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On Stewart Gough manipulators with multidimensional self-motions

Georg Nawratil

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstrasse 8-10/104, Vienna, A-1040, Austria

Abstract

By means of bond theory, we study S G (SG) platforms with n-dimensional self-motions with n > 2.
It turns out that only architecturally singular manipulators can possess these self-motions. Based on this result, we
present a complete list of all SG platforms, which have n-dimensional self-motions. Therefore this paper also solves
the famous B B problem for n-dimensional motions. We also give some remarks and a new result on SG
platforms with 2-dimensional self-motions; nevertheless a full discussion of this case remains open.
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1. Introduction

The geometry of a S G (SG) platform is given by the six base anchor points Mi with coordinates
Mi := (Ai, Bi,Ci)T with respect to the fixed system and by the six platform anchor points mi with coordinates mi :=
(ai, bi, ci)T with respect to the moving system (for i = 1, . . . , 6). Each pair (Mi,mi) of corresponding anchor points is
connected by a SPS-leg, where only the prismatic joint (P) is active and the spherical joints (S) are passive.

If the geometry of the manipulator is given, as well as the lengths of the six pairwise distinct legs, the SG platform
is generically rigid. But, under particular conditions, the manipulator can perform a n-dimensional motion (n > 0),
which is called self-motion. If n > 1 holds, the self-motion is a so-called multidimensional one.

Note that self-motions are also solutions to the still unsolved problem posed by the French Academy of Science for
the Prix Vaillant of the year 1904, which is also known as B B problem (cf. [1, 2, 3]) and reads as follows:
”Determine and study all displacements of a rigid body in which distinct points of the body move on spherical paths.”

It is already known that manipulators, which are singular in every possible configuration, possess self-motions
in each pose (over C). These so-called architecturally singular SG platforms are well studied and classified (for the
planar case we refer to [4, 5, 6, 7] and for the non-planar case see [8, 9]). In contrast only a few self-motions of
non-architecturally singular SG platforms are known. A detailed review of these self-motions was given in [10],
which is as complete as possible to the best knowledge of the author. Moreover until now only the following non-
architecturally singular SG platform with a multidimensional self-motion is known to the author: The platform and
the base are congruent. This so-called congruent SG platform has a 2-dimensional self-motion, if all legs have equal
length. It can easily be seen that this self-motion is pure translational.

Example 1. We consider a special congruent SG platform, which is also known as W platform (cf. [11]). As in
this case, the anchor points are located on a circle (see Fig. 1a), the W platform is an architecturally singular
manipulator (cf. [2, 12, 13]). If all legs have equal length, there also exists a 1-dimensional S̈ self-motion
(see Fig. 1b), beside the already mentioned 2-dimensional translational self-motion (see Fig. 1c). In Fig. 1a, the
branching singularity (cf. [14]) of these two self-motions is displayed. Due to W [11], the manipulator is
called kinematotropic, as it can change the dimension of mobility. �
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Figure 1: W platform: The configuration given in (a) is called a branching singularity, as it belongs to the 1-dimensional S̈ self-motion
(b) and to the 2-dimensional translational self-motion (c).

Beside the determination of additional examples of non-architecturally singular SG platforms with multidimen-
sional self-motions, we also want to close the knowledge gap, whether non-architecturally singular SG platforms with
3-dimensional self-motions exist (cf. footnote 3 of [15]). This still open problem is answered within the article at
hand, which is structured as follows:

In Section 2.1, we give a short introduction to the theory of bonds for SG platforms with self-motions. Depend-
ing on the dimension β of the bonding surface of the 3-dimensional self-motion after its projection from the S
parameter space into the E parameter space, we can distinguish four cases: β = −1, 0, 1, 2 (cf. Section 2.2). In
Section 3, we prove that non-architecturally singular SG platforms with 3-dimensional self-motions of type β = 2 do
not exist. In Section 4, we show that this is also the case for β = −1, 0, 1. Based on the obtained results, we give a
complete list of all SG platforms, which have n-dimensional self-motions with n > 2, in Section 5. Finally, we close
the paper with some remarks and a new result on SG platforms with 2-dimensional self-motions (cf. Section 6).

2. Bond Theory

In Section 2.1, we give a short introduction to the theory of bonds for SG manipulators presented in [16], which
was motivated by the bond theory of overconstrained closed linkages with revolute joints given by Ḧ, S
and S̈ in [17] (see also [18]). We start with the direct kinematic problem of parallel manipulators of SG
type and proceed with the definition of bonds. Based on these basics, we do some preparatory work in Section 2.2 by
giving a classification of 3-dimensional self-motions, which is induced by the bond theory in a natural way.

2.1. Definition of bonds

Due to the result of H [19], it is advantageous to work with S parameters (e0 : e1 : e2 : e3 : f0 : f1 : f2 :
f3) for solving the forward kinematics. Note that the first four homogeneous coordinates (e0 : e1 : e2 : e3) are the
so-called E parameters. Now, all real points of the S parameter space P7 (7-dimensional projective space),
which are located on the so-called S quadric Ψ :

∑3
i=0 ei fi = 0, correspond to an Euclidean displacement, with

exception of the 3-dimensional subspace E of Ψ given by e0 = e1 = e2 = e3 = 0, as its points cannot fulfill the
condition N , 0 with N = e2

0 + e2
1 + e2

2 + e2
3. The translation vector t := (t1, t2, t3)T and the rotation matrix R := (ri j)

of the corresponding Euclidean displacement Rx + t are given by:

t1 = 2(e0 f1 − e1 f0 + e2 f3 − e3 f2), t2 = 2(e0 f2 − e2 f0 + e3 f1 − e1 f3), t3 = 2(e0 f3 − e3 f0 + e1 f2 − e2 f1),

and

R =

e
2
0 + e2

1 − e2
2 − e2

3 2(e1e2 − e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e2

0 − e2
1 + e2

2 − e2
3 2(e2e3 − e0e1)

2(e1e3 − e0e2) 2(e2e3 + e0e1) e2
0 − e2

1 − e2
2 + e2

3

 , (1)

2



if the normalizing condition N = 1 is fulfilled. All points of the complex extension of P7, which cannot fulfill this
normalizing condition, are located on the so-called exceptional cone N = 0 with vertex E.

