (U3,U4,U5) are collinear. Again we can apply Lemma 2 of
[8], which implies that the triples (U2,U4,U6), (U1,U5,U6) and (u1, u2, u6)
are also collinear. These three collinearity conditions again determine the
points U6 and u6 and prove that the self-motion is octahedral. In this case
the triangles 4(u1, u2, u3) and 4(U4,U5,U6) are congruent.

Moreover, also the solutions A and E are equivalent to each other. The only
difference beside a relabeling (switching indices 4 and 6) of the anchor points,
is that the coordinate systems of the fixed system and the moving system
are chosen in a different way. Therefore we can restrict ourselves (due to
equivalences) to solution E in the case that U2, U3, u5, u6 are real.

4.1.2. U2 and U3 as well as u5 and u6 are conjugate complex. In this case the
solutions can be discussed analogously as in subsection 4.1.1. As X2 = X3

and x5 = x6 hold, we only have to interchange u5 and u6 as well as U2 and
U3.
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Also in this case the solutions A and B are equivalent because they correspond
to each other by a relabeling (switching indices 5 and 6) of the anchor points.
But now the solutions A and E are not equivalent, which can easily be seen
as follows: In solution A the points (u1, u3, u4) are collinear, where u1 is a
real finite point, u4 a real point at infinity, and u3 a complex point. But in
solution E there do not exist such a triple of collinear points.

Moreover, we show in the following, that solution A does not yield a solution
to our problem as e0 : . . . : f3 /∈ P 7

R holds. This can be seen as follows: In
order that e0 of Eq. (3.1) is a real number the imaginary parts of X3 and

J := ±
√

X
2

3 + 1 have to be identical. Therefore the relation J−J = X3−X3

has to hold. After squaring both sides this equation can be rewritten as
JJ = X3X3 + 1. If we square both sides again we will end up with the
condition (X3 − X3)2 = 0. This already yields the contradiction as X3 is a
complex number.

Therefore we can also restrict ourselves to solution E in the case where U2

and U3 as well as u5 and u6 are conjugate complex.

4.2. Discussing solutions G and H

Clearly, also the solutions G and H correspond to each other by a relabeling
of points. Therefore we can restrict ourselves to solution G.

It can immediately be verified that the triples (u1, u3, u5) and (U3,U4,U5) are
collinear. Again we can apply Lemma 2 of [8], which implies that the triples
(U2,U4,U6) and (u1, u2, u6) are collinear. These conditions do not determine
U6 uniquely, because we only get B6 = iA6 from the collinearity condition
of the points (U2,U4,U6). It can easily be seen from the rank condition of
Röschel and Mick (cf. Remark 1 of [22]) that u1, . . . ,U6 is architecturally
singular if and only if A6 = −A5b2/b3 holds. Note that in this case the
self-motion has not to be octahedral.3

Moreover, e0 = e3 = f0 = f3 = 0 holds which already proves that the self-
motion is a line-symmetric Schönflies motion (cf. [6]). Finally, it should be
noted that the cubics c and C are cyclic, as x5 = X3 = i and x6 = X2 = −i
hold.

Due to the results obtained in section 4 the following theorem holds:

Theorem 4.2. All type II DM self-motions are line-symmetric motions. More-
over, all type II DM self-motions are either octahedral or Schönflies motions.

3It is only octahedral if the additional condition b2 = b3 holds.
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5. All SG platforms with a type II DM self-motion

In the following, we describe how all SG platforms with type II DM self-
motion can be constructed: We start with a two-parametric DM self-motion.
Due to section 4 we can restrict ourselves to the solutions E and G.

Now we attach an arbitrary leg to the manipulator u1, . . . ,U5. We can choose
freely a finite real point M7 = (A7, B7, 0) in the planar base, a finite real point
m7 = (a7, b7, 0) in the planar platform and a real leg length R7. Husty [4]
showed that the condition for m7 to be located on a sphere with center M7

and radius R7 can be expressed by the following homogeneous quadratic
equation:

Λ7 : (A2
7 + B2

7 + a2
7 + b2

7 −R2
7)K + 4(f2

0 + f2
1 + f2

2 + f2
3 )

+ 2(e2
3 − e2

0)(A7a7 + B7b7) + 2(e2
2 − e2

1)(A7a7 −B7b7)

+ 4[(f0e2 − e0f2)(B7 − b7) + (e1f3 − f1e3)(B7 + b7)

+ (f2e3 − e2f3)(A7 + a7) + (f0e1 − e0f1)(A7 − a7)

+ e0e3(A7b7 −B7a7)− e1e2(A7b7 + B7a7)] = 0.

