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[1a] Stewart Gough Platform (SGP)

The geometry of a planar SGP is given

by the six base anchor points Mi with

Mi := (Ai, Bi, 0)
T in the fixed space Σ0,

and by the six platform points mi with

mi := (ai, bi, 0)
T in the moving space Σ.

Mi and mi are connected with a SPS leg.

Theorem 1
A SGP is singular (infinitesimal flexible,
shaky) if and only if the carrier lines of the
six SPS legs belong to a linear line complex.
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[1b] Self-motions and the Borel Bricard problem

If all P-joints are locked, a SGP is in
general rigid. But, in some special cases the
manipulator can perform an n-parametric
motion (n > 0), which is called self-motion.

Note that in each pose of the self-motion,
the SGP has to be singular. Moreover, all
self-motions of SGPs are solutions to the
famous Borel Bricard problem [1,3,4,12].

Borel Bricard problem (still unsolved)

Determine and study all displacements of a
rigid body in which distinct points of the
body move on spherical paths.
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[1c] Architecturally singular SGPs

Manipulators which are singular in every possible configuration, are called architec-
turally singular.

Architecturally singular SGPs are well studied:

⋆ For the planar case see [6,A,B,C],

⋆ For the non-planar case see [D,E].

It is well known, that architecturally singular
SGPs possess self-motions in each pose.

Therefore we are only interested in self-
motions of non-architecturally singular SGPs.
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[1d] Review on SGPs with self-motions

• Husty and Zsombor-Murray [F]: SGP with Schönflies self-motion

• Zsombor-Murray et al. [G]: SGP with line-symmetric self-motion

• Husty and Karger [H] proved that the list of Schönflies Borel Bricard motions
given by Borel [1] is complete

• Karger and Husty [I]: Self-motions of the original SGP

• Karger [7,8] presented a method for designing planar SGPs with self-motions of
the type e0 = 0, where e0 denotes an Euler parameter

• Nawratil [J] presented a complete list of TSSM self-motions (6-3 SGPs)
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[2a] Redundant planar SGPs

According to Husty [K], the “sphere constraint” that mi is located on a sphere
with center Mi can be expressed by a homogeneous quadratic equation Λi in the
Study parameters (e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3).

Therefore the direct kinematic problem corresponds to the solution of the system
Λ1, . . . ,Λ6,Ψ where Ψ denotes the equation of the Study quadric.

If a planar SGP is not architecturally singular, then at least a 1-parametric set of
legs λ1Λ1 + . . . + λ6Λ6 can be added without changing the direct kinematics [5,9].

As the solvability condition of the underlying linear system of equations (Eq. (30)
of [9]) is equivalent with the criterion given in Eq. (12) of [2], also the singularity
surface of the SGP does not change by adding legs of this 1-parametric set.
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[2a] Redundant planar SGPs

It was shown [5,9] that in general the base anchor points as well as the
corresponding platform anchor points are located on planar cubic curves C resp. c.

U1,U2, U3 are the ideal points of C. u4, u5, u6 are the ideal points of c.
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Cubic c of the octahedral SGP
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[2b] Assumptions and basic idea

Assumption 1
We assume, that there exist such cubic curves c and C in the Euclidean domain of
the platform and the base, respectively.

As the correspondence between c and C has not to be a bijection, a point ∈ P 3
C

of c resp. C is in general mapped to an non-empty set of points ∈ P 3
C

of C resp.
c. We denote this set by the term corresponding location and indicate this fact by
the usage of brackets { }.

Assumption 2
For guaranteeing a general case, we assume that each of the corresponding locations
{u1}, {u2}, {u3}, {U4}, {U5}, {U6} consists of a single point. Moreover, we assume
that no four collinear platform points ui or base points Ui for i = 1, . . . , 6 exist.

Basic idea: Attach the special “legs” uiUi with i = 1, . . . , 6 to SGP m1, . . . ,M6.
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[2c] Darboux constraint

The attachment of the “legs” uiUi with i = 1, 2, 3 corresponds with the so-called
Darboux constraint, that the platform anchor point ui moves in a plane of the fixed
system orthogonal to the direction of the ideal point Ui.

