Basic result on type II DM self-motions of planar Stewart Gough platforms

Georg Nawratil

Institute of Discrete Mathematics and Geometry Research was supported by FWF (1408-N13)

1st Workshop on Mechanisms, Transmissions and Applications, Timisoara October 6-8 2011, Romania

Table of contents

[1] Introduction

[a] Stewart Gough Platform (SGP)

- [c] Architecturally singular SGPs
- [2] Preliminary considerations
 - [a] Redundant planar SGPs

[b] Self-motions

[d] Review

- [b] Assumptions and basic idea
- $[c] \ {\rm Darboux} \ \& \ {\rm Mannheim} \ {\rm constraint} \quad [d] \ {\rm Types} \ {\rm of} \ {\rm self-motions}$
- [3] Type II DM self-motions
 - [a] Computation
- [b] The special cases (\star) and (\circ)

[c] Basic result

[d] Geometric interpretation of (\star) and (\circ)

[4] **References**

[1a] Stewart Gough Platform (SGP)

The geometry of a planar SGP is given by the six base anchor points M_i with $\mathbf{M}_i := (A_i, B_i, 0)^T$ in the fixed space Σ_0 , and by the six platform points m_i with $\mathbf{m}_i := (a_i, b_i, 0)^T$ in the moving space Σ .

 M_i and m_i are connected with a SPS leg.

Theorem 1

A SGP is singular (infinitesimal flexible, shaky) if and only if the carrier lines of the six SPS legs belong to a linear line complex.

[1b] Self-motions and the Borel Bricard problem

If all P-joints are locked, a SGP is in general rigid. But, in some special cases the manipulator can perform an n-parametric motion (n > 0), which is called self-motion.

Note that in each pose of the self-motion, the SGP has to be singular. Moreover, all self-motions of SGPs are solutions to the famous Borel Bricard problem [1,3,4,12].

Borel Bricard problem (still unsolved) Determine and study all displacements of a rigid body in which distinct points of the body move on spherical paths.

[1c] Architecturally singular SGPs

Manipulators which are singular in every possible configuration, are called architecturally singular.

Architecturally singular SGPs are well studied:

- ★ For the planar case see [6,A,B,C],
- \star For the non-planar case see [D,E].

It is well known, that architecturally singular SGPs possess self-motions in each pose.

Therefore we are only interested in selfmotions of non-architecturally singular SGPs.

[1d] Review on SGPs with self-motions

- Husty and Zsombor-Murray [F]: SGP with Schönflies self-motion
- Zsombor-Murray et al. [G]: SGP with line-symmetric self-motion
- Husty and Karger [H] proved that the list of Schönflies Borel Bricard motions given by Borel [1] is complete
- Karger and Husty [I]: Self-motions of the original SGP
- Karger [7,8] presented a method for designing planar SGPs with self-motions of the type $e_0 = 0$, where e_0 denotes an Euler parameter
- Nawratil [J] presented a complete list of TSSM self-motions (6-3 SGPs)

[2a] **Redundant planar SGPs**

According to Husty [K], the "sphere constraint" that m_i is located on a sphere with center M_i can be expressed by a homogeneous quadratic equation Λ_i in the Study parameters $(e_0 : e_1 : e_2 : e_3 : f_0 : f_1 : f_2 : f_3)$.

Therefore the direct kinematic problem corresponds to the solution of the system $\Lambda_1, \ldots, \Lambda_6, \Psi$ where Ψ denotes the equation of the Study quadric.

If a planar SGP is not architecturally singular, then at least a 1-parametric set of legs $\lambda_1 \Lambda_1 + \ldots + \lambda_6 \Lambda_6$ can be added without changing the direct kinematics [5,9].

As the solvability condition of the underlying linear system of equations (Eq. (30) of [9]) is equivalent with the criterion given in Eq. (12) of [2], also the singularity surface of the SGP does not change by adding legs of this 1-parametric set.

[2a] Redundant planar SGPs

It was shown [5,9] that in general the base anchor points as well as the corresponding platform anchor points are located on planar cubic curves C resp. c. U_1, U_2, U_3 are the ideal points of C. u_4, u_5, u_6 are the ideal points of c.

[2b] Assumptions and basic idea

Assumption 1

We assume, that there exist such cubic curves c and C in the Euclidean domain of the platform and the base, respectively.