We can set B7 = 0 w.l.o.g. because the cubic C has to have a third real
point on the x-axis beside the points U1 and U4. Moreover, the resulting
manipulator u1, . . . ,U5,m7,M7 is not architecturally singular as (m7,M7) 6=
(u6,U6) holds. As a consequence we can determine the one-parametric set L
of legs, which can be attached to this manipulator u1, . . . ,U5,m7,M7 without
restricting the direct kinematics. This can be done as follows, where we use
the symbol ⊕ as index in order to label the representative of L:

Analogous considerations as in [7, 15] yield that the constraint Λ⊕ of the
redundant leg has to be a linear combination of the following type:

Υ : µ1Ω1 + µ2Ω2 + µ3Ω3 + µ4Π4 + µ5Π5 + µ6Λ7 − Λ⊕ = 0.

Now the homogeneous quadratic equation Υ has to vanish independently of
the Study parameters, where Υ has the following coefficients: Υe0e3 , Υe0f1 ,
Υe0f2 , Υe3f1 , Υe3f2 , Υe2

i
, Υe1e2 , Υe1f0 , Υe1f3 , Υe2f0 , Υe2f3 and Υf2

i
with

i = 0, . . . , 3. Note that e.g. Υe0e3 denotes the coefficient of e0e3 of Υ. As the
following relations hold:

Υe0f2 + Υe3f1 + Υe1f3 + Υe2f0 = 0, Υe0f1 + Υe3f2 + Υe2f3 + Υe1f0 = 0,

Υe0f2 −Υe3f1 −Υe1f3 + Υe2f0 = 0, Υe0f1 −Υe3f2 −Υe2f3 + Υe1f0 = 0,

Υe2
0
−Υe2

1
−Υe2

2
+ Υe2

3
= 0, Υf2

0
= Υf2

1
= Υf2

2
= Υf2

3
,

we can restrict to the following 10 coefficients:

Υe0e3 , Υe1e2 , Υe0f1 , Υf2
0
, Υe2

0
, Υe0f2 , Υe1f3 , Υe2f3 , Υe2

1
, Υe2

2
, (5.1)

in eleven unknowns (a⊕, b⊕, A⊕, B⊕, R⊕, µ1, . . . , µ6). From now on everything
can be done analogously to the method described in [7, 15] (see also [18]).
Finally, we end up with the corresponding cubics c and C in the platform
and the base, respectively.



Planar SG platforms with a type II DM self-motion 13

Then we can choose any six legs from L, where the corresponding anchor
points do not cause an architecturally singular design. In this way all general
planar SG platforms with a type II DM self-motion can be constructed.

In the following we investigate the SG platforms implied by solution E and
G in more detail.

5.1. SG platforms implied by solution E

If we plug the expression for the fi’s into Λ7 (under consideration of e0 = 0)
we get a homogeneous polynomial of degree six in e1, e2, e3 with only 221
terms in its general form. Moreover, the unknown e3 only appears with even
powers and therefore the equation can in general be solved explicitly for e3.
As two of the six solutions have to be real, it follows immediately that there
exist e0 : . . . : f3 ∈ P 7

R if U2, U3, u5, u6 are real.

For the case that U2 and U3 as well as u5 and u6 are conjugate complex, we
prove the following three theorems:

Theorem 5.1. If M7 = U4 or m7 = u1 holds, then we cannot construct non-
architecturally singular planar SG platforms with a type II DM self-motion.

