Review and Recent Results on Stewart Gough Platforms with Self-motions

Georg Nawratil

Institute of Geometry, TU Dresden, Germany

Research was supported by FWF (I408-N13)
Table of contents

1. Introduction and historical background
2. Review on SGPs with self-motions
3. Redundant planar SGPs
4. Types of Darboux Mannheim (DM) self-motions
5. Planar SGPs with type II DM self-motions
6. Planar projective SGPs with self-motions
7. Planar SGPs with type I DM self-motions
What is a self-motion of a SGP?

The geometry of a SGP is given by the six base anchor points $M_i \in \Sigma_0$ and by the six platform points $m_i \in \Sigma$.

A SGP is called planar, if M_1, \ldots, M_6 are coplanar and m_1, \ldots, m_6 are coplanar.

M_i and m_i are connected with a SPS leg.

If all P-joints are locked, a SGP is in general rigid. But under particular conditions, the manipulator can perform an n-parametric motion ($n > 0$), which is called self-motion.
Historical background

All self-motions of SGPs are solutions to the still unsolved Borel Bricard (BB) problem, posed by the French Academy of Science for the Prix Vaillant 1904:

Determine and study all displacements of a rigid body in which distinct points of the body move on spherical paths.

The papers of Borel [2] and Bricard [3] were awarded prizes, but both authors only presented partial solutions (see [4,5]). Known results before the year 1904 are e.g.:

(a) Chasles [6]: If points of two conics are in projective correspondence, then there exists a spatial motion, which keeps the corresponding points at fixed distance.

(b) Bricard [7]: The only non-trivial motion, where all points have spherical paths.

(c) Bricard [8]: All three types of flexible octahedra in the Euclidean 3-space.
It is known, that architecturally singular SGPs possess self-motions (over \mathbb{C}) in each pose. Their designs are well studied (see [18–21] for the planar case and [22,23] for the non-planar one), but less is known about their self-motions [24–26].

Therefore, we are only interested in self-motions of non-architecturally singular SGPs. Until now, only a few examples of this type are known:

- **Husty and Zsombor-Murray** [28] reported SGPs with a Schönflies self-motion of item (b). Planar SGPs of this type are also called *polygon platforms* (cf. [29]).

- **Zsombor-Murray et al.** [30] presented SGPs with a line-symmetric self-motion, which was already known to Borel [2], Bricard [3] and Krames [15].

- **Husty and Karger** [31] proved that the list of Schönflies Borel Bricard motions given by Borel [2] is complete.
Review on SGPs with self-motions

- Karger [32] studied all self-motions of planar SGPs, where the platform and the base are affinely equivalent (for the special case of equiform and congruent platform and base see [33] and [34], respectively).

- Nawratil [35,36] gave a complete list of TSSM designs (planar 6–3 SGPs) with self-motions as by-product of the determination of all flexible octahedra in the projective extension of the Euclidean 3-space [37].

- Karger and Husty [39] classified all self-motions of the original SGP.

- Karger [40,41] presented a method for designing planar SGPs with self-motions of the type $e_0 = 0$, where e_0 denotes an Euler parameter.

- Geiß and Schreyer [42] gave a pure algebraic method for the computation of further SGPs, where the self-motion has a planar spherical image.
Mielczarek et al. [47] showed that the set Λ of additional legs, which can be attached to a given planar SG platform m_1, \ldots, M_6 without restricting the forward kinematics, is determined by a linear system of equations (Eq. (30) of [47]).

As the solvability condition of this system is equivalent with the criterion given in Eq. (12) of [48] also the singularity surface of the SGP does not change by adding legs of Λ.

Moreover, it was shown in [47] that in the general case Λ is 1-parametric and that the base anchor points as well as the corresponding platform anchor points are located on planar cubic curves C and c, respectively.

Assumption 1

We assume, that there exist such cubic curves c and C (which can also be reducible) in the Euclidean domain of the platform and the base, respectively.
Example: Octahedral SGP

Notation: U_1, U_2, U_3 are the ideal points of C. u_4, u_5, u_6 are the ideal points of c.