By using the S parametrization of Euclidean displacements, the condition that the point mi is located on a
sphere centered in Mi with radius Ri, is a quadratic homogeneous equation according to H [19]. This so-called
sphere condition Λi has the following form:

Λi : (a2
i + b2

i + c2
i + A2

i + B2
i +C2

i − R2
i )N − 2(aiAi + biBi + ciCi)e2

0 − 2(aiAi − biBi − ciCi)e2
1

+ 2(aiAi − biBi + ciCi)e2
2 + 2(aiAi + biBi − ciCi)e2

3 + 4(ciBi − biCi)e0e1 − 4(ciAi − aiCi)e0e2

+ 4(biAi − aiBi)e0e3 − 4(biAi + aiBi)e1e2 − 4(ciAi + aiCi)e1e3 − 4(ciBi + biCi)e2e3

+ 4(ai − Ai)(e0 f1 − e1 f0) + 4(bi − Bi)(e0 f2 − e2 f0) + 4(ci −Ci)(e0 f3 − e3 f0) + 4(ai + Ai)(e3 f2 − e2 f3)

+ 4(bi + Bi)(e1 f3 − e3 f1) + 4(ci +Ci)(e2 f1 − e1 f2) + 4( f 2
0 + f 2

1 + f 2
2 + f 2

3 ) = 0.

(2)

Now the solution of the direct kinematics over C can be written as the algebraic variety V of the ideal I spanned
by Ψ,Λ1, . . . ,Λ6,N = 1. In general V consists of a discrete set of points with a maximum of 40 elements.

We consider the algebraic motion of the mechanism, which is defined as the set of points on the S quadric
determined by the constraints; i.e. the common points of the seven quadrics Ψ,Λ1, . . . ,Λ6. If the manipulator has a
n-dimensional self-motion then the algebraic motion also has to be of this dimension. Now the points of the algebraic
motion with N , 0 equal the kinematic image of the algebraic variety V . But we can also consider the points of the
algebraic motion, which belong to the exceptional cone N = 0. An exact mathematical definition of these so-called
bonds can be given as follows (cf. Remark 5 of [16]):

Definition 1. For a SG manipulator the set B of bonds is defined as:

B := ZarClo(V?) ∩ {(e0 : . . . : f3) ∈ P7 | Ψ,Λ1, . . . ,Λ6,N = 0},

where V? denotes the variety V after the removal of all components, which correspond to pure translational motions.
Moreover ZarClo(V?) is the Z closure of V?, i.e. the zero locus of all algebraic equations that also vanish on
V?.

We have to restrict to non-translational motions for the following reason: A component of V , which corresponds
to a pure translational motion, is projected to a single point O (with N , 0) of the E parameter space P3 by the
elimination of f0, . . . , f3. Therefore the intersection of O and N = 0 equals ∅. Clearly, the kernel of this projection
equals the group of translational motions. Moreover it is important to note that the set of bonds depends on the
geometry of the manipulator, and not on the leg lengths (cf. Theorem 1 of [16]). For more details please see [16].

Due to Theorem 2 of [16] a SG platform possesses a pure translational self-motion, if and only if the platform
can be rotated about the center m1 = M1 into a pose, where the vectors

−−−−→
Mimi for i = 2, . . . , 6 fulfill the condition

rk(
−−−−→
M2m2, . . . ,

−−−−→
M6m6) ≤ 1. Moreover all 1-dimensional self-motions are circular translations, which can easily be seen

by considering a normal projection of the SG manipulator in direction of the parallel vectors
−−−−→
Mimi for i = 2, . . . , 6. If

all these five vectors are zero-vectors, which corresponds with the case that the platform and the base are congruent,
then we get the already mentioned 2-dimensional translational self-motion.

2.2. Classification of 3-dimensional self-motions
We assume that a given SG manipulator has a 3-dimensional self-motionS. AsS corresponds with a 3-dimensional

solution of the direct kinematics problem, the corresponding algebraic motion is also 3-dimensional. Due to the fact
that this algebraic motion is the kinematic image of a self-motion, it cannot be located within the exceptional cone
N = 0 (hypersurface). Therefore the bond-set of this self-motion has to be an algebraic variety of dimension 2; i.e. a
bonding surface.

Now we want to classifySwith respect to the dimension β of the bonding surface after its projection into the E
parameter space P3. As we have a bonding surface in the S parameter space P7, β can take the values −1, 0, 1, 2,
where the case β = 2 is the general one. In order that β = i holds for i = −1, 0, 1, there has to exist a (2− i)-dimensional
translational sub-self-motion, which is contained in S, in each pose of S according to the paragraph below Definition
1. For i = −1 this already implies that S is a 3-dimensional translation.

To make things more clear, we give the following example:
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Figure 2: (a) parallelogram mode (b) anti-parallelogram mode (c) bifurcation configuration.

Example 2. We study a congruent SG platform where the anchor points are located on two parallel lines. As this is
also a conic section, the manipulator is again architecturally singular. If all legs have equal lengths, this manipulator
has two 2-dimensional self-motions, where the first one (parallelogram mode) is the already known translation (cf.
Fig. 2a). Therefore this self-motion is of type β = −1.

The second 2-dimensional self-motion (anti-parallelogram mode) has a 1-dimensional translational sub-self-
motion (circular translation) in each pose of its self-motion (cf. Fig. 2b).

For this manipulator, we can compute the bond-set according to [16]. The two parallel lines of the base are given
by the x-axis of the fixed frame and a x-parallel line through the point (0, d, 0)T of the fixed frame with d > 0. Therefore
the base anchor points have coordinates (g, 0, 0)T and (h, d, 0)T , respectively, with g, h ∈ R. The corresponding
platform anchor points have the same coordinates with respect to the moving frame. Then we can compute the set of
bonds B according to [16], which yields the following four bonds, up to conjugation of coordinates:

B := {(−2u/d : 2uI/d : 0 : 0 : v : −vI : u : −uI), (2u/d : 2uI/d : 0 : 0 : v : vI : u : −uI),
(0 : 0 : −2u/d : 2uI/d : u : uI : vI : v), (0 : 0 : 2u/d : 2uI/d : u : uI : −vI : v)},

where I denotes the complex unit. Note that only the first and second bond can belong to the anti-parallelogram
self-motion, as the x-axes of the moving and the fixed frame are parallel and equally directed during this self-motion
(⇔ e2 = e3 = 0). By restricting us to the first four coordinate entries, we project the first and second bonding curve1

to the E parameter space P3, which yields the points (−1 : I : 0 : 0) and (1 : I : 0 : 0). This shows that the
anti-parallelogram self-motion is indeed of type β = 0.