Proof. If M7 = U4 holds, then the cubic C has to split up into two conjugate
complex lines [U4,U2] and [U4,U2] and in one real line S. As C and c are con-
gruent due to Theorem 6 of Krames [13], c has to split up into the conjugate
complex lines [u1, u5] and [u1, u6] and the real line s = [m7, u4].4

Therefore we can only add two real pencils of legs: One pencil is spanned by
its vertex U4 and an arbitrary point on s and the other one is spanned by
its vertex u1 and an arbitrary point on S. Any choice of six legs of these two
pencils yields an architecturally singular manipulator.

Clearly, the same argumentation can be done for the case m7 = u1. �

In order to improve the readability of this article, the proofs of the following
two theorems are given in the appendix.

Theorem 5.2. For M7 6= U4 and m7 6= u1 the Study parameters e0 : . . . : f3

can only be element of P 7
R

? if B5 = b2 = b3 ∈ R and g4 = − c3
c1

with c1 and c3 of Eq. (5.5) hold,
? or in one of the solutions 1, 2 and 3. In these cases c and C are cyclic.

Theorem 5.3. From the solutions 1, 2 and 3 of Theorem 5.2, we cannot con-
struct non-architecturally singular planar SG platforms with a type II DM
self-motion.

4This can also be checked by direct computations.
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Corollary 5.4. Due to Theorems 5.1, 5.2 and 5.3 we can only construct a non-
architecturally singular planar SG platform with a type II DM self-motion
from solution E (b2 = b3 = B5, x5 = X2, a2 = A5 = B5X3, a3 = B5X2,
L1 = −g4, L2 = −h5, L3 = (X2 −X3)g4 − h5) for

• X2, X3, g4, h5, B5 ∈ R or
• X3 = X2 = r1+ic1, h5 = r3+ic3, g4 = −c3/c1 and B5, r1, c1, r3, c3 ∈ R.

In the following we discuss the degrees of freedom of the two solutions of
Corollary 5.4. It can easily be seen that the congruent cubics c and C do not
depend on the choice of the unknowns g4, h5, R7 resp. r3, c3, R7. Therefore c
and C are determined by the remaining six free parameters (X2, X3, B5, A7,
a7, b7 resp. r1, c1, B5, A7, a7, b7). Moreover, we can choose freely six pairs of
corresponding anchor points on c and C. Therefore we get a 12-dimensional
solution set of planar SG platforms with a type II DM self-motion.

Remark 5.5. It was shown in [18] that all line-symmetric Bricard octahedra
(cf. [24]) are included in the given 12-dimensional solution set. Therefore
the manipulators of this set can be seen as generalization of these Bricard
octahedra. Moreover, examples for both cases of Corollary 5.4 were already
presented in [18].

5.2. SG platforms implied by solution G

If we substitute solution G into Λ7 we get an expression with only 13 terms.
Moreover, Λ7[13] is homogeneous of degree 4 in e1, e2 and f2, whereby f2

only appears with the power 2. As the coefficient of f2
2 equals e2

1 + e2
2, it

cannot vanish and therefore we can always solve Λ7[18] for f2.

Theorem 5.6. We can only construct a non-architecturally singular planar
SG platforms with a type II DM self-motion from solution G (x5 = X3 = i,
X2 = −i, a2 = −ib2, a3 = ib3, A5 = iB5, L1 = L2 = L3 = g4 = h5 = 0) if
the self-motion is octahedral (⇔ b2 = b3, cf. footnote 3).

Proof. W.l.o.g. we can compute R⊕ from Υe2e2 .

1. b2 6= b3: Under this assumption we can solve Υf2
0
, Υe1f3 , Υe0f2 , Υe2f3 ,

Υe0f1 , Υe2
0

for µ1, . . . , µ6.
a. m⊕ 6= u1: Now we can express A⊕ and B⊕ from Υe2

1
and Υe1e2 .