As the correspondence between c and C has not to be a bijection, a point $\in P^3_{\mathbb{C}}$ of c resp. C is in general mapped to an non-empty set of points $\in P^3_{\mathbb{C}}$ of C resp. c. We denote this set by the term *corresponding location* and indicate this fact by the usage of brackets $\{ \}$.

Assumption 2

For guaranteeing a general case, we assume that each of the corresponding locations $\{u_1\}, \{u_2\}, \{u_3\}, \{U_4\}, \{U_5\}, \{U_6\}$ consists of a single point. Moreover, we assume that no four collinear platform points u_i or base points U_i for i = 1, ..., 6 exist.

Basic idea: Attach the special "legs" $\overline{u_i U_i}$ with $i = 1, \ldots, 6$ to SGP m_1, \ldots, M_6 .

[2c] **Darboux constraint**

The attachment of the "legs" $\overline{u_i U_i}$ with i = 1, 2, 3 corresponds with the so-called Darboux constraint, that the platform anchor point u_i moves in a plane of the fixed system orthogonal to the direction of the ideal point U_i .

The Darboux constraint can be written as a homogeneous quadratic equation Ω_i in the Study parameters (for details see [10]).

Note that Ω_i depends only linearly on f_0, f_1, f_2, f_3 .

Remark: Due to Assumption 2 not both points u_i and U_i can be ideal points. \diamond

1st Workshop on Mechanisms, Transmissions and Applications, Timisoara October 6-8 2011, Romania

[2c] Mannheim constraint

The attachment of the "leg" $\overline{u_j U_j}$ with j = 4, 5, 6 corresponds with the so-called Mannheim constraint, that a plane of the moving system orthogonal to u_j slides through the point U_j .

The Mannheim constraint can be written as a homogeneous quadratic equation Π_j in the Study parameters (for details see [10]).

Note that Π_j depends only linearly on f_0, f_1, f_2, f_3 .

Remark: Due to Assumption 2 not both points u_j and U_j can be ideal points. \diamond

1st Workshop on Mechanisms, Transmissions and Applications, Timisoara October 6-8 2011, Romania

[2d] Types of self-motions

Theorem 2 (Proof is given in [10])

Given is a planar SGP m_1, \ldots, M_6 which is not architecturally singular and which fulfills Assumption 1 and 2. Then the resulting manipulator u_1, \ldots, U_6 is redundant and therefore architecturally singular.

Definition 1

Assume \mathcal{M} is a 1-parametric self-motion of a non-architecturally singular SGP m_1, \ldots, M_6 . Then \mathcal{M} is of type n DM (Darboux Mannheim) if the corresponding architecturally singular manipulator u_1, \ldots, U_6 has an n-parametric self-motion \mathcal{U} (which includes \mathcal{M}).

Theorem 3 (Proof is given in [10]) All 1-parametric self-motions of non-architecturally singular planar SGPs fulfilling Assumption 1 and 2 are type I or type II DM self-motions.

[3a] **Computation**

W.I.o.g. we can assume that the variety of a 2-parametric DM self-motion is spanned by $\Psi, \Omega_1, \Omega_2, \Omega_3, \Pi_4, \Pi_5$ (otherwise we can consider the inverse motion).

Lemma 1 (Proof is given in [10]) W.I.o.g. we can choose coordinate systems in Σ_0 and Σ with $X_2(X_2 - X_3)x_5 \neq 0$, $a_1 = b_1 = y_4 = A_4 = B_4 = Y_1 = h_4 = g_5 = 0$, $X_1 = Y_2 = Y_3 = x_4 = y_5 = 1$, where $(0: X_i: Y_i: 0)$ and $(0: x_i: y_i: 0)$ are the projective coordinates of the ideal points U_i and u_i , respectively.

We solve $\Psi, \Omega_1, \Omega_2, \Pi_4$ for f_0, \ldots, f_3 and plug the obtained expressions in the remaining two equations which yield $\Omega[40]$ (degree 2) and $\Pi[96]$ (degree 4).

Finally, we compute the resultant of $\Omega[40]$ and $\Pi[96]$ with respect to one of the Euler parameters. For e_0 this yields $\Gamma[117\,652]$ (degree 8).