Moreover it should be noted that this manipulator does not change the dimension of mobility but the type of
mobility (cf. [20]) according to the above given classification of self-motions.2 The flattened position of the ma-
nipulator illustrated in Fig. 2c is a bifurcation configuration between the parallelogram mode (β = −1) and the
anti-parallelogram mode (β = 0). �

3. 3-dimensional self-motions of type β = 2

A necessary condition for a non-architecturally singular SG platform with a 3-dimensional self-motion is that the
4-legged manipulator resulting from the removal of two legs, which fulfill certain conditions in order to enable the
3-dimensional self-motion, has also a 3-dimensional self-motion.3

1Note that the ratio u : v can be seen as projective parameter with (u, v) , (0, 0).
2Note that the W platform also changes the type of mobility with respect to this classification in its branching singularity, as the S̈

self-motion is of type β = 0 (cf. Example 1 of [16]).
3If there is only one leg, which fulfills a certain constraint, then its removal would imply that any arbitrary 5-legged manipulator has two degrees

of freedom, which yields a contradiction to the formula of G̈.

4



Without loss of generality (w.l.o.g.) we can assume that the removed legs are those with index 5 and 6, respectively.
Then the solution of the direct kinematics over C of this 4-legged manipulator can be written as the algebraic variety
V4 of the ideal I4 spanned by Ψ,Λ1, . . . ,Λ4,N = 1.

Now the bond-set B4 of the 4-legged manipulator can be defined analogously to Definition 1 by

B4 := ZarClo(V?4 ) ∩ {(e0 : . . . : f3) ∈ P7 | Ψ,Λ1, . . . ,Λ4,N = 0},

where V?4 denotes the variety V4 after the removal of all components, which correspond to pure translational motions.
As I4 is a subideal of I, the bond-set B is a subset of B4. Based on the four leg constraints Λ1, . . . ,Λ4, the

bonding surface B4 can be computed as follows:
We compute the equation ∆ j,i, which denotes the difference Λ j−Λi of two sphere constraints. Note that ∆ j,i is only

linear in f0, . . . , f3. Now we can solve the equations Ψ,∆ j,i,∆k,i,∆l,i with pairwise distinct i, j, k, l,m ∈ {1, . . . , 4} for
f0, . . . , f3 and plug the obtained solutions into the remaining equation Λi. The numerator of the resulting expression
is a polynomial G of degree 8 in the E parameters, which can also be seen as an octic surface Γ in the E
parameter space P3.

Note that G = 0 is the algebraic variety of the elimination-ideal of Ψ,Λ1,Λ2,Λ3,Λ4 with respect to f0, . . . , f3. As
the elimination of f0, . . . , f3 is done linearly, G does not depend on the choice of i ∈ {1, . . . , 4}. Therefore each point
of Γ corresponds to an orientation of the 4-legged manipulator, which can be extended to a solution of the forward
kinematics problem (over C). Summed up we can say that the points of Γ with N , 0 are the projection of V4 into the
E parameter space P3, which is induced by the elimination of f0, . . . , f3.

Moreover it should be noted that the linear system Ψ,∆ j,i,∆k,i,∆l,i cannot be solved for the fi’s if and only if the
4-legged manipulator has one of the following geometries (cf. pages 512–513 of [21] as well as pages 23–24 of [22]):

1. m1, . . . ,m4 are collinear and M1, . . . ,M4 are collinear,

2. the platform and the base are planar and the anchor points are related within an affinity,

3. the platform and the base are congruent and non-planar.

As these special cases are discussed separately in Section 3.2, we can assume w.l.o.g. that the 4-legged manipulator
has non of these three geometries in the general case, which is discussed next.

3.1. General Case
The intersection of Γ and N = 0 already yields the projection of the bond surface B4 into P3. As N = 0 is an

irreducible quadratic surface in P3, the intersection of Γ and N = 0 can only be of dimension β = 2 if:

(A) G is fulfilled identically. Then the intersection equals N = 0.

(B) Γ contains N = 0; i.e. G is reducible where N factors out. Then the intersection equals again N = 0.

Note that both case have to be independent of the choice of R1, . . . ,R4, as the bonds depend on the geometry of the
manipulator and not on the leg lengths (cf. Theorem 1 of [16]).

3.1.1. Ad (A)
If G is fulfilled identically, the 4-legged manipulator has a 3-dimensional self-motion independently of the chosen

leg lengths R1, . . . ,R4. Therefore the 4-legged manipulator has a 3-dimensional self-motion in each pose. By attaching
again two arbitrary legs it follows that the resulting SG platform has a 1-dimensional self-motion in each pose and
therefore it is singular in each pose (⇒ architecturally singular SG platform). Hence the 4-legged manipulator has
to be a degenerated manipulator (cf. [23]), which can only be one of the following cases4 according to K (cf.
[8, 23]):

(a) m1 = m2 = m3 and M1,M2,M3 are collinear,

4After a possible necessary renumbering of anchor points and exchange of the platform and the base.
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(b) m1 = m2 = m3 = m4,

(c) m1, . . . ,m4 are collinear, M1, . . . ,M4 are collinear and the condition CV(m1,m2,m3,m4) = CV(M1,M2,M3,M4)
holds, where CV denotes the cross-ratio of points.

Note that only item (a) and (b) can appear in the discussed general case, as item (c) belongs to the special case 1.
Due to these considerations, we can assume for the remainder of Section 3.1 that the 4-legged manipulator is not
degenerated.

3.1.2. Ad (B)
As the degenerated 4-legged manipulators are excluded we can assume w.l.o.g. that there exist two pairs of anchor

points (Mi,mi) and (M j,m j) with Mi , M j and mi , m j for i , j. Moreover we can assume w.l.o.g. that i = 1
and j = 2 hold. In addition, we can choose special coordinate systems in the platform and the base in a way that
a1 = b1 = c1 = b2 = c2 = c3 = 0 and A1 = B1 = C1 = B2 = C2 = C3 = 0 hold. Due to A2a2 , 0, we can eliminate the
factor of similarity by setting A2 = 1.