Plugging the obtained expressions into Υe0e3 yields the equation
C[46] = Cr[10] + iCc[4] of c with Cr, Cc ∈ R. In the first part we
show that neither Cr nor Cc cannot vanish w.c. independently of
the choice of a⊕ and b⊕.
ad Cc) The coefficient of a2

⊕ implies b7 = 0. Then the coefficient
of a⊕b⊕ yields the contradiction.
ad Cr) The coefficient of b3

⊕ already yields the contradiction.
Therefore we are looking for real points of c. Clearly, such points
have to fulfill Cr = Cc = 0. Cc can only vanish w.c. for:
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i. A7 = 0: Then Cr = 0 implies b7 = b⊕. Moreover, M7 = M⊕ =
U4 holds. Therefore we can add a pencil of lines with vertex
M7 = M⊕ (⇒ architecturally singular SG platform).

ii. a⊕ = 0, A7 6= 0: Then we get A⊕ = A7b7/b⊕ and B⊕ =
A7a7/b⊕. Moreover, Cr can only vanish w.c. for:

b3B5b
2
⊕ + (A7a7(b3 + b2)− 2b3b7B5)b⊕ − 2b2b3A7a7 = 0

This only yields two solutions and therefore we cannot con-
struct a 6-legged SG platform.

iii. a⊕b7 − a⊕a7 = 0, a⊕A7 6= 0: We distinguish following sub-
cases:

? a7 6= 0: Under this assumption we can express b⊕ from
the last equation. Now Cr can only vanish w.c. for:
(α) b7 = 0: We get A⊕ = A7a7/a⊕ which yields a reg-
ulus of additional legs (⇒ architecturally singular SG
platform).
(β) a7 = a⊕: In this case we get m7 = m⊕ and M7 = M⊕.

? a7 = 0: This already yields b7 = 0. Then Cr = 0 implies
b⊕ = 0. Therefore we can add a pencil of lines with ver-
tex M⊕ = U4 (⇒ architecturally singular SG platform).

b. m⊕ = u1: (⇒ a⊕ = b⊕ = 0): Υe2
1

and Υe1e2 can only vanish for:
i. A7 = 0: Then Υe0e3 implies B⊕ = B5b7/b2.
ii. a7 = b7 = 0: Then Υe0e3 implies B⊕ = 0.

In both cases (i) and (ii) we can add a pencil of lines with vertex
m⊕ = u1 (⇒ architecturally singular SG platform).

2. b2 = b3: Under this assumption we can solve Υf2
0
, Υe1f3 , Υe0f2 , Υe2f3 ,

Υe0f1 , Υe0e3 for µ1, . . . , µ6.
a. m⊕ 6= u1: Under this assumption we can express A⊕ and B⊕ from

Υe2
1

and Υe1e2 which yields:

A⊕ =
A7(a7a⊕ + b7b⊕)

a2
⊕ + b2

⊕
, B⊕ =

A7(b7a⊕ − a7b⊕)
a2
⊕ + b2

⊕
. (5.2)

Plugging the obtained expressions into Υe2
0

yields the equation of
c:

B5b
3
⊕ + B5b⊕a2

⊕ −B5b7a
2
⊕ + (A7a7 −B5b7)b2

⊕

−A7b7a⊕b⊕ + b3A7b7a⊕ − b3A7a7b⊕ = 0
(5.3)

As this is a real cubic we obtain a solution.
b. m⊕ = u1: (⇒ a⊕ = b⊕ = 0): Υe2

1
and Υe1e2 can only vanish for:

i. A7 = 0: Then Υe0e0 implies B⊕ = B5b7/b2.
ii. a7 = b7 = 0: Then Υe0e0 implies B⊕ = 0.

In both cases (i) and (ii) we can add a pencil of lines with vertex
m⊕ = u1 (⇒ architecturally singular SG platform).

This finishes the proof of Theorem 5.6. �
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In addition to the obtained solution of item (2a) the following should be
noted: We can also solve Υe2

1
and Υe1e2 for a⊕ and b⊕. Then Υe2

0
yields the

equation of C:

b3B
3
⊕ + b3B⊕A2

⊕ −B5b7A
2
⊕ + (A7a7 −B5b7)B2

⊕

−A7b7A⊕B⊕ + B5A7b7A⊕ −B5A7a7B⊕ = 0
(5.4)

It can easily be seen that we get the equation (5.3) of c from equation (5.4)
of C by setting A⊕ = a⊕B5/b3 and B⊕ = b⊕B5/b3. Therefore the cubics are
similar to each other (they are only congruent for the special case B5 = b3).