Moreover the yellow, red and green legs are additional legs belonging to the set Λ.
Redundant planar SGPs

As the correspondence between c and C has not to be a bijection (see e.g. octahedral SGP), a point $\in P_C^3$ of c resp. C is in general mapped to a non-empty set of points $\in P_C^3$ of C resp. c. We denote this set by the term corresponding location and indicate this fact by the usage of brackets $\{\}$.

Assumption 2
For guaranteeing a general case, we assume that each of the corresponding locations $\{u_1\}, \{u_2\}, \{u_3\}, \{U_4\}, \{U_5\}, \{U_6\}$ consists of a single point. Moreover, we assume that no four collinear platform points u_i or base points U_i for $i = 1, \ldots, 6$ exist.

Due to Assumption 2, the six pairs of anchor points (u_i, U_i) with $i = 1, \ldots, 6$ are uniquely determined.

Basic idea: Attach the special “legs” $u_i U_i$ with $i = 1, \ldots, 6$ to SGP m_1, \ldots, M_6.
Darboux and Mannheim motion

The attachment of the “legs” \(\overline{u_i U_i} \) with \(i = 1, 2, 3 \) corresponds with the so-called **Darboux constraint**, that \(u_i \) moves in a plane of the fixed system orthogonal to the direction of \(U_i \).

The attachment of the “leg” \(\overline{u_j U_j} \) with \(j = 4, 5, 6 \) corresponds with the so-called **Mannheim constraint**, that a plane of the moving system orthogonal to \(u_j \) slides through the point \(U_j \).
Types of self-motions

By removing the originally six legs $m_i \overline{M_i}$ we remain with the manipulator u_1, \ldots, U_6.

Theorem 1 (Proof is given in Nawratil [43])

Given is a planar SGP m_1, \ldots, M_6, which is not architecturally singular and which fulfills Assumption 1 and 2. Then, the resulting manipulator u_1, \ldots, U_6 is redundant and therefore architecturally singular.

Moreover, it was also proven in [43] that there only exist type I and type II Darboux Mannheim (DM) self-motions, where the definition of types reads as follows:

Definition 1

Assume \mathcal{M} is a 1-parametric self-motion of a non-architecturally singular SGP m_1, \ldots, M_6. Then \mathcal{M} is of type n DM (Darboux Mannheim) if the corresponding architecturally singular manipulator u_1, \ldots, U_6 has an n-parametric self-motion \mathcal{U}.
Planar SGPs with type II DM self-motions

Nawratil [44,45] proved the necessity of three conditions for obtaining a type II DM self-motion. Based on these conditions, all planar SGPs fulfilling Assumption 1 and 2 with a type II DM self-motion were determined in [46]. They are either

i. generalizations of line-symmetric Bricard octahedra (12-dim. solution set) or

ii. special polygon platforms (11-dim. solution set).

Moreover, it was shown in [46] that the type II DM self-motions of all these SGPs are line-symmetric and octahedral, where the latter property is defined as follows:

Definition 2

A DM self-motion is called octahedral if following triples of points are collinear for $i \neq j \neq k \neq i$ and $i, j, k \in \{1, 2, 3\}$:

- (u_i, u_j, u_6),
- (u_i, u_k, u_5),
- (u_j, u_k, u_4),
- (U_4, U_5, U_k),
- (U_5, U_6, U_i),
- (U_4, U_6, U_j).
The geometric interpretation of the three necessary conditions identifies a new property of line-symmetric Bricard octahedra \mathcal{O} with vertices $1_a, 1_b, 2_a, 2_b, 3_a, 3_b$, where v_a and v_b are symmetric with respect to the line l for $v \in \{1, 2, 3\}$. The following planes have a common line T_{ijk}:

- plane orthogonal to $[1_i, 2_j]$ though $3_k'$
- plane orthogonal to $[2_j, 3_k]$ though $1_i'$
- plane orthogonal to $[3_k, 1_i]$ though $2_j'$

with $i \neq i', j \neq j', k \neq k' \in \{a, b\}$.

