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[1] What is a self-motion of a SGP?

The geometry of a SGP is given by the six
base anchor points Mi ∈ Σ0 and by the six
platform points mi ∈ Σ.

A SGP is called planar, if M1, . . . ,M6 are
coplanar and m1, . . . ,m6 are coplanar.

Mi and mi are connected with a SPS leg.

If all P-joints are locked, a SGP is in ge-
neral rigid. But under particular conditions,
the manipulator can perform an n-parametric
motion (n > 0), which is called self-motion.
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[1] Historical background

All self-motions of SGPs are solutions to the still unsolved Borel Bricard (BB)
problem, posed by the French Academy of Science for the Prix Vaillant 1904:

Determine and study all displacements of a rigid body in which distinct points of
the body move on spherical paths.

The papers of Borel [2] and Bricard [3] were awarded prizes, but both authors only
presented partial solutions (see [4,5]). Known results before the year 1904 are e.g.:

(a) Chasles [6]: If points of two conics are in projective correspondence, then there
exists a spatial motion, which keeps the corresponding points at fixed distance.

(b) Bricard [7]: The only non-trivial motion, where all points have spherical paths.

(c) Bricard [8]: All three types of flexible octahedra in the Euclidean 3-space.
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[2] Review on SGPs with self-motions

It is known, that architecturally singular SGPs possess self-motions (over C) in each
pose. Their designs are well studied (see [18–21] for the planar case and [22,23] for
the non-planar one), but less is known about their self-motions [24–26].

Therefore, we are only interested in self-motions of non-architecturally singular
SGPs. Until now, only a few examples of this type are known:

• Husty and Zsombor-Murray [28] reported SGPs with a Schönflies self-motion of
item (b). Planar SGPs of this type are also called polygon platforms (cf. [29]).

• Zsombor-Murray et al. [30] presented SGPs with a line-symmetric self-motion,
which was already known to Borel [2], Bricard [3] and Krames [15].

• Husty and Karger [31] proved that the list of Schönflies Borel Bricard motions
given by Borel [2] is complete.
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[2] Review on SGPs with self-motions

• Karger [32] studied all self-motions of planar SGPs, where the platform and
the base are affinely equivalent (for the special case of equiform and congruent
platform and base see [33] and [34], respectively).

• Nawratil [35,36] gave a complete list of TSSM designs (planar 6–3 SGPs) with
self-motions as by-product of the determination of all flexible octahedra in the
projective extension of the Euclidean 3-space [37].

• Karger and Husty [39] classified all self-motions of the original SGP.

• Karger [40,41] presented a method for designing planar SGPs with self-motions
of the type e0 = 0, where e0 denotes an Euler parameter.

• Geiß and Schreyer [42] gave a pure algebraic method for the computation of
further SGPs, where the self-motion has a planar spherical image.
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[3] Redundant planar SGPs

Mielczarek et al. [47] showed that the set Λ of additional legs, which can be
attached to a given planar SG platform m1, . . . ,M6 without restricting the forward
kinematics, is determined by a linear system of equations (Eq. (30) of [47]).

As the solvability condition of this system is equivalent with the criterion given in
Eq. (12) of [48] also the singularity surface of the SGP does not change by adding
legs of Λ.

Moreover, it was shown in [47] that in the general case Λ is 1-parametric and that
the base anchor points as well as the corresponding platform anchor points are
located on planar cubic curves C and c, respectively.

Assumption 1

We assume, that there exist such cubic curves c and C (which can also be reducible)
in the Euclidean domain of the platform and the base, respectively.
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[3] Example: Octahedral SGP

Notation: U1,U2,U3 are the ideal points of C. u4, u5, u6 are the ideal points of c.

U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2

U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3

U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3

u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2 u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1

Cubic C of the octahedral SGP

U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6

u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4
u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5

Cubic c of the octahedral SGP

Moreover the yellow, red and green legs are additional legs belonging to the set Λ.
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[3] Redundant planar SGPs

As the correspondence between c and C has not to be a bijection (see e.g. octahedral
SGP), a point ∈ P 3

C
of c resp. C is in general mapped to a non-empty set of points

∈ P 3

C
of C resp. c. We denote this set by the term corresponding location and

indicate this fact by the usage of brackets { }.

Assumption 2

For guaranteeing a general case, we assume that each of the corresponding locations
{u1}, {u2}, {u3}, {U4}, {U5}, {U6} consists of a single point. Moreover, we assume
that no four collinear platform points ui or base points Ui for i = 1, . . . , 6 exist.

Due to Assumption 2, the six pairs of anchor points (ui,Ui) with i = 1, . . . , 6 are
uniquely determined.

Basic idea: Attach the special “legs” uiUi with i = 1, . . . , 6 to SGP m1, . . . ,M6.
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[4] Darboux and Mannheim motion

The attachment of the “legs” uiUi

with i = 1, 2, 3 corresponds with the
so-called Darboux constraint, that ui
moves in a plane of the fixed system
orthogonal to the direction of Ui.

U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1

The attachment of the “leg” ujUj

with j = 4, 5, 6 corresponds with the
so-called Mannheim constraint, that a
plane of the moving system orthogonal
to uj slides through the point Uj.

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6
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[4] Types of self-motions

By removing the originally six legs miMi we remain with the manipulator u1, . . . ,U6.