Remark 5.7. On first sight this result seems to contradict Theorem 6 of
Krames [13], but a closer look shows that the mapping given in Eq. (5.2)
is for m7 6= u1 a composition5 of an inversion ι and a rotation. The center
of ι is the origin and the radius of the inversion circle equals

√
δA7 with

δ =
√

a2
7 + b2

7. Then ι(m⊕) is rotated by the matrix(
a7/δ b7/δ
b7/δ −a7/δ

)
.

Therefore we have a so-called polygon platform (cf. [26]). It is well known (cf.
[1, 3, 6]) that all points of the platform and the base which are coupled by
this mapping run on spherical paths (Schönflies Borel Bricard motion), and
not only those on c and C. Therefore this is not a counterexample to Theorem
6 of [13].

In the following we discuss the degrees of freedom of solution G fulfilling the
octahedral condition b2 = b3. It can easily be seen that the similar cubics
c and C do not depend on R7. Therefore c and C are determined by the
remaining five free parameters (b3, B5, A7, a7, b7). Moreover, we can choose
freely six pairs of corresponding anchor points on c and C. Therefore we get
an 11-dimensional solution set of planar SG platforms with a type II DM
self-motion.

Example. Now we give an example for a SG platform with a type II DM
self-motion implied by solution G fulfilling the octahedral condition b2 = b3.
We get the cubics c and C printed in Fig. 2 for the following values: B5 = 9,
b7 = 7, A7 = 13, a7 = 5, b3 = 15, R7 = 21. For this choice the length R⊕ is
given by:

R⊕ =
√

A2
⊕ + B2

⊕ + 198 + 12506/(A2
⊕ + B2

⊕).

Moreover, we can parametrize these type II DM self-motions by setting e1 =
cos ϕ and e2 = sinϕ. This yields:

f1 = − tanϕf2 with f2 = ± cos ϕ
√

65 cos ϕ2 + 91 cos ϕ sinϕ + 17,

for our concrete example.

5For m7 = u1 (⇒ a7 = b7 = 0) we get b⊕ = 0 from Eq. (5.3). In this case we can again

only add a pencil of lines with vertex M⊕ = U4 (⇒ architecturally singular SG platform).
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Figure 2. Similar cyclic cubics c and C.
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Appendix

Proof of Theorem 5.2

Proof. We consider the Darboux motion of the point u1 with respect to the
plane ε with homogeneous plane coordinates [L1 : 1 : 0 : 0]. From the condi-
tion u1 ∈ ε it follows immediately that L1 = −g4 ∈ R has to hold. Then we
set

X2 = r1 + ic1, B5 = r2 + ic2, h5 = r3 + ic3, (5.5)
with r1, r2, r3, c1, c2, c3 ∈ R. Moreover, c1 6= 0 has to hold. The imaginary
part of the numerator of f1, f2 and f3 can only vanish w.c. for:

(r2
1c2 − c3 + c2

1c2 − c2 − g4c1)e2
1 − (r2

1c2 + c3 + c2
1c2 − c2 + g4c1)e2

2

− (r2
1c2 + c3 + c2

1c2 + c2 + g4c1)e2
3 + 4e1e2r1c2 = 0.

(5.6)

In this case also the imaginary part of Λ7 vanishes. We stop the following
case study if A7 = 0 or a7 = b7 = 0 holds or if we obtain a solution:

Part A) r2
1c2 + c3 + c2

1c2 + c2 + g4c1 6= 0. Under this assumption we can
solve Eq. (5.6) for e3. Then we plug the obtained expression into Λ7. The
numerator of the resulting expression factors into

(e1c1 + e2i + r1e1i)(e1c1 + e2i− r1e1i)N [893].

As this expression has to vanish independently of e1 and e2, it can immedi-
ately be seen that only N = 0 can yield a solution. We denote the coefficient
of ei

1e
j
2 of N by Nij .

