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Abstract

In this paper we introduce four new posture-dependent performance indices for
control. Two of them are based on an object-oriented metric in the workspace (end-
effector dependent) and the other on a linearized approximation of direct kinematics
(end-effector independent). All newly defined indices are invariant under rigid-body
motions and similarities, they have a geometric meaning, and they can be computed
in real time. We also give a geometric interpretation of the characteristic length.
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1 Introduction

According to Angeles [1], a performance index of a robotic mechanical sys-
tem is a scalar quantity that measures how well the system behaves with
regard to force and motion transmission. In this paper we introduce four new
posture-dependent performance indices for control. Two of them depend on
the end-effector EE (EE dependent) and the other two do not (EE indepen-
dent). The indices defined in chapter 2 and 3 assign to each posture K of the
configuration space a scalar PI(K) which has the following six properties:

1. PI(K) ≥ 0 for all K of the configuration space,

2. PI(K) = 0 if and only if K is singular,

3. PI(K) is invariant under Euclidean motions,

4. PI(K) is invariant under similarites,

5. PI(K) has a geometric meaning,

6. PI(K) is computable in real time.
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Many papers have been written on this topic. The two best known and most
used concepts in this direction are probably the condition number (see section
2.1) and the manipulability (see section 3.1). Both are based on the manipu-
lator’s Jacobian

J =

 a1 . . . a6

p1× a1 . . . p6× a6

 , (1)

where ai describes the unit vector along the ith joint axis ri and pi the position
vector of a point on this axis. All coordinates are measured with regard to a
common reference frame with origin O. The ith column of the Jacobian equals
the normalized Plücker vector of the arbitrarily directed ith axis ri. In the
following we denote the moment vector pi× ai by âi and we use the notation
of dual vectors:

xi := xi + ε x̂i = (xi, x̂i).

If the joint variables θ1, . . . , θ6 are functions of time t, a constrained motion of
the EE system Σ6 against the fixed system Σ0 is determined. Because of the
spatial Three-Pole-Theorem (see [8]) the one-parametric motion Σ6 / Σ0 can
be composed from the relative motions Σ1 / Σ0,. . . , Σ6 / Σ5 and therefore the
instantaneous twist q

6|0 = (q6|0, q̂6|0) is computable as

q
6|0 = Jω with ω = (ω1|0, . . . , ω6|5)

T and ωi|i−1 =
dθi

dt
. (2)

The rank of J gives the number of instantaneous degrees of freedom (dof ). If
the rank drops below 6, then there exists at least one angular velocity ratio
R ω 6= o such that the EE has an instantaneous standstill while the joints
are still moving. The columns in J are linearly dependent. Therefore we can
characterize the singular postures of 6R robots as follows:

Theorem 1 A posture of a non-redundant 6-dof manipulator is singular if
and only if the determinant of the Jacobian vanishes. Exactly in this case the
axes belong to a linear line complex.

2 EE dependent performance indices

2.1 Review: Condition Number CDN

According to Salisbury and Craig [7], the condition number is the positive
square root of the ratio of the maximal and minimal eigenvalue of C = JTJ.
CDN−1 lies in the interval [0, 1] and therefore this enjoys the properties 1
and 2. It should be noted that postures with the maximum value 1 are called
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isotropic. CDN−1 is not invariant under Euclidean motions with the exep-
tion of rotations of the reference frame about O. But the real problem, which
causes the variance of CDN−1 under similarities, occurs from the dimensional
inhomogeneity of J. To overcome this deficiencies, different methods were in-
troduced. In the following we discuss the two most used concepts:

2.1.1 Concept A

To achieve the invariance under Euclidean motions some authors (e.g. [1,2])
link O with an EE point, namely the operation point OP. The characteristic
length CL introduced by Tandirci et al. [9] is used to overcome the problem of
inhomegeneity. The last three rows of J that have units of length are devided
by CL which means that the matrix C defined above now reads

C = JTLJ with L =

 I3 O3

O3
I3

CL2

 . (3)

where Ii is the i× i identity matrix and Oi the i× i zero matrix. The condition
number based on this concept is denoted by CDNCL. Due to the definition of
CL as the solution of an optimization problem (see [9]), a meaningful geometric
interpretaion of CL and therefore also of CDNCL is still missing. As by-product
of our considerations, we will present a geometric interpretation of CL, which
puts its original definition into question.