[3a] **Computation**

In the following, we list the coefficients of $e_1^i e_2^j e_3^k$ of Γ , which are denoted by Γ_{ijk} :

$\Gamma_{080} = F_1[8]F_2[18]^2$,	$\Gamma_{800} = (b_2 - b_3)^2 (L_1 + b_3)^2 (L_2 + b_3)^2 (L_1 + b_3)^2 (L_2 + b_3)^2 (L_1 + b_3)^2 (L_2 + b_3)^2 (L_2 + b_3)^2 (L_1 + b_3)^2 (L_2 + b_3)^2 (L_1 + b_3)^2 (L_2 + b_3)^2 (L_2$	$(-g_4)^2 F_3[8],$
$\Gamma_{170} = F_2[18]F_4[283],$		$\Gamma_{710} = (b_2 - b_3)(L_1 - g_4)F_5[170],$	
$\Gamma_{620}[2054],$	$\Gamma_{602}[1646],$	$\Gamma_{260}[6126],$	$\Gamma_{062}[4916],$
$\Gamma_{026}[5950],$	$\Gamma_{116}[3066],$	$\Gamma_{530}[4538],$	$\Gamma_{512}[4512],$
$\Gamma_{152}[6514],$	$\Gamma_{440}[7134],$	$\Gamma_{422}[6314],$	$\Gamma_{242}[7622],$
$\Gamma_{044}[6356],$	$\Gamma_{314}[6934],$	$\Gamma_{224}[7096],$	$\Gamma_{134}[6656],$
$\Gamma_{206}[5950],$	$\Gamma_{350}[7166],$	$\Gamma_{404}[5766],$	$\Gamma_{332}[6982].$

Based on these 24 equations $\Gamma_{ijk} = 0$ (in 14 unknowns), we were able to proof the following basic result on type II DM self-motions.

[3b] The special cases (\star) and (\circ)

We denote the coefficient $e_0^i e_1^j e_2^k e_3^l$ of $\Omega[40]$ by Ω_{ijkl} .

By computing $\Omega_{2000} + \Omega_{0002}$, $\Omega_{2000} - \Omega_{0002}$ and Ω_{1001} it can immediately be seen that Ω does not depend on e_0 and e_3 iff

$$L_1(\overline{X}_2 - \overline{X}_3) - L_2 + L_3 = \overline{X}_2 a_2 - \overline{X}_3 a_3 + b_2 - b_3 = \overline{X}_2 b_2 - \overline{X}_3 b_3 - a_2 + a_3 = 0 \quad (\star)$$

By computing $\Omega_{0200} + \Omega_{0020}$, $\Omega_{0200} - \Omega_{0020}$ and Ω_{0110} it can immediately be seen that Ω does not depend on e_1 and e_2 iff

$$L_1(\overline{X}_2 - \overline{X}_3) - L_2 + L_3 = \overline{X}_2 a_2 - \overline{X}_3 a_3 - b_2 + b_3 = \overline{X}_2 b_2 - \overline{X}_3 b_3 + a_2 - a_3 = 0 \quad (\circ)$$

Remark: The conditions given in (\star) and (\circ) are equivalent with the conditions given in Eqs. (1-3) of the presented paper.

1st Workshop on Mechanisms, Transmissions and Applications, Timisoara October 6-8 2011, Romania

[3c] **Basic result**

Theorem 4 (Proof is given in the presented paper and its corresponding technical report [11]) If neither the equations (\star) nor the equations (\circ) are fulfilled, then the corresponding manipulator u_1, \ldots, U_6 of a planar SG platform (fulfilling Assumptions 1, 2 and Lemma 1) with a type II DM self-motion, has to have further 3 collinear anchor points in the base or in the platform beside the points U_1, U_2, U_3 and u_4, u_5, u_6 .

Due to Lemma 2 of [6] and Theorem 2 we can replace the word "or" in Theorem 4 by the word "and"; i.e.

If neither the equations (\star) nor the equations (\circ) are fulfilled, then the corresponding manipulator u_1, \ldots, U_6 of a planar SG platform (fulfilling Assumptions 1, 2 and Lemma 1) with a type II DM self-motion, has to have 3 collinear platform points u_i, u_j, u_k and 3 collinear base points U_l, U_m, U_n beside the points U_1, U_2, U_3 and u_4, u_5, u_6 where (i, j, k, l, m, n) consists of all indices from 1 to 6.

[3d] Geometric interpretation of (\star)

(1) $L_1(\overline{X}_2 - \overline{X}_3) - L_2 + L_3 = 0$ expresses that the three lines $t_i \in \Sigma_0$ (i = 1, 2, 3) with homogeneous line coordinates $[L_i : \overline{X}_i : \overline{Y}_i]$ have a common point T (\Rightarrow the three Darboux planes belong to a pencil of planes).