In order that Γ contains N = 0, the resultant P[1955651] of G and N with respect to e3 has to be fulfilled identically,
where the number in the brackets gives the number of terms. Fortunately, P is the perfect square of an expression
Q[7589], where Q is a homogeneous polynomial of degree 8 in e0, e1 and e2. We denote the coefficient of ei

0e j
1ek

2 of
Q by Qi jk. Based on this preparatory work we can prove the following lemma.

Lemma 1. A non-degenerated general 4-legged manipulator can only have a 3-dimensional self-motion of type β = 2,
if three anchor points in the platform or base are collinear.

P. The proof is done by contradiction; i.e. we assume that no three anchor points are collinear and show that no
solution exists. To do so, we consider Q116 = −4a2b3B3F1[6] and Q206 − Q026 = 4a2b3B3F2[10]. As a2 = 0 yields a
contradiction and b3B3 = 0 the collinearity of three anchor points, we remain with F1 = 0 and F2 = 0. We compute
the resultant F12 of F1 and F2 with respect to b3 which yields:

c4(b2
4 + c2

4)(B2
4 +C2

4)[(B3 − B4)2 +C2
4].

The second and the third factor can only vanish for b4 = c4 = 0 and B4 = C4 = 0, respectively, which already implies
three collinear anchor points. Therefore we remain with the following two cases:

1. (B3 − B4)2 +C2
4 = 0: This can only be the case for B3 = B4 and C4 = 0. Then Q116 equals a2

2B4
4[(b3 − b4)2 + c2

4].
As B4 = 0 yields the collinearity of M1, . . . ,M4, the last factor has to vanish, which implies b3 = b4 and
c4 = 0. Then we can compute a2 from Q404 which yields a2 =

b4(A3−A4)
B4(a3−a4) . Note that this can be done w.l.o.g. as

B4(a3 − a4) = 0 implies the collinearity of three anchor points. The computation of Q080 =
(A3−A4)2

B4
4(a3−a4)2 F3[6]2 and

Q602 =
b2

4(A3−A4)2

B4
4(a3−a4)2 F4[10]2 shows that we remain with the case F3 = F4 = 0. Therefore we calculate the resultant

F34 of F3 and F4 with respect to A3 which yields:

b4(a3 − a4)(a3B4 − a4B4 + b4)(b4A4 + a3B4 − b4)(a4B4 + b4A4).

As b4(a3 − a4) imply the collinearity of three anchor points we remain with the following three cases:

(a) b4 = a4B4 − a3B4: Now F3 = 0 and F4 = 0 can only vanish without contradiction (w.c.) for A3 =
a3

a3−a4
.

Moreover Q062 implies A4 = −
a4

a3−a4
. Then Q422 cannot vanish w.c.

(b) A4 =
b4−a3B4

b4
and (a3−a4)B4+b4 , 0: Now F3 = 0 and F4 = 0 can only vanish w.c. in one of the following

two cases:

i. b4 = (a3 − a4)B4: Now Q062 implies A3 =
a3

a3−a4
. Then Q422 cannot vanish w.c.

ii. a4 =
b4(1−A3)

B4
and (a3 − a4)B4 − b4 , 0: Now Q062 implies a3 =

b4A3
B4

. Then Q422 cannot vanish w.c.
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(c) A4 = −
a4B4

b4
and (a3B4 − a4B4 + b4)(b4A4 + a3B4 − b4) , 0: Now F3 = 0 and F4 = 0 can only vanish w.c.

for A3 = −
a3B4

b4
. Moreover Q062 implies b4 = −(a3 + a4)B4. Then Q422 cannot vanish w.c.

2. c4 = 0: Now we get F1 = b4(b4 − b3)B3C4 and F2 = b4(b4 − b3)(C2
4 + B2

4 − B3B4). As b4 = 0 implies the
collinearity of m1,m2,m4 we remain with the following two cases:

(a) b3 = b4: Now Q206 equals b4[(B3 − B4)2 + C2
4], which can only vanish for B3 = B4 and C4 = 0, but this

case was already discussed in item 1.

(b) b3 , b4: Now F1 and F2 can only vanish w.c. for C4 = 0 and B3 = B4. Then Q206 cannot vanish w.c. �

Lemma 2. A non-degenerated general 4-legged manipulator has a 3-dimensional self-motion of type β = 2 if and
only if one of the following conditions is fulfilled (under consideration of footnote 4):

I. m1 = m2 = m3,

II. m1 = m2 and M3 = M4.

In both cases the 3-dimensional self-motion equals the complete spherical motion group.

P. The proof of the sufficiency can easily be done by direct computations as follows. For both designs I and II
we compute Γ, where N can be factored out. The remaining polynomial is denoted by Υ. Therefore the conditions
are sufficient for the factorization. Moreover we have to show that the designs are also sufficient for the existence of a
3-dimensional self-motion. This is the case, if there exist leg lengths R1, . . . ,R4 in a way that Υ is fulfilled identically.
It can easily be verified that the resulting system of equations has the following solution for:

design I: R1 = M1M4, R2 = M2M4, R3 = M3M4, R4 = m1m4, (3)

design II: R1 = M1M4, R2 = M2M4, R3 = m1m3, R4 = m1m4. (4)

This proves the sufficiency. Moreover the conditions of Eq. (3) and Eq. (4) show that m1 coincides with M4 during the
self-motion. As a consequence, the 3-dimensional self-motion equals the complete spherical motion group.

Therefore we only remain with the proof of the necessity of the conditions given for design I and II, which is
done as follows: Due to Lemma 1 we can assume w.l.o.g. that m1,m2,m3 are collinear. Moreover we can assume that
there exist two pairs of anchor points (Mi,mi) and (M j,m j) with Mi , M j and mi , m j for distinct i, j ∈ {1, 2, 3}, as
the non-existence already implies the conditions of design I (under consideration of footnote 4). W.l.o.g. we can set
i = 1 and j = 2. In addition we can choose special coordinate systems in the platform and the base in a way that
a1 = b1 = c1 = b2 = c2 = b3 = c3 = c4 = 0 and A1 = B1 = C1 = B2 = C2 = C3 = 0 hold. Due to A2a2 , 0, we can
eliminate the factor of similarity by setting A2 = 1.