2.1.2 Concept B

Gosselin [3] solved the problem by describing the global velocity of the EE
by the velocity of three non-collinear points. In this way the desired quality
was achieved. The drawback of this concept is that the choice of the reference
points is arbitrary and that the index is not invariant under changes of these
points. Angeles and Lopez-Cajun also suggested in [2] to use not only three
points but the vertices of a platonic solid centered in OP. But it is still an
open question which platonic solid with which radius should be taken because
the index is not invariant under this choice. We will answer these question by
defining CDNOE in section 2.4.

2.2 Object-oriented metric and the operation ellipsoid

In order to provide a geometric interpretation and avoid a indeterminacy of
number and choice of reference points of the newly defined performance in-
dices, we use a geometrically meaningful metric in the space of rigid body
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motions. The used metric is motivated by the following consideration:
Basically, one is not interested in the manipulation of a single point (OP) or of
three points, but in that of a complete object O, which can, e.g., be a welding
tool or a load to be transported. Therefore we need an object-oriented metric
which allows us to define a distance between any two poses of O.

The metric used here was introduced by Hofer et al. [4] and has its origin
in the registration problem with known correspondences. We represent the
object of interest by a finite number of points Pi (i = 1, .., N). By means of
this point cloud it is possible to define the distance between any two poses
O(0) and O(t) as follows:

d(O(0),O(t))2 :=
N∑

i=1

‖pi(0)− pi(t)‖2, (4)

where pi denotes the position vector of Pi. This metric only depends on the
centroid bO and the the covariance matrix DO with respect to the centroid
bO given by:

bO := N−1
N∑

i=1

pi and DO :=
N∑

i=1

(pi − bO)(pi − bO)T . (5)

Therefore we can replace the points Pi (i = 1, .., N) by the six special points
Si with

si := bO +

√
λi

2
ei, si+3 := bO −

√
λi

2
ei i = 1, 2, 3 (6)

where λi denotes any eigenvalue and ei a corresponding unit eigenvector of
DO. This does not change the centroid, the covariance matrix and the inertia
tensor TO of O, which is given by:

TO := tr(DO)I3 −DO. (7)

Due to this fact we can expand the operation point to the more practical
concept of an operation ellipsoid as follows:

Definition 1 The operation ellipsoid OE denotes that part of the end-effector
bounded by an ellipsoid E with Vol (E) 6= 0, which one intends to manipulate.
The OE ∈ Σ6 is determined by the six vertices Si of E.
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2.3 The Performance Index PIOE

OE is given by its vertices Si with si := (si
1, s

i
2, s

i
3) for i = 1, .., 6. Due to (4)

the distance between any two poses OE(0) and OE(t) can be written as:

d(OE(0),OE(t))2 =
6∑

i=1

‖si(0)− si(t)‖2. (8)

The first order Taylor approximation of the posture OE(t) yields:

d(OE(0), OE(t))2 =
6∑

i=1

‖si(0)− si(t)‖2 ≈
6∑

i=1

‖v (Si) ‖2 (9)

where v(Si) denotes the velocity vector of the vertex Si ∈ Σ6. We are interested
in the angular volocity ratio R ω which has the lowest effects on the instan-
taneous displacement of OE, i.e., which causes the worst motion transmission
with respect to OE. This ratio can be computed as follows:

We search for the minimum of the objective function

ζ(ω):
6∑

i=1

‖v (Si) ‖2 with v(Si) =
6∑

j=1

âj ωj|j−1 +
(
aj ωj|j−1× si

)
(10)

under the side condition (= normalization condition)

ν(ω): ωT ω = ωT I6 ω = 1. (11)

The function ζ(ω) is a quadratic form in the variables ωi|i−1, and so we can
rewrite it as ωT Zω with Z = JTWJ, where W is given by