Theorem 1 (Proof is given in Nawratil [43])

Given is a planar SGP m1, . . . ,M6, which is not architecturally singular and which
fulfills Assumption 1 and 2. Then, the resulting manipulator u1, . . . ,U6 is redundant
and therefore architecturally singular.

Moreover, it was also proven in [43] that there only exist type I and type II Darboux
Mannheim (DM) self-motions, where the definition of types reads as follows:

Definition 1

Assume M is a 1-parametric self-motion of a non-architecturally singular SGP
m1, . . . ,M6. Then M is of type n DM (Darboux Mannheim) if the corresponding
architecturally singular manipulator u1, . . . ,U6 has an n-parametric self-motion U .
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[5] Planar SGPs with type II DM self-motions

Nawratil [44,45] proved the necessity of three conditions for obtaining a type II
DM self-motion. Based on these conditions, all planar SGPs fulfilling Assumption

1 and 2 with a type II DM self-motion were determined in [46]. They are either

i. generalizations of line-symmetric Bricard octahedra (12-dim. solution set) or

ii. special polygon platforms (11-dim. solution set).

Moreover, it was shown in [46] that the type II DM self-motions of all these SGPs
are line-symmetric and octahedral, where the latter property is defined as follows:

Definition 2

A DM self-motion is called octahedral if following triples of points are collinear for
i 6= j 6= k 6= i and i, j, k ∈ {1, 2, 3}:

(ui, uj, u6), (ui, uk, u5), (uj, uk, u4), (U4,U5,Uk), (U5,U6,Ui), (U4,U6,Uj).
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[5] Line-symmetric Bricard octahedra

The geometric interpretation of the three necessary conditions identifies a new
property of line-symmetric Bricard octahedra O with vertices 1a, 1b, 2a, 2b, 3a, 3b,
where va and vb are symmetric with respect to the line l for v ∈ {1, 2, 3}. The
following planes have a common line Tijk:

⋆ plane orthogonal to [1i, 2j] though 3k′

⋆ plane orthogonal to [2j, 3k] though 1i′

⋆ plane orthogonal to [3k, 1i] though 2j′

with i 6= i′, j 6= j′, k 6= k′ ∈ {a, b}.

New property: O possesses the 8 lines Tijk.

1a1b

l

2a

2b

3a

3b

Taaa
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[5] New results in context of Assumption 1 and 2

For the determination of all planar SGPs with a type II DM self-motion, where
only Assumption 1 holds, we can assume w.l.o.g. that four platform or base anchor
points are collinear, due to the following theorem:

Theorem 2

Given is a planar SGP fulfilling Assumption 1. If one cannot choose anchor points
within {u1}, {u2}, {u3}, {U4}, {U5}, {U6}, such that four platform anchor points
ui or base anchor points Ui are collinear, then each of these corresponding locations
has to consist of a single point.

Proof: For the proof, please see page 155 of the presented paper. �

Remark: A detailed study of these SGPs is dedicated to future research. ⋄
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[5] New results in context of Assumption 1 and 2

Γ denotes the set of planar architecturally singular SGPs with no four points
collinear, which do not belong to item (a) (cf. Chasles [6]).

Theorem 3

To any planar SGP m1, . . . ,M6 with exception of the set Γ, at least a 1-parametric
set of additional legs Λ can be attached.

Proof: For the proof, please see pages 155–156 of the presented paper. �

Beside Theorem 3, only one non-trivial exceptional case of Assumption 1 is known:

For a planar SGP, where the platform and base are related by a projectivity κ (so-
called planar projective SGP), the set Λ is 2-parametric, whereas the correspondence
of anchor points of Λ is given by the projectivity κ itself (cf. Nawratil [52]).

Remark: A complete list of special cases is dedicated to future research. ⋄
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[6] Planar projective SGPs with self-motions

s denotes the lines of intersection of the planar platform and the planar base in the
projective extension of the Euclidean 3-space.

Definition 3

A self-motion of a non-architecturally singular planar projective SGP is called
elliptic, if in each pose of this motion s exists with s = sκ and the projectivity from
s onto itself is elliptic.

Under consideration of this definition, the following result can be proven:

Theorem 4 (Proof is given in Nawratil [52])

Non-architecturally singular planar projective SGPs can only have either elliptic
self-motions or pure translational ones. In the latter case κ has to be an affinity
t+Tx, where the singular values s1, s2 of T with 0 < s1 ≤ s2 fulfill s1 ≤ 1 ≤ s2.

Remark: The study of elliptic self-motions is dedicated to future research. ⋄
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[7] Refining the classification of self-motions

Definition 4

Assume a planar SGP is given, where one can add the set Λ of legs. A self-motion
of this manipulator is called degenerated if one can add further legs beside Λ to
the planar manipulator without restricting the self-motion.

Butterfly motion Spherical 4-bar motion
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[7] Planar SGPs with type I DM self-motions

⋆ Degenerated rotational self-motions: The butterfly motion and the spherical 4-bar
motion of the octahedral SGP [53] and the corresponding motions of the original
SGP [39].
Every SGP with four collinear anchor points possesses a butterfly motion.

⋆ Degenerated Schönflies self-motions: General polygon platforms.

⋆ Non-degenerated self-motions: Bricard octahedra of type 2 and 3.

In view of all known SGPs with self-motions, we have good reasons for the following
central conjecture:

Conjecture 1

All non-degenerated 1-parametric self-motions of non-architecturally singular planar
SGPs, fulfilling Assumption 1 and 2, are octahedral.
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