Now the expression Q[7589] simplifies to (e2
0 + e2

1)Q?[1498], where Q? is a homogeneous polynomial of degree
6 in e0, e1 and e2. We denote the coefficient of ei

0e j
1ek

2 of Q? by Q?i jk. Based on this preparatory work, the proof of the
necessity is split into the following two parts:

1. We assume that no four anchor points are aligned. We distinguish the following two cases:

(a) B3 , 0: Now Q?006 can only vanish w.c. for B4 = C4 = 0 (⇒ M1,M2,M4 are collinear). Then Q?015 implies
a3 = a2(1 − A4). As a consequence Q?312 can only vanish w.c. in one of the following cases:

i. A4 = 0: As this implies M1 = M4 and m2 = m3, we get design II.
ii. A4 = 1: As this implies M2 = M4 and m1 = m3, we get design II.

iii. c4 = 0 and A4(A4 − 1) , 0: Now Q?042 − Q?402 cannot vanish w.c.

(b) B3 = 0: As in this case M1,M2,M3 are collinear, we can assume w.l.o.g. that C4 = 0 holds. Now Q?312
implies a3 = A3a2. Then Q?402 − Q?042 can only vanish w.c. for:

i. A3 = 0: The first leg and the third leg coincide.
ii. A3 = 1: The second leg and the third leg coincide.
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2. We assume that four anchor points are aligned. W.l.o.g. we can state that these are the four platform anchor
points, which additionally implies b4 = 0. As a consequence Q?[1498] simplifies to (e2

0 + e2
1)Q??[447], where

Q?? is a homogeneous polynomial of degree 4 in e0, e1 and e2.

Q??004 = a2B3(a3 − a4)(B2
4 +C2

4) can only vanish w.c. in one of the following three cases:

(a) B3 = 0: As in this case M1,M2,M3 are collinear, we can assume w.l.o.g. that C4 = 0 holds. Moreover, we
can assume B4 , 0, as otherwise we get the special case 1. Now Q??202 can only vanish for a3(a4 − a2) +
a2A3(a3 − a4) = 0: We have to distinguish two cases:

i. a3 − a4 , 0: Now we can solve this condition for A3. Then Q??400 can only vanish for:
• a3 = 0: The first leg and the third leg coincide.
• a2 = a3: The second leg and the third leg coincide.
• a4 = 0: As m1 = m4 and M2 = M3 holds, we get a special case of design II.
• a2 = a4: As m2 = m4 and M1 = M3 holds, we get a special case of design II.

ii. a3 = a4: Now the condition can only vanish for:
• a4 = 0: As m1 = m3 = m4 holds, we get a special case of design I.
• a2 = a4: As m2 = m3 = m4 holds, we get a special case of design I.

(b) B4 = C4 = 0 and B3 , 0: Now Q??202 can only vanish w.c. for a4(a3−a2)+a2A4(a4−a3) = 0. A comparison
of this condition with the one of item 2a shows that they are identical if the indices 3 and 4 are exchanged.
Therefore this case yields the analogous results with respect to this exchange of indices.

(c) a3 = a4, B3 , 0 and we can assume that B4 = C4 = 0 does not hold: Now Q??202 can only vanish w.c. for:

i. a4 = 0: As m1 = m3 = m4 holds, we get design I.
ii. a2 = a4: As m2 = m3 = m4 holds, we get design I. �

Remark 1. It should be noted that every SG manipulator, which possesses one of the 4-legged manipulators of
Lemma 2 as subassembly, already has at least a 1-dimensional spherical self-motion. �

3.2. Special Cases
In the following three lemmata the remaining special cases are discussed. In order to improve the readability of

the article, the proofs of these lemmata are given in the Appendix.

Lemma 3. A non-degenerated 4-legged manipulator, which belongs to the special case 1, cannot have a 3-dimensional
self-motion of type β = 2.

Lemma 4. A non-degenerated 4-legged manipulator, which belongs to the special case 2, cannot have a 3-dimensional
self-motion of type β = 2.

Lemma 5. A 4-legged manipulator, which belongs to the special case 3, cannot have a 3-dimensional self-motion of
type β = 2.

The results of Section 3 are summed up within the next theorem:

Theorem 1. Non-architecturally singular SG platforms with 3-dimensional self-motions of type β = 2 do not exist.

P. The proof of this theorem is based on the results obtained in Lemma 1–5. Now we have to add two further legs
(legs 5 and 6) to the only non-degenerated 4-legged manipulators with a 3-dimensional self-motion (design I and II of
Lemma 2) without restricting the dimension of this self-motion. A necessary condition for this is that every 4-legged
manipulator of the resulting SG platform equals design I or II, respectively.

As a consequence, we can only attach the fifth and sixth leg to design I under the side condition that M4 = M5 = M6
holds. But this yields an architecturally singular SG manipulator (cf. item 2 of Theorem 3 of [8]).

Analogous considerations for design II show that we can only attach the fifth and sixth leg if m1 = mi and M4 = M j

hold with distinct i, j ∈ {5, 6}. This yields again the architecturally singular manipulator given in item 2 of Theorem 3
of [8]. �
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4. 3-dimensional self-motions of type β = −1, 0, 1

We start this section by studying 3-dimensional self-motions of type β = −1:

Theorem 2. SG platforms (architecturally singular or not) with 3-dimensional self-motions of type β = −1 do not
exist.

P. Due to the last paragraph of Section 2.1 it is clear that 3-dimensional self-motions of type β = −1 cannot
exist. But this can also easily be seen as follows: We assume that a SG manipulator configuration exists, where the
manipulator can perform a 3-dimensional self-motion of type β = −1. Therefore the manipulator can be moved out
of this configuration by any translation of arbitrary direction. By choosing e.g. the direction of the P-joint of the i-th
leg, we see that the corresponding sphere condition Λi is violated, which already yields the contradiction. �

We proceed with the 3-dimensional self-motions of type β = 1:

Theorem 3. Non-architecturally singular SG platforms with 3-dimensional self-motions of type β = 1 do not exist.