W =
6∑

i=1

ST
i Si ST

i

Si E3

 with Si =


0 si

3 −si
2

−si
3 0 si

1

si
2 −si

1 0

 . (12)

We solve the minimization problem (10) by introducing a Lagrange multiplier
λ. With ∇ζ = 2Zω and ∇ν = 2 I6 ω, minimization results in the eigenvalue
problem (Z − λ I6) ω = o. This system of linear equations has a nontrivial
solution, if and only if the determinant of (Z−λ I6) vanishes. Every eigenvalue
λi of Z is linked with an eigenvector ωi. Because of

ζ(ωi) = ωT
i Zωi = λiω

T
i I6 ωi = λi (13)

the smallest eigenvalue λmin corresponds to the required solution.
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2.3.1 Definition of PIOE

As OE is rigidly attached Σ6 the relative pose between OE and the 6th joint
axis r6 is constant. Hence the rotation of OE about r6 can be done in any
configuration with the same performance DC defined as

DC := ζ(0, .., 0, 1) =
6∑

i=1

r6Si
2 ≥ λmin DC = const. ∀K (14)

where r6Si denotes the distance of Si from r6. Therefore DC is an design
constant of the 6R robot.

Definition 2 The EE dependent performance index PIOE(K) of the configu-
ration K with respect to the operation ellipsoid OE (Def. 1) is defined as

PIOE(K) := +

√
λmin

DC
with PIOE(K) ∈ [0, 1] (15)

where λmin denotes the smallest eigenvalue of Z = JTWJ and DC as in (14).

Theorem 2 PIOE(K) is well defined.

Proof: In the non-singular case of the robot, Z is positive definite because
ζ(ω) depends only on the distances of Si from the instantaneous screw axis q
and on the angular velocity ω6|0 and the translatory velocity ω̂6|0 of screw q

6|0
according to

6∑
i=1

‖v (Si) ‖2 = ω2
6|0

6∑
i=1

qSi
2
+ 6 ω̂2

6|0. (16)

Z would be positive semidefinite in a regular configuration if and only if OE
would degenerate to a single line segment or a point, which is not possible
because of Def. 1. On the other hand Z is positive semidefinite in a singular
case because of Z = JTWJ.
It must also be proved that the index is invariant under the choice of the
vertices of OE if they are not determined uniquely. This is the case when OE
is a sphere or an ellipsoid of revolution. Due to (16) we only have to prove
that the sum of squares of the distances of Si from q is invariant under the
choice of the vertices Si. But this is trivially true. �

Theorem 3 PIOE(K) has all six properties required in section 1.

Proof: Due to Theorem 2, PIOE(K) enjoys the properties 1 and 2. PIOE(K) is
also invariant under similarities because it was defined as a ratio. This index
satisfies also the 3rd point because the vertices Si of OE are rigidly attached Σ6.
The 5th property is trivially true because PIOE(K) is based on a geometrically
meanigful metric with respect to OE. PIOE(K) is computable in real time,
because one only has to calculate the eigenvalues of a 6× 6 matrix. �
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2.4 The Performance Index CDNOE

The second new EE dependent performance index introduced in this paper is
the condition number based on the object oriented metric and the OE. This
index is denoted by CDNOE and defined as follows:

Definition 3 The EE dependent performance index CDNOE(K) of the con-
figuration K with respect to the operation ellipsoid OE (Def. 1) is defined as

CDNOE(K) := +

√
λmax

λmin

with CDN−1
OE(K) ∈ [0, 1] (17)

where λmin resp. λmax is the smallest resp. largest eigenvalue of Z = JTWJ.

Theorem 4 CDNOE(K) is well defined and has all six properties required in
section 1.

Proof: The proof follows immediately from Theorem 2 and Theorem 3. �

2.4.1 Geometric interpretation of the characteristic length CL

With the help of CDNOE(K) we are able to give a geometric interpretation of
CL. We assume that OE is centered in OP and that the axes of the reference
frame are the principal axes of OE. Therefore Si have the following coordinates:

s1,4 = (±a, 0, 0) s2,5 = (0,±b, 0) s3,6 = (0, 0,±c). (18)

The matrix W defined in equation (12) simplifies to

W =

K O3

O3 6I3

 with K =


2(b2 + c2) 0 0

0 2(a2 + c2) 0

0 0 2(a2 + b2)

 . (19)

Theorem 5 The characteristic length CL of CDNCL(K) equals R
√

2/3 where
R is the radius of that operation sphere centered in the operation point, which
causes a minimal CDNOE(K) over the manipulators configuration space.