(II) $\overline{X}_2 b_2 - \overline{X}_3 b_3 - a_2 + a_3 = 0$ expresses that the three lines $s_i := [u_i, \overline{U}_i]$ (i = 1, 2, 3)have a common point S.

(III) $\overline{X}_2 a_2 - \overline{X}_3 a_3 + b_2 - b_3 = 0$ expresses that the three lines $s_i^{\perp} := [u_i, \overline{U}_i^{\perp}]$ (i = 1, 2, 3)have a common point S^{\perp} .

[3d] Geometric interpretation of (\star) and (\circ)

Note that the items (II) and (III) only hold if the coordinate systems are chosen according to Lemma 1 and if these two coordinate systems coincide.

Moreover, the geometric interpretation of (\circ) is equivalent with the one given for (\star), if one rotates the platform about the x-axis with angle π .

The geometric interpretation of (\star) and (\circ) is important because it was recently proved in [L] that (\star) resp. (\circ) are even necessary for a type II DM self-motion:

Theorem 5 (Proof is given in [L]) The corresponding manipulator u_1, \ldots, U_6 of a planar SG platform (fulfilling Assumptions 1, 2 and Lemma 1) with a type II DM self-motion has to fulfill the three conditions of either (\star) or (\circ).

[3d] Line-symmetric Bricard octahedra

Due to [10] every line-symmetric Bricard octahedron \mathcal{O} possess a type II DM self-motion. We denote the vertices of \mathcal{O} by $1_a, 1_b, 2_a, 2_b, 3_a, 3_b$, where i_a and i_b are symmetric with respect to the line I for $i \in \{1, 2, 3\}$. Due to item (I) the following three planes have a common line T_{ijk} :

 \star plane orthogonal to $[1_i, 2_j]$ though $3_{k'}$

 \star plane orthogonal to $[2_j, 3_k]$ though $1_{i'}$

 \star plane orthogonal to $[3_k, 1_i]$ though $2_{j'}$

with
$$i \neq i'$$
, $j \neq j'$, $k \neq k' \land i', j', k' \in \{a, b\}$.

New property: \mathcal{O} possesses the 8 lines T_{ijk} .

[4] **References**

For [1-12] see the presented paper. The remaining references [A-L] are as follows:

[A] Nawratil G (2008) On the degenerated cases of architecturally singular planar parallel manipulators. J Geom Graphics 12(2):141–149

[B] Röschel O, Mick S (1998) Characterisation of architecturally shaky platforms. In: Lenarcic J, Husty ML (eds) Advances in Robot Kinematics: Analysis and Control, Kluwer, pp 465–474

[C] Wohlhart K (2010) From higher degrees of shakiness to mobility. Mech Mach Theory 45(3):467–476

[D] Karger A (2008) Architecturally singular non-planar parallel manipulators. Mech Mach Theory 43(3):335–346

[E] Nawratil G (2009) A new approach to the classification of architecturally singular parallel manipulators. In: Kecskemethy A, Müller A (eds) Computational Kinematics, Springer, pp 349–358

[F] Husty ML, Zsombor-Murray P (1994) A Special Type of Singular Stewart Gough platform. In: Lenarcic J, Ravani B (eds) Advances in Robot Kinematics and Computational Geometry, Kluwer, pp 439–449

[4] **References**

[G] Zsombor-Murray P, Husty M, Hartmann D (1995) Singular Stewart-Gough Platforms with Spherocylindrical and Spheroconical Hip Joint Trajectories. In: Proceedings of 9th IFToMM World Congress on the Theory of Machines and Mechanisms, Milano, Italy (1995) pp 1886–1890
[H] Husty ML, Karger A (2002) Self motions of Stewart-Gough platforms: an overview. In: Proceedings of the workshop on fundamental issues and future research directions for parallel mechanisms and manipulators Quebec City, Canada (2002) pp 131–141

[I] Karger A, Husty M (1998) Classification of all self-motions of the original Stewart-Gough platform. Comput Aided Des 30(3):205–215

[J] Nawratil G (2011) Self-motions of parallel manipulators associated with flexible octahedra. In: Hofbaur M, Husty M (eds) Proceedings of the Austrian Robotics Workshop, Hall in Tyrol, Austria (2011) pp 232–248

[K] Husty ML (1996) An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech Mach Theory 31(4):365–380

[L] Nawratil G (2011) Necessary conditions for type II DM self-motions of planar Stewart Gough platforms. Technical Report No. 219, Geometry Preprint Series, TU Vienna