P. For a 3-dimensional self-motion S of type β = 1, there has to exist a 1-dimensional translational sub-self-
motion in each pose of S. According to the last paragraph of Section 2.1, a necessary condition for the existence of a
SG manipulator with S of type β = 1 is that there exists a 2-parametric set of platform orientations with m1 = M1 and
rk(
−−−−→
M2m2, . . . ,

−−−−→
M6m6) ≤ 1.

A necessity for this circumstance is that for m1 = M1 the vectors
−−−−→
M2m2 and

−−−−→
M3m3 are linearly dependent. In the

following we use this necessary condition for the proof of Theorem 3:
As the legs are not allowed to coincide, we can assume w.l.o.g. that M1 , M2 holds. We can choose special

coordinate systems in the platform and the base in a way that a1 = b1 = c1 = b2 = c2 = c3 = 0 and A1 = B1 = C1 =

B2 = C2 = C3 = 0 hold. Due to A2 , 0 we can eliminate the factor of similarity by setting A2 = 1.
Now we compute the images of m2 and m3 under the spherical motion with center m1 = M1 by the multiplication

of the rotation matrix R of Eq. (1) with m2 and m3, respectively. Therefore the above mentioned condition of linear
dependency can be written as:

(Rm2 − NM2) × (Rm3 − NM3) = o, (5)

where o is the zero-vector. This implies three conditions, which are denoted by S i, where i = 1, 2, 3 denotes the
corresponding line of Eq. (5). Now these three conditions have to have a common factor. A necessary condition for
this is that the resultant Ti j of S i and S j with respect to e0 is fulfilled identically for distinct i, j ∈ {1, 2, 3}. T12 factors
into 4a2b3e3T [10] with

T [10] := (1 − a2)(B3 + b3)e2
1 + (1 + a2)(B3 − b3)e2

2 + 2(a2A3 − a3)e1e2.

Therefore we have to do the following discussion of cases:

1. a2b3 , 0: Therefore T [10] has to be fulfilled identically. It can easily be seen that this can only be the case for
either a2 = 1, a3 = A3, b3 = B3 or a2 = −1,a3 = −A3, b3 = −B3. The geometric meaning of both cases is that
the planar figures m1,m2,m3 and M1,M2,M3 are congruent. We distinguish the following cases:

(a) SG manipulator is planar: In this case the platform and the base are congruent. It is well known (cf. [13,
24]) that this class of manipulators can only have non-translational self-motions, if they are architecturally
singular. This already closes the planar case.

(b) SG manipulator is non-planar: In this case we have to distinguish between two possibilities:

i. Platform and base are congruent: For this class of manipulators it is known (cf. [25]) that they cannot
have 1-dimensional translational self-motions, but only 2-dimensional ones (if all legs have equal
length). Therefore this case can only result in 4-dimensional self-motion of type β = 1 and we are
done. Note that this is a special case of the one discussed in the next theorem (cf. Theorem 4).
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ii. Platform and base are reflection-congruent: Any reflection-congruent SG platform possesses a 2-
parametric set of platform orientations with m1 = M1 and rk(

−−−−→
M2m2, . . . ,

−−−−→
M6m6) = 1. This can easily

be seen by reflecting the base with respect to the 2-parametric set of planes through M1 into the
platform (cf. [26]).
In the following we show by means of computation that a reflection-congruent SG manipulator cannot
have a self-motion of type β = 1. W.l.o.g. we can assume that the first four anchor points span a
tetrahedron. Moreover we can choose special coordinate systems in the platform and the base in a
way that we get:

m1 =M1 = (0, 0, 0)T , m2 =M2 = (a2, 0, 0)T , m3 =M3 = (a3, b3, 0)T ,

M4 = (a4, b4, c4)T , m4 = (a4, b4,−c4)T ,

with b3c4 , 0. In addition we can eliminate the factor of similarity by setting a2 = 1. For this setup,
it can easily be seen that the 2-parametric set of platform orientations, which cause 1-dimensional
translational sub-self-motions, is determined by e3 = 0. As a consequence, we can assume e0e1e2 , 0,
as otherwise we only get at most a 2-dimensional self-motion of type β = 0.
Therefore we can solve Ψ,∆2,1 for f0, f3 w.l.o.g. and plug the obtained solutions into ∆3,1 and ∆4,1.
The numerators of the resulting expressions are denoted by G3 and G4, respectively, which are both
homogeneous cubic polynomials in e0, e1, e2. Note that G3 and G4 do not depend on f1 and f2. These
two S parameters only appear inΛ1, but this equation is not of interest for the further computation
of bonds.
We eliminate e0 from Gi by calculating the resultant Hi of Gi and N with respect to e0 for i = 3, 4.
Now H3 can only vanish w.c. for either e1 =

a3
b3

e2 or e1 =
a3−1

b3
e2. In both cases H4 has to be fulfilled

identically. The resulting condition can in both cases be solved for a4 w.l.o.g. and it can be seen that
none of the obtained solutions can be real for b3c4 , 0, which finishes this case.

2. a2 = 0: As now m1 and m2 coincide, we can assume w.l.o.g. that b3 = 0 holds. Now S 1 is already fulfilled
identically and we remain with:

S 2 = 2a3(e1e3 − e0e2), S 3 = B3N − 2a3(e1e2 + e0e3).

It can easily be seen that these two equations cannot have a common factor and therefore they can only be
fulfilled identically, which is the case for a3 = B3 = 0. But this implies m1 = m2 = m3 and M1,M2,M3
collinear, which is an architecturally singular design (cf. item (a) of Section 3.1.1).

3. b3 = 0 and a2 , 0: In this case we consider T13 and T23 which factor into 4a2
2B2

3(e2
2 + e2

3)T [6] and 4(a2A3 −

a3)2(e2
2+e2

3)T [6], respectively, with T [6] = B3(1−a2)e2
1+B3(1+a2)e2

2+2(a2A3−a3)e1e2. Therefore we remain
with two possibilities:

(a) a3 = a2A3, B3 = 0: In this case m1,m2,m3 are collinear and M1,M2,M3 are collinear and the correspond-
ing points are related by a similarity transformation. If we extend this solution to all six pairs of anchor
points, we get a trivial architecturally singularity, as all anchor points are located on a line (cf. item 1 of
Theorem 3 of [8]).