Proof: The indices CDNOE(K) and CDNCL(K) are equal if and only if W =
6CL2L. This system of linear equations is fulfilled, if OE becomes an operation

sphere with radius R := a = b = c = CL
√

3/2. �

In view of Theorem 5 the CDNCL can be seen as a special case of the CDNOE.
This geometric interpretation of CL as the radius of an operation sphere, puts
the original definition of CL for the following reasons into question:
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• Robot Design According to Angeles and Lopez-Cajun [2] a robot has
an optimal architecture, if there exists a CL and a configuration Ki within
the workspace, such that CDNCL(Ki) = 1. But until now the value of CL
was unimportant, because it was meaningless. Due to the interpretation of
CL given in Theorem 5 the characteristic length should not be the result of
an optimization procedure but a design constant, which must be predefined.
When designing a robot, one has to determine first an operation sphere and
therefore a CL. After this the design of the robot should be optimized in such
a way that there exists an isotropic configuration within the workspace. It
should be said that it is not possible to achieve an isotropic configuration if
OP lies on the 6th axis. 1

• Robot Control The operation sphere with radius CL
√

3/2 generally does

not fit the object of interest. Therefore the CDNCL(K) is no adequate index
for robot control. We suggest to take PIOE(K) or CDNOE(K).

We suggest the following redefinition of the characteristic length, which is
based on Theorem 5:

Definition 4 The characteristic length is defined as CL := R
√

2/3, where R
is the radius of the operation sphere of Def. 1. The center of the sphere is
defined as the operation point.

Remark: We can replace the matrix W of (19) by 1
6
W without changing

CDNOE. Then the lower right 3×3 matrix is the identity matrix and the upper
left 3× 3 matrix (= 1

6
K) equals the inertia tensor of the operation ellipsoid

materialized as an ellipsoidal shell E of mass 1. Therefore CDNOE can also
be interpreted as the square root of the ratio of the minimal and maximal
kinetic energy of E under the side condition ν(ω) of (11). Thus PIOE of Def. 2
can be seen as the square root of the ratio of the minimal kinetic energy of E
under the side conition ν(ω) and the rotational energy of E with respect to
the rotation about r6 with angular velocity 1.

An adapted version of CDNOE can be used as an EE dependent performance
index for Stewart Gough Platforms (see [6]). A new EE independent perfor-
mance index for these manipulators has been presented in [5].

1 A necessary condition for achieving a isotropic configuration is that OP has the
same distance from all joint axes ri, for i = 1, . . . , 6.
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3 EE independent performance index

3.1 Review: Manipulability MPB

This performance index introduced by Yoshikawa [10] is not invariant under
similarities, because for non-redundant manipulators it equals nothing else but
|det(J)|. This index obviously enjoys properties 1 and 2, but also property 3:
Let R be an orthogonal matrix which induces a rotation ρ of the reference
frame and let t := (x, y, z)T be the vector of any translation τ . We only have to
prove that the determinant of J is invariant under translations and rotations.
Plücker coordinates transform as follows:

(a, â)
ρ−→ (Ra,Râ) and (a, â)

τ−→ (a, â + (t× a)) . (20)

Therefore the invariance of |det(J)| immediately follows from det(R) = 1.

In the vector space R6 of instantaneous screws the subset of all q
6|0 with

|ωi|i−1| ≤ 1 for i = 1, . . . , 6, is a parallelepiped by (2), which has the volume
26 · |det(J)|. Therefore the given index is proportional to this volume. But
this volume neither gives us information about the capability to manipulate
the EE because MPB is EE independent. Nor it has a geometrically meaning
for the manipulator, due to the following reason: MPB does not take the
geometry of the manipulator into consideration, because exchanging columns
of J results in exchanging the order of the joint axes, which has no influence on
|det(J)|. Therefore we want to define an EE independent performance index
as the distance of the actual posture to the closest singular one, whereas this
distance should have a geometric meaning for the manipulator.