New property: \mathcal{O} possesses the 8 lines T_{ijk}.
New results in context of Assumption 1 and 2

For the determination of all planar SGPs with a type II DM self-motion, where only Assumption 1 holds, we can assume w.l.o.g. that four platform or base anchor points are collinear, due to the following theorem:

Theorem 2
Given is a planar SGP fulfilling Assumption 1. If one cannot choose anchor points within \(\{u_1\}, \{u_2\}, \{u_3\}, \{U_4\}, \{U_5\}, \{U_6\} \), such that four platform anchor points \(u_i \) or base anchor points \(U_i \) are collinear, then each of these corresponding locations has to consist of a single point.

Proof: For the proof, please see page 155 of the presented paper.

Remark: A detailed study of these SGPs is dedicated to future research.
New results in context of Assumption 1 and 2

Γ denotes the set of planar architecturally singular SGPs with no four points collinear, which do not belong to item (a) (cf. Chasles [6]).

Theorem 3
To any planar SGP \(m_1, \ldots, M_6 \) with exception of the set \(\Gamma \), at least a 1-parametric set of additional legs \(\Lambda \) can be attached.

Proof: For the proof, please see pages 155–156 of the presented paper. □

Beside Theorem 3, only one non-trivial exceptional case of Assumption 1 is known:

For a planar SGP, where the platform and base are related by a projectivity \(\kappa \) (so-called planar projective SGP), the set \(\Lambda \) is 2-parametric, whereas the correspondence of anchor points of \(\Lambda \) is given by the projectivity \(\kappa \) itself (cf. Nawratil [52]).

Remark: A complete list of special cases is dedicated to future research. ◇
[6] Planar projective SGPs with self-motions

s denotes the lines of intersection of the planar platform and the planar base in the projective extension of the Euclidean 3-space.

Definition 3
A self-motion of a non-architecturally singular planar projective SGP is called elliptic, if in each pose of this motion s exists with \(s = s_\kappa \) and the projectivity from s onto itself is elliptic.

Under consideration of this definition, the following result can be proven:

Theorem 4 (Proof is given in Nawratil [52])
Non-architecturally singular planar projective SGPs can only have either elliptic self-motions or pure translational ones. In the latter case \(\kappa \) has to be an affinity \(t + \mathbf{T}x \), where the singular values \(s_1, s_2 \) of \(\mathbf{T} \) with \(0 < s_1 \leq s_2 \) fulfill \(s_1 \leq 1 \leq s_2 \).

Remark: The study of elliptic self-motions is dedicated to future research.

\[\diamond \]
Definition 4
Assume a planar SGP is given, where one can add the set Λ of legs. A self-motion of this manipulator is called degenerated if one can add further legs beside Λ to the planar manipulator without restricting the self-motion.

Butterfly motion

Spherical 4-bar motion
Planar SGPs with type I DM self-motions

⋆ Degenerated rotational self-motions: The butterfly motion and the spherical 4-bar motion of the octahedral SGP \([53]\) and the corresponding motions of the original SGP \([39]\).
Every SGP with four collinear anchor points possesses a butterfly motion.

⋆ Degenerated Schönflies self-motions: General polygon platforms.

⋆ Non-degenerated self-motions: Bricard octahedra of type 2 and 3.

In view of all known SGPs with self-motions, we have good reasons for the following central conjecture:

Conjecture 1
All non-degenerated 1-parametric self-motions of non-architecturally singular planar SGPs, fulfilling Assumption 1 and 2, are octahedral.
References and acknowledgements

All references refer to the list of publications given in the presented paper:

Acknowledgements

This research is supported by Grant No. I 408-N13 of the Austrian Science Fund FWF within the project “Flexible polyhedra and frameworks in different spaces”, an international cooperation between FWF and RFBR, the Russian Foundation for Basic Research.