(b) It remains to check whether T can be fulfilled identically. It can easily be seen that this happens if and
only if B3 = 0 and a3 = a2A3 hold, thus we end up with the case already discussed in the last item. �

Therefore we remain with the 3-dimensional self-motions of type β = 0, which are studied next:

Theorem 4. Non-architecturally singular SG platforms with 3-dimensional self-motions of type β = 0 do not exist.

P. Analogous considerations as in the proof of Theorem 3 show that a necessary condition for the existence of
a SG manipulator with a 3-dimensional self-motion of type β = 0 is that there exists a 1-parametric set of platform
orientations with mi = Mi for i = 1, 2, 3. Clearly, this can only be the case if all three anchor points are located on a
line. Therefore this condition implies a congruent SG platform, where all anchor points are collinear. This is a trivial
architecturally singular manipulator (cf. item 1 of Theorem 3 of [8]), which finishes the proof of Theorem 4. �
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5. SG manipulators with n-dimensional self-motions (n > 2)

The answer to the question asked in footnote 3 of [15], whether non-architecturally singular SG platforms with
3-dimensional self-motions exist, is included within the next theorem.

Theorem 5. Non-architecturally singular SG platforms, which possess a n-dimensional self-motion with n = 3, 4, do
not exist. SG platforms (architecturally singular or not) with higher-dimensional self-motions than 4 do not exist.

P. Due to the Theorems 1 – 4, this is true for n = 3. Therefore we focus on the case n = 4, for which Theorem 5 is
proven by contradiction. If we replace a leg of the non-architecturally singular SG platform, which fulfills a condition
in order to enable the 4-dimensional self-motion, by an arbitrary leg (not causing an architecturally singular design),
we end up with a non-architecturally singular manipulator with a 3-dimensional self-motion; a contradiction.

Therefore we only remain with the proof of the last sentence of Theorem 5. If we couple the platform and the base
only by one leg with non-zero length, the motion is a 5-dimensional one.5 A second leg with non-zero length, which
differs from the first one, already restricts the motion to a 4-dimensional one, which finishes the proof. �

Due to this theorem, only architecturally singular manipulators can have n-dimensional self-motions with n = 3, 4.
As preparatory work for a complete list of these manipulators, which is given in Theorem 6 and 7, we have to prove
the following lemma:

Lemma 6. A 4-legged manipulator can only have a 4-dimensional self-motion, if it is the following degenerated one
(under consideration of footnote 4): All base anchor points are collinear and the four platform anchor points collapse
into one point.

P. We assume that there exists a 4-legged manipulator with a 4-dimensional self-motion. If we replace one of
the four legs, which fulfills a certain constraint in order to enable the 4-dimensional self-motion, by an arbitrary leg,
we end up with a 4-legged manipulator with a 3-dimensional self-motion, where one leg is free of any constraints.
Therefore it can only be either design I of Lemma 2 or item (a) of Section 3.1.1. As the latter is a special case of
design I we can restrict ourselves to this case.

Now the question arises, how design I can be specified to obtain even a 4-dimensional self-motion. In order to
find an answer, we first consider the 3-legged manipulator with m1 = m2 = m3. Trivially the 3-dimensional spherical
self-motion with center m1 can only be extended by one further dimension (circular translation), if M1,M2,M3 are
collinear. This 4-dimensional self-motion is not restricted by the attachment of a fourth leg, if and only if the fourth
leg belongs to the pencil of lines spanned by the first three legs. This results in the conditions given in Lemma 6. �

Based on this lemma we can prove the following theorem:

Theorem 6. If a SG platform has a 4-dimensional self-motion, it has to be the following architecturally singular
design (under consideration of footnote 4): All base anchor points are collinear and the six platform anchor points
collapse into one point (cf. Fig. 3a).

P. As each 4-legged manipulator of the SG platform has to have a 4-dimensional self-motion, the result is implied
by Lemma 6. �

Theorem 7. If a SG platform has a 3-dimensional self-motion, it has to be one of the following architecturally singu-
lar designs (under consideration of footnote 4):

1. m1 = m2 = m3 and M4 = M5 = M6 (cf. Fig. 3b).

2. m1 = m2 = m3 = m4 and M5 = M6 (cf. Fig. 3c).

3. m1 = m2 = m3 = m4 = m5 (cf. Fig. 3d).

5A leg with zero length already restricts the mobility to three dimensions.

11



(a) (b) (c) (d) (e)

Figure 3: SG platform with a 4-dimensional self-motion (a) and a 3-dimensional self-motion (b-e). In each graphic, the legs are displayed in
ascending order from left to right.

4. All base anchor points are collinear and all platform anchor points are collinear. Moreover corresponding anchor
points are related by a regular projectivity κ: Mi 7→ mi for i = 1, . . . , 6 (cf. Fig. 3e).

P. The designs 1, 2 and 3 possess at least a 3-dimensional spherical self-motion if m1 coincides with M6. Design
4 is highly redundant as the six legs belong to a regulus of lines and therefore one can remove any three legs without
changing the direct kinematics and singularity surface. As a consequence the manipulator has trivially a 3-dimensional
self-motion.

Therefore these conditions are sufficient for the existence of 3-dimensional self-motions. In the following we
show that they are necessary as well. To do so we distinguish the following cases with respect to the rank of the
manipulator’s Jacobian J in a generic configuration.

Due to Theorem 5 we only have to consider the cases 1 < rk(J) < 6, where the case rk(J) = 2 yields a 4-
dimensional self-motion, which was already discussed in Theorem 6. Therefore we proceed with the case rk(J) = 3,
which trivially implies a 3-dimensional self-motion:

• rk(J) = 3: It follows directly from the items (a–c) of Section 3.1.1 that these SG platforms have either the design
of item 4 or one of the following four designs (under consideration of footnote 4):

i. m1 = m2 = m3 = m4 = m5 and M1, . . . ,M5 collinear (cf. Fig. 4a).

ii. m1 = m2 = m3 = m4 = m5 = m6 (cf. Fig. 4b).

iii. m1, . . . ,m6 are collinear, M1, . . . ,M6 are collinear, m1 = m2 = m3 and M4 = M5 = M6 (cf. Fig. 4c).

iv. m1, . . . ,m6 are collinear, M1, . . . ,M6 are collinear, m1 = m2 = m3 = m4 and M5 = M6 (cf. Fig. 4d).

Note that item (iii) and (iv) are special cases of item 4 (regulus splits up into two planes). Moreover item 1, 2 and
3 are necessary conditions for the listed four designs.