3.2 Preliminary considerations for a distance measure

It does not make sense to use a purely line geometrical point of view by paying
only attention to the actual postures of the six joint axes. And exactly this
is the case if one considers only J. Of course, it is always possible to find
singular postures close to a given configuration. Let’s assume that C is the
linear complex spanned by the first five axes. All lines of C intersecting the
sixth axis r6 form a hyperbolic linear congruence if C is not singular. Replacing
r6 by an arbitrary line l of this congruence gives a singular configuration. But
which l is closest to r6? How should a distance between the given posture and a
close singular one be defined such that we can distinguish between better and
worse configurations? Of course, it is obvious using distances and angles of r6
to the second axis of the hyperbolic line congruence, but which function of
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angle and distance gives a meaningful positive measure, and which is invariant
under scaling and works in all cases?

Therefore, a reasonable way to come up with a geometrically explicable dis-
tance measure is to take the possible variability of the joint axes into account.
For a serial robot with fixed r1 the second axis admits only a one-parametric
movement against the frame, and its position influences that of the axes r3,
r4, etc.

Assume that the robot is abruptly stopped when it moves through a cer-
tain configuration K with the instantaneous angular velocity vector ω. Then
it overdrives the posture K, whereas each axis ri+1 moves according to the
instantaneous screw q

i|0 of the motion of Σi/Σ0 with

q
i|0 = (qi|0, q̂i|0) =

i∑
j=1

aj ωj|j−1 for i = 1, .., 5. (21)

Now let for i = 1, . . . , 5 the instantaneous rotation about ri with velocity ωi|i−1

operate for a certain time δi ∈ R+. Then the finite rotation about ri through
the angle ∆i = δi ωi|i−1 is performed. How must the rotation angles be chosen
to reach the closest singularity? Since a rotation of the robot about the first
axis r1 has no influence on the distance from the closest singular posture, we
may assume ω1|0 = 0. Depending on the minimization condition which the
angular velocities have to fulfill, we will get two different distance measures
DM∞(K) (see section 3.4.1) and DM2(K) (see section 3.4.2) for serial robots
between the actual posture K and the closest singularity.

3.3 Linearized approximation of direct kinematics

We start from the posture K(θ1, . . . , θ6) =: K(θ) of the configuration space,
and look for a singular configuration K(θ1, θ2 + ∆2, . . . , θ5 + ∆5, θ6) =: K(δ),
where ∆i should be kept as small as possible. Our two measures will be based
on a linearized approximation of this problem in order to reduce the compu-
tational costs. This simplification is sufficient for the definition of a distance
measure for the following reasons: On the one hand, the approximation is
sufficiently close to a singularity. On the other hand, the exact value is not
interesting as long as it is larger than a critical distance, which must be prede-
fined. 2 Then the robot is not in an imminent closeness to a singular posture.

In order to compute the closest singularity we need an approximation of the
axes r3, . . . , r6, because the singularity is only determined by the postures of

2 Experiments will show which value of DM∞(K) or DM2(K) for given robots can
be seen as a sufficient distance from the next singularity.
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the joint axes. As ai(δ) depends on the angles θj + ∆j, j = 2, . . . , i − 1, we
obtain, by Taylor’s formula,

ai(δ) ≈ ai(θ2, . . . , θi−1) +
i−1∑
j=2

∆j
∂ ai(θ2, . . . , θi−1)

∂θj

=: bi(δ), (22)

where ∂ ai(θ)/∂θj expresses the instantaneous change of ri under the rotation
about rj with angular velocity ωj|j−1 = 1. The screw associated to this rotation
is aj, which implies that

∂ ai(θ)

∂θj

= aj(θ)× ai(θ). (23)

Therefore we get: bi(δ) = ai(θ2, . . . , θi−1) +
i−1∑
j=2

∆j (aj× ai) with

the primal part bi(δ) = ai(θ) +
i−1∑
j=2

∆j (aj× ai) and

the dual part b̂i(δ) = âi(θ) +
i−1∑
j=2

∆j [(âj× ai) + (aj× âi)] .