The Darboux constraint can
be written as a homogeneous
quadratic equation Ωi in the Stu-
dy parameters (for details see [10]).

Note that Ωi depends only linearly
on f0, f1, f2, f3.

Remark: Due to Assumption 2 not both

points ui and Ui can be ideal points. ⋄ U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1
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[2c] Mannheim constraint

The attachment of the “leg” ujUj with j = 4, 5, 6 corresponds with the so-called
Mannheim constraint, that a plane of the moving system orthogonal to uj slides
through the point Uj.

The Mannheim constraint can
be written as a homogeneous
quadratic equation Πj in the Stu-
dy parameters (for details see [10]).

Note that Πj depends only linearly
on f0, f1, f2, f3.

Remark: Due to Assumption 2 not both

points uj and Uj can be ideal points. ⋄

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6
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[2d] Types of self-motions

Theorem 2 (Proof is given in [10])

Given is a planar SGP m1, . . . ,M6 which is not architecturally singular and which
fulfills Assumption 1 and 2. Then the resulting manipulator u1, . . . ,U6 is redundant
and therefore architecturally singular.

Definition 1
Assume M is a 1-parametric self-motion of a non-architecturally singular SGP
m1, . . . , M6. Then M is of type n DM (Darboux Mannheim) if the corresponding
architecturally singular manipulator u1, . . . ,U6 has an n-parametric self-motion U
(which includes M).

Theorem 3 (Proof is given in [10])

All 1-parametric self-motions of non-architecturally singular planar SGPs fulfilling
Assumption 1 and 2 are type I or type II DM self-motions.
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[3a] Computation

W.l.o.g. we can assume that the variety of a 2-parametric DM self-motion is
spanned by Ψ, Ω1,Ω2, Ω3, Π4,Π5 (otherwise we can consider the inverse motion).

Lemma 1 (Proof is given in [10])

W.l.o.g. we can choose coordinate systems in Σ0 and Σ with X2(X2 −X3)x5 6= 0,

a1 = b1 = y4 = A4 = B4 = Y1 = h4 = g5 = 0, X1 = Y2 = Y3 = x4 = y5 = 1,

where (0 : Xi : Yi : 0) and (0 : xi : yi : 0) are the projective coordinates of the
ideal points Ui and ui, respectively.

We solve Ψ,Ω1, Ω2, Π4 for f0, . . . , f3 and plug the obtained expressions in the
remaining two equations which yield Ω[40] (degree 2) and Π[96] (degree 4).

Finally, we compute the resultant of Ω[40] and Π[96] with respect to one of the
Euler parameters. For e0 this yields Γ[117 652] (degree 8).
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[3a] Computation

In the following, we list the coefficients of ei
1e

j
2e

k
3 of Γ, which are denoted by Γijk:

Γ080 = F1[8]F2[18]
2
, Γ800 = (b2 − b3)

2
(L1 − g4)

2
F3[8],

Γ170 = F2[18]F4[283], Γ710 = (b2 − b3)(L1 − g4)F5[170],

Γ620[2054], Γ602[1646], Γ260[6126], Γ062[4916],

Γ026[5950], Γ116[3066], Γ530[4538], Γ512[4512],

Γ152[6514], Γ440[7134], Γ422[6314], Γ242[7622],

Γ044[6356], Γ314[6934], Γ224[7096], Γ134[6656],

Γ206[5950], Γ350[7166], Γ404[5766], Γ332[6982].

Based on these 24 equations Γijk = 0 (in 14 unknowns), we were able to proof
the following basic result on type II DM self-motions.
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[3b] The special cases (⋆) and (◦)

We denote the coefficient ei
0e

j
1e

k
2e

l
3 of Ω[40] by Ωijkl.