1. c2(c3+(r2
1 +c2

1−1)c2+c1g4) 6= 0: Under this assumption we can express
R7 from the only non-contradicting factor of N04.

a. b7 6= 0: Now we can express A7 from N13.
i. r1(c3r2 − c2r3 + g4(r1c2 + r2c1)) 6= 0: Under this assumption

we can compute a7 from N31. Now the difference of the only
non-contradicting factors of N40 and N22 cannot vanish w.c..

ii. r1 = 0: Then N31 can only vanish w.c. for:
? g4 = 0: Now N22 = 0 yields the contradiction.
? c1 = ±1, g4 6= 0: As for c2r3 − c3r2 ∓ r2g4 = 0 the

expression N40 cannot vanish w.c., we can assume c2r3−
c3r2 ∓ r2g4 6= 0. Under this assumption we can express
a7 from the only non-contradicting factor of N40. We
get solution 1.

? r3 = r2(c3+g4c1)
c2

: Now N22 = 0 yields the contradiction.

iii. r3 = c3r2+g4(r1c2+r2c1)
c2

, r1 6= 0: N31 = 0 yields the contradic-
tion.

b. b7 = 0: Now N13 = 0 factors into (c3r2 − c2r3 + g4(r1c2 + r2c1))T
with

T = c1g
2
4 + (c2c

2
1 − 2r1c1r2 − r2

1c2 − c2 + c3)g4 + 2r1(c2r3 − r2c3).
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i. r3 = r2(c3+g4c1)
c2

: Then N31 can only vanish w.c. for:
? r1 = 0: Now the difference of the only non-contradicting

factors of N40 and N22 can only vanish w.c. for:
(α) c1 = ±1: Then the only non-contradicting factor of
N40 equals c2g

2
4±2g4a7A7+2a7A7c3 = 0. This equation

can be solved for g4 w.l.o.g.. We get solution 2.
(β) g4 = ±2

√
a7A7: Now N40 = 0 yields the contradic-

tion.
? g4 = ±2

√
a7A7, r1 6= 0: N40 = 0 yields the contradic-

tion.
ii. T = 0, c3r2 − c2r3 + g4(r1c2 + r2c1) 6= 0: We distinguish two

cases:
? r1 6= 0: Under this assumption we can express r3 from

T = 0. Then the difference of the only non-contradicting
factors of N31 and N22 cannot vanish w.c..

? r1 = 0: Now T = 0 implies g4 = 0. Then N40 can only
vanish w.c. for:
(α) c3 = c2

1c2−c2: Now N22 = 0 yields the contradiction.
(β) A7 = c2

1(c2r3−c3r2)
2

2a7c2(c2
1c2−c2+c3)

: Then N22 implies c1 = ±1.
We get solution 3.

2. g4 = c2(1−r2
1−c2

1)−c3
c1

, c2 6= 0: Now we can compute r3 from the only
non-contradicting factor of N04. We distinguish two cases:

a. r1 6= 0: The only non-contradicting factor of N13 can be solved for
R7.

i. b7 6= 0: Under this assumption we can compute A7 from
N22 = 0. Moreover, we can express a7 from the only non-
contradicting factor of N31. Finally, N40 cannot vanish w.c..

ii. b7 = 0: Now N22 = 0 implies c3 = c2(1 − r2
1 − c2

1). Then
N31 = 0 yields the contradiction.

b. r1 = 0: In this case N31 = 0 implies b7 = 0. Moreover, we can solve
the only non-contradicting factor of N22 for R7. Finally, N40 = 0
yields the contradiction.

3. c2 = 0: Now N22 cannot vanish w.c..

Part B) g4 = r2
1c2+c3+c2

1c2+c2
−c1

. Then Eq. (5.6) can only vanish for:

a. e2 = (−r1 ± c1i)e1: As (e1, e2) cannot be element of R2 we get a con-
tradiction.

b. c2 = 0: This yields the solution given in the first item of Theorem 5.2.
It can easily be checked by direct computation, that in this case also
the equation Λ7 has only real coefficients with respect to the remaining
Study parameters.