Note that the approximation bi(δ) of ai(δ), in general, satisfies neither the
Plücker condition bi(δ)·b̂i(δ) = 0 nor the normalization condition bi(δ)·bi(δ) =
1. But for small ∆i, we approximately meet these conditions:

bi(δ)·bi(δ) = ai ·ai +
i−1∑
j=2

∆j
∂(ai ·ai)

∂θj

+
1

2

i−1∑
j,k=2

∆j∆k
∂2(ai ·ai)

∂θj ∂θk

≈ 1

because the partial derivative of ai ·ai = 1 yields
∂(ai ·ai)

∂θj

= 2ai

∂ai

∂θj

= 0.

Therefore the approximation of the determinant of J(δ) can be written as:

det [J(δ)] = det [a1, a2, a3(θ2 + ∆2), . . . , a6(θ2 + ∆2, . . . , θ5 + ∆5)] ≈ . . .

≈ det [J(θ)] +
5∑

j=2

∂ det(J)

∂θj

∆j with
∂ det(J)

∂θj

=
6∑

k=j+1

det(a1, ..,
∂ak

∂θj

, ..).

We set det [J(δ)] = 0 in order to reach a close singularity, and rewrite this
equation in the form

det(J) +
5∑

i=2

∆i

6∑
j=i+1

det(Ji,j) = 0, (24)

where Ji,j denotes the matrix, where the jth column of J is replaced by

ai× aj = (ai× aj, âi× aj + ai× âj). (25)
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3.4 The distance measures DM∞ and DM2

All quadruples (∆2, . . . , ∆5), which solve the inhomogenous linear equation
(24), are located in a hyperplane H of the vector space VK spanned by
θ2, . . . , θ5. The variables ∆i serve as local coordinates in VK with origin Ko :=
K(θ). The zero vector is a solution of (24), if and only if H passes through
Ko, which means det(J) = 0 (see figure 1).

3.4.1 Definition of DM∞

We solve equation (24) under the side condition that |∆i| ≤ ∆L for i = 2, . . . , 5,
and that ∆L is minimal. We get the required quadruple (∆2, . . . , ∆5) as the
nonempty intersection of H and the smallest hypercube centered in the origin
Ko and with edges parallel to the axes. This nonempty set always contains a
vertex L of the hypercube (see figure 1). The position vector l = (l2, . . . , l5) of
L with respect to the local coordinate system is given by

li = sgn

(
det(J)· ∂ det(J)

∂θi

)
∆L with ∆L =

|det(J)|∑5
j=2 |

∂ det(J)
∂θj

|
. (26)

Theorem 6 DM∞(K) approximately equals the smallest angle ∆L (26) through
which one has to rotate simultaneously all joints Σj+1 about rj (j = 2, . . . , 5)
with the orientation sgn(lj) to pass through a singular posture.

It can happen that the smallest nonempty intersection of the hypercube and K
is one-, two- or three-dimensional, because H can touch the hypercube along
an edge, a plane or a hyperplane. These exeptional cases manifest themselves
in the above formulas as follows:
Depending on the dimension of the intersection some li’s vanish because the
ith coordinate of the normal vector of H equals zero. So the distance from the
singularity does not depend on the respective ∆i’s.

3.4.2 Definition of DM2

As an alternative, we optimize equation (24) such that the sum of the squares
of the angles is minimal. That means, that we are searching for the point
Q ∈ H with coordinates q = (q2, . . . , q5), for which q2

2 + q2
3 + q2

4 + q2
5 = ∆2

Q

is minimal. This side condition seems to be legitimate under the point of
view that all ∆i should be as small as possible, because of 0 ≤ |qi| ≤ 3

2
∆L.

This relation can be proved as follows: Without loss of generality, we assume
that L is located in the positive sector, to say, l2 = · · · = l5 = ∆L. Due to
Thales’ theorem, the footpoints F with f = (f2, f3, f4, f5) of the perpendiculars
drawn from the origin to all possible hyperplanes through L are lying on the
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hypersphere

Λ :
5∑

i=2

(
fi −

∆L

2

)2

= ∆2
L.