By computing Ω2000 + Ω0002, Ω2000 − Ω0002 and Ω1001 it can immediately be seen
that Ω does not depend on e0 and e3 iff

L1(X2 − X3) − L2 + L3 = X2a2 − X3a3 + b2 − b3 = X2b2 − X3b3 − a2 + a3 = 0 (⋆)

By computing Ω0200 + Ω0020, Ω0200 − Ω0020 and Ω0110 it can immediately be seen
that Ω does not depend on e1 and e2 iff

L1(X2 − X3) − L2 + L3 = X2a2 − X3a3 − b2 + b3 = X2b2 − X3b3 + a2 − a3 = 0 (◦)

Remark: The conditions given in (⋆) and (◦) are equivalent with the conditions given in Eqs.

(1-3) of the presented paper. ⋄
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[3c] Basic result

Theorem 4 (Proof is given in the presented paper and its corresponding technical report [11])

If neither the equations (⋆) nor the equations (◦) are fulfilled, then the corresponding
manipulator u1, . . . ,U6 of a planar SG platform (fulfilling Assumptions 1, 2 and
Lemma 1) with a type II DM self-motion, has to have further 3 collinear anchor
points in the base or in the platform beside the points U1, U2,U3 and u4, u5, u6.

Due to Lemma 2 of [6] and Theorem 2 we can replace the word “or” in Theorem
4 by the word “and”; i.e.

If neither the equations (⋆) nor the equations (◦) are fulfilled, then the corresponding
manipulator u1, . . . ,U6 of a planar SG platform (fulfilling Assumptions 1, 2 and
Lemma 1) with a type II DM self-motion, has to have 3 collinear platform points
ui, uj, uk and 3 collinear base points Ul, Um, Un beside the points U1,U2, U3 and
u4, u5, u6 where (i, j, k, l, m, n) consists of all indices from 1 to 6.
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[3d] Geometric interpretation of (⋆)

(I) L1(X2 − X3) − L2 + L3 = 0 expresses
that the three lines ti ∈ Σ0 (i = 1, 2, 3) with
homogeneous line coordinates [Li : Xi : Y i]
have a common point T (⇒ the three
Darboux planes belong to a pencil of planes).

(II) X2b2 − X3b3 − a2 + a3 = 0 expresses
that the three lines si := [ui, Ui] (i = 1, 2, 3)
have a common point S.

(III) X2a2−X3a3+b2−b3 = 0 expresses that

the three lines s⊥i := [ui,U
⊥

i ] (i = 1, 2, 3)
have a common point S⊥. u1

u2

u3

S

S⊥

T

s1

s2

s3

s⊥1

s⊥2

s⊥3

t1

t3

t2
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[3d] Geometric interpretation of (⋆) and (◦)

Note that the items (II) and (III) only hold if the coordinate systems are chosen
according to Lemma 1 and if these two coordinate systems coincide.

Moreover, the geometric interpretation of (◦) is equivalent with the one gi-
ven for (⋆), if one rotates the platform about the x-axis with angle π.

The geometric interpretation of (⋆) and (◦) is important because it was recently

proved in [L] that (⋆) resp. (◦) are even necessary for a type II DM self-motion:

Theorem 5 (Proof is given in [L])

The corresponding manipulator u1, . . . ,U6 of a planar SG platform (fulfilling
Assumptions 1, 2 and Lemma 1) with a type II DM self-motion has to fulfill the
three conditions of either (⋆) or (◦).
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[3d] Line-symmetric Bricard octahedra

Due to [10] every line-symmetric Bricard octahedron O possess a type II DM
self-motion. We denote the vertices of O by 1a, 1b, 2a, 2b, 3a, 3b, where ia and ib are
symmetric with respect to the line l for i ∈ {1, 2, 3}. Due to item (I) the following
three planes have a common line Tijk:

⋆ plane orthogonal to [1i, 2j] though 3k′

⋆ plane orthogonal to [2j, 3k] though 1i′

⋆ plane orthogonal to [3k, 1i] though 2j′

with i 6= i′, j 6= j′, k 6= k′ ∧ i′, j′, k′ ∈ {a, b}.

New property: O possesses the 8 lines Tijk.

1a1b

l

2a

2b

3a

3b

Taaa
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