This finishes the proof of Theorem 5.2. �
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Proof of Theorem 5.3

Proof. We compute the cubics c and C for the solutions 1, 2 and 3, respec-
tively. W.l.o.g. we can compute R⊕ from Υe2e2 . Then we can solve Υf2

0
, Υe1f3 ,

Υe0f2 , Υe2f3 , Υe0f1 , Υe0e3 for µ1, . . . , µ6. In the following we discuss solution

1: We distinguish two cases:
a. m⊕ 6= u1: Under this assumption we can express A⊕ and B⊕ from

Υe2
1

and Υe1e2 . Plugging the obtained expressions into Υe2
0

yields
the equation C[46] = Cr[28] + iCc[18] of c with Cr, Cc ∈ R. In
the first part we show that neither Cr nor Cc cannot vanish w.c.
independently of the choice of a⊕ and b⊕.
ad Cr) The coefficient of b3

⊕ implies r2 = 0. Then the coefficient of
a⊕b⊕ yields the contradiction.
ad Cc) The coefficient of b3

⊕ already yields the contradiction.
Therefore we are looking for real points of c. Clearly, such points
have to fulfill Cr = Cc = 0.

i. r2(b7 − b⊕) 6= 0: Under this assumption we can express a⊕
from Cr = 0 (we obtain two solutions as this is a quadratic
equation in a⊕). Then we plug the obtained expression into
Cc = 0. After making the resulting equation square root free,
it can easily be seen that it cannot be fulfilled w.c..

ii. r2 = 0: We express a⊕ from Cr = 0, which is only linear in
a⊕. Then Cc = 0 implies b7 = b⊕ which yields M7 = M⊕ and
m7 = m⊕.

iii. b7 = b⊕: We can express a⊕ from Cr = 0, which is only linear
in a⊕. Then Cc is already fulfilled identically. In this case we
also get M7 = M⊕ and m7 = m⊕.

b. m⊕ = u1 (⇒ a⊕ = b⊕ = 0): Then Υe1e2 cannot vanish w.c..
2: We distinguish two cases:

a. m⊕ 6= u1: Under this assumption we can express A⊕ and B⊕ from
Υe2

1
and Υe1e2 . Now Υe2

0
can only vanish w.c. for:

i. b⊕ = 0: In this case we get B⊕ = 0 and A⊕ = A7a7/a⊕.
This is a projective correspondence between two lines of the
platform and the base and therefore we get a regulus. If we
choose six legs from this regulus we get an architecturally
singular manipulator.

ii. c2Cr +iCc = 0 with Cr = a2
⊕+b2

⊕−A7a7 and Cc = r2(A7a7−
a2
⊕− b2

⊕)− b⊕A7a7, b⊕ 6= 0: It can easily be seen that neither
Cr nor Cc can vanish w.c. independently of the choice of a⊕
and b⊕.
Therefore we set Cr = Cc = 0:

? r2 6= 0: Now Cc + r2Cr = 0 yields the contradiction.
? r2 = 0: Then Cc = 0 yields the contradiction.

b. m⊕ = u1 (⇒ a⊕ = b⊕ = 0): Then Υe2
1

cannot vanish w.c..
3: We distinguish two cases:
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a. m⊕ 6= u1: Under this assumption we can express A⊕ and B⊕ from
Υe2

1
and Υe1e2 . Now Υe2

0
can only vanish w.c. for:

i. b⊕ = 0: In this case we get B⊕ = 0 and A⊕ = A7a7/a⊕. This
yields the same contradiction as in item (2ai).

ii. c2Cr[5] + iCc[8] = 0, b⊕ 6= 0: In the first part we show that
neither Cr nor Cc cannot vanish w.c. independently of the
choice of a⊕ and b⊕.
ad Cr) The coefficient of b2

⊕ implies r2 = 0. Then the coeffi-
cient of b⊕ yields the contradiction.
ad Cc) The coefficient of b2

⊕ already yields the contradiction.
Therefore we set Cr = Cc = 0:

? r2 6= 0: Now Cc + r2Cr = 0 yields the contradiction.
? r2 = 0: Then Cc = 0 yields the contradiction.

b. m⊕ = u1 (⇒ a⊕ = b⊕ = 0): Then Υe2
1

cannot vanish w.c..

This finishes the proof of Theorem 5.3. �
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