The maximum of fi is: fi = 3
2
∆L when fj = ∆L

2
for j ∈ {2, 3, 4, 5} \ {i}. �

Q is the point of contact between H and the hypershere Γ, centered in Ko (see
figure 1), with

qi =
−det(J)∑5

j=2

(
∂ det(J)

∂θj

)2 ·
∂ det(J)

∂θi

=⇒ ∆Q =
|det(J)|

+

√∑5
j=2

(
∂ det(J)

∂θj

)2
. (27)

Theorem 7 DM2(K) approximately equals the shortest time ∆Q (27) which is
required to reach the next singularity, provided the sum of the squared angular
velocities is bounded by 1. The following relationship holds:

∆L ≤ ∆Q ≤ 2∆L.

Proof of the inequality: We have ∆L = ∆Q when H touches the hypercube
along a hyperplane. And for L = Q the upper bound is reached. �

By this method we obtain not only the desired distance measure, but also
the worst instantaneous angular velocity ratio ω− := R+(q2, q3, q4, q5) i.e.,
the direction towards the closest singularity. 3 We can even evaluate any
instantaneous angular velocity ratio ωo at the given non-singular posture Ko.
An adequate measure for this seems to be the angle

α := ^(ω−, ωo)−
π

2
∈
[
−π

2
,
π

2

]
with ^(ω−, ωo) ∈ [0, π] . (28)

For α = −π
2
, one is moving directly to the singularity which is approximated

by H. α = π
2

defines the best direction to avoid the singularity, and for α = 0
one is moving equidistantly to it.

3.5 Closer inspection of DM∞ and DM2

For a better understanding of DM∞ and DM2 we visualize the relationship
between manipulability, ∆L, ∆Q and ω−. This will also help us to interpret
the special cases of these two distance measures.

3 With the method of 2.5.1 we were only able to give evidence about the worst in-
stantaneous rotational direction of the joints by the vector (sgn(l2), sgn(l3), sgn(l4),
sgn(l5)).
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3.5.1 Vizualisation

We look at the graph of the function MPB(K) := |det(J)| over the space VK,
i.e., the map:

ι : (θ2, .., θ5) 7→ (θ2, .., θ5, |det(J)|). (29)

The normal vector no at each point Ko of the hypersurface ι(VK) is given by

no = (n2, n3, n4, n5, 1) with ni := −sgn [det(J)]
∂ det(J)

∂θi

. (30)

Q

L

HKo
∆j

∆i

ι(Ko)

no

ι(VK)

VK

Γ

To

θi

θj det(J) = 0

MPB(K)

‖ grad [MPB(Ko)] ‖

Fig. 1. The graph of |det(J)| over VK

If we project no orthogonally
onto VK, we obtain the nega-
tive gradient of MPB(Ko), which
points into the direction of
the steepest descent. Thus our
above defined ω− corresponds to
−grad [MPB(Ko)]. Moreover, the
intersection of the tangent space
To at the point ι(Ko) with VK
is equal to the 3-space H. Hence
DM∞ and DM2 can be seen as
distances. KoL and KoQ (see fig-
ure 1) respectivly as explained
above. Q is located on the slope
line of To.

3.5.2 Special cases and well-definedness

(a) How can we interpret equation (24), if all coefficients of ∆i (i = 2, .., 5)
are equal to zero and det(J) = 0 ? In such a case the robot is in a sin-
gular posture of higher order, because all four partial derivatives vanish.
Then DM∞(K) = DM2(K) = 0 (⇔ l = q = o) as (24) holds for any
(∆2, . . . , ∆5) ∈ R4.

(b) A problem occurs if the four partial derivatives of the Jacobian’s de-
terminant vanish but det(J) 6= 0. Then equation (24) can never be fulfilled.
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Every 6R manipulator has at least such a posture, because the four unknowns
θ2, . . . , θ5 have to fulfill four equations, namely the four partial derivatives are
simultaneously equal to zero.

In this case grad [MPB(Ko)] = o and so no⊥VK, which is equivalent to
To ‖ VK. Consequently, H is the ideal hyperplane of VK. Ko has the max-
imal distance DM∞(Ko) = DM2(Ko) →∞, because Q and L are ideal points.

In cases (a) and (b) the special configuration Ko is a stationary point of the
vector field −grad [MPB(Ko)]. As a consequence α is not defined in case (b).
In order to evaluate ωo of Ko, we have to look at the derivatives of order
2, thus the curvature of ι(VK) at ι(Ko). So we can define ω− in Ko by the
direction κ of the principal curvature with the smallest absolute value:

ω− := ±κ =⇒ ^(ω−, ωo) ∈
[
0,

π

2

]
=⇒ α ∈

[
−π

2
, 0
]
.

Theorem 8 DM∞ and DM2 have all six properties required in section 1.

Proof: DM∞ and DM2 trivially fulfill the properties 1 and 2, and also the fifth,
because of Theorem 6 and Theorem 7. Now we look at equation (24) to show
the remaining properties: The equation’s coefficients det(Ji,j) are for the same
reasons as the Jacobian’s determinant invariant with respect to Euclidean
motions (see (20)). Furthermore this equation is invariant under similarities,
because if we change the scaling by the factor λ the whole equation is multi-
plied by λ3.
Due to the approximation of direct kinematics, ∆L and ∆Q are computable in
real time, which is an important criterion for practical applications. �

4 Final Example

We take the industrial robot ABB IRB 2000 as a particular example (see
figure 2). We look at the constrained motion which is determined by:

θ1 = θ6 = 0, θ2 = t
21π

18
− 11π

18
, θ3 = t2

2π

3
− π

3
, θ4 = tπ− π

2
, θ5 = t

4π

3
− 2π

3
.

For t ∈ [t1, t2] the graphs of the EE independent performance indices and of
α are displayed in figure 3, where K(t1) and K(t2) are singular configurations.
DM∞(K) and DM2(K) indicate the closeness to the next singularity at least as
good as MPB(K), but these indices have the big advantage of being invariant
under similarities and of having a geometric meaning for the 6R robot.

We assume that the operation ellipsoid required for CDNOE and PIOE is a
sphere of radius R centered in OP which has the coordinates (835, 0, 1150) in
the initial position. The counters of PIOE resp. CDN−1

OE over R×t ∈ [50, 300]×

15



[t1, t2] are displayed in figure 4 resp. figure 5. As it can be seen in figure 5,
the index CDNOE depends strongly on R. Therefore it is very important to
choose for each application of the robot the right operation ellipsoid if taking
CDNOE for robot control. As already said, the operation sphere with radius

CL
√

3/2 generally does not fit the part of the EE which one is interested to
manipulate. Because of the strong dependency of CDNOE on R one cannot
expect the same for PIOE. PIOE is more or less constant for R ∈ [50, 300] (see
figure 4). It should be said that this is not the general case, but this example
shows very well the different behaviour of these two close related indices.

Fig. 2. Initial position
of the IRB 2000 robot

α
−α

M
PB

(K
)

D
M

2 (K
)

DM∞
(K

)

t1 t2t0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 3. Graphs of MPB(K), DM∞(K), DM2(K), α

t1 t t2

R

0.6 0.7 0.8 0.9
300

250

200

150

100

50

Fig. 4. Counters of PIOE

t1 t t2

R

0.6 0.7 0.8 0.9
300

250

200

150

100

50

Fig. 5. Counters of CDN−1
OE

5 Conclusion

In this paper we presented four new performance indices for control which
have all six properties required in section 1. Two of them depend on the
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end-effector and the other two do not. The EE dependent indices PIOE and
CDNOE are based on the operation ellipsoid and on an object-oriented metric
in the workspace. We proved that CDNCL can be seen as a special case of
CDNOE. Therefore it was possible to give a geometric interpretation of the
characteristic length.

The EE independent indices DM∞ and DM2 reflect the distance of the ac-
tual posture K from the closest singularity. These distance measures take the
possible variation of the joint axes into account, because they are based on a
linearized approximation of direct kinematics.
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