(a) (b) (c) (d)

Figure 4: SG platforms with rk(J) = 3, which possess a 3-dimensional self-motion. The legs are displayed in ascending order from left to right.
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(a) (b) (c) (d)

Figure 5: SG platforms with rk(J) = 4, which possess a 3-dimensional self-motion. The legs are displayed in ascending order from left to right.

If we have an architecturally singular manipulator with rk(J) > 3, it has to contain a non-degenerated 4-legged
manipulator with a 3-dimensional self-motion. Due to our results obtained in the proofs given in the Sections 3 and
4, there only exist the two designs I and II of Lemma 2 with this property.

Therefore we have to add two further legs (legs 5 and 6) to these two designs without restricting the 3-dimensional
self-motion. A necessary condition for this is that every 4-legged manipulator of the resulting SG platform is either a
degenerated one (items (a–c) of Section 3.1.1) or equals design I and II, respectively.

• rk(J) = 4: If we check the possible combinatorial cases with respect to the condition rk(J) = 4, it is not difficult to
figure out that we get the following cases (under consideration of footnote 4) beside the design given in item 3:

i. m1 = m2 = m3, M4 = M5 = M6, m4,m5,m6 collinear and M1,M2,M3 collinear (cf. Fig. 5a).

ii. m1 = m2 = m3, M4 = M5 = M6, m1, . . . ,m6 collinear and M2, . . . ,M6 collinear (cf. Fig. 5b).

iii. m1 = m2 = m3 = m4, M5 = M6 and M1, . . . ,M4 collinear (cf. Fig. 5c).

iv. m1 = m2 = m3 = m4, M5 = M6, m1, . . . ,m6 collinear and M2, . . . ,M6 collinear (cf. Fig. 5d).

Note that item 1 and 2 are necessary conditions for the listed four designs.

• rk(J) = 5: If we check the possible combinatorial cases with respect to the condition rk(J) = 5, it is not difficult to
figure out that we get the two cases given in item 1 and 2 of Theorem 7. �

Remark 2. In the author’s opinion, the following interesting property of the design, given in item 4 of Theorem 7,
should be noted: In the general case the 3-dimensional self-motion is of type β = 2. If κ is a similarity (cf. proof
of Theorem 3), we get a type β = 1 self-motion. Moreover if κ is the congruence and all legs have equal length, we
even get a 3-dimensional self-motion of type β = 0 (cf. proof of Theorem 4). Finally it should be mentioned that the
manipulator design with the 4-dimensional self-motion, which is always of type β = 2, can also be obtained from item
4 of Theorem 7 by assuming that κ is singular. �

6. Conclusion and remarks on SG platforms with 2-dimensional self-motions

Within this article we gave a complete list of all SG platforms, which have n-dimensional self-motions with n > 2
(cf. Theorems 6 and 7). All these manipulators are architecturally singular (cf. Theorem 5).

Therefore only the study of SG platforms with 2-dimensional self-motions remains open within the field of mul-
tidimensional self-motions. Based on Theorem 3 of [8], it is not difficult to give a list of all architecturally singular
manipulators with rk(J) = 4. This is left to the reader. The more challenging problem, which is still unsolved, is
the determination of all architecturally singular designs with rk(J) = 5 possessing 2-dimensional self-motions. This
list is of interest as from each entry non-architecturally singular SG platforms with 1-dimensional self-motions can
be constructed in the same way as done for SG manipulators with so-called type II DM self-motions (cf. [27]). This
topic is dedicated to future research.
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Finally, we want to give a new result on non-architecturally singular SG platforms with 2-dimensional self-
motions. Beside the pure translational self-motion (⇒ type β = −1) of the congruent SG platform, there exists a
further trivial example, which was not mentioned before in the literature, to the best knowledge of the author. This
design, implied by the results obtained in Section 3, can be given as follows (under consideration of footnote 4): For
m1 = m2 = m3 and M4 = M5 there exists a 2-dimensional self-motion if m1 coincides with M4. This self-motion is a
pure spherical one (⇒ type β = 1) with center m1 = M4.

It remains open, whether further non-architecturally singular SG platforms with 2-dimensional self-motions exist
(especially a design with a type β = 0 self-motion) beside the two already known ones. This topic is dedicated to
future research as well.
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[12] C, M.: Sur les six droites qui peuvent étre les directions de six forces en équilibre. Comptes Rendus des Séances de l’Académie des
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Appendix

Proof of Lemma 3:

W.l.o.g. we can assume that m1 (resp. M1) equals the origin of the moving (resp. fixed) system and that the
remaining platform (resp. base) anchor points are located on its x-axis. Therefore this implies a1 = A1 = bi = Bi =

ci = Ci = 0 for i = 1, . . . , 4. As the legs are not allowed to coincide, we can eliminate the factor of similarity by
setting a2 = 1.

Now we can solve the equations Ψ,∆2,1,∆3,1 for f0, f1, f2 if the mapping m j 7→ M j for j = 1, 2, 3 is no similarity.
If this cannot be achieved by a renumbering of the legs, we already have a special case of the degenerated manipulator
given in item (c) of Section 3.1.1.

After plugging the obtained solutions for f0, f1, f2 into the equation Λ1, we can compute f3 from it6, but this is not
of interest. If we substitute the expressions for f0, f1, f2 into ∆4,1 we get in the numerator a homogeneous polynomial
G[120] of degree 2 in the E parameters. Therefore Γ is in this case a quadric in P3.

Again the intersection of Γ and N = 0 can only be of dimension β = 2 if either case (A) or case (B) of Section 3.1
holds. The argumentation given in Section 3.1.1 for case (A) is still true, where special cases of (a) and (b) of Section
3.1.1 can appear beside item (c) of Section 3.1.1. Therefore we can assume for the following discussion of case (B),
that the manipulator is non-degenerated.

In order that Γ contains N = 0, the resultant P of G and N with respect to e3 has to be fulfilled identically. P
factors into (e2

0 + e2
1)2 and

[a3a4(A2A3 − A2A4) + a3(A2A4 − A3A4) + a4(A3A4 − A2A3)]2,

which equals the squared condition CV(m1,m2,m3,m4) = CV(M1,M2,M3,M4) of item (c) of Section 3.1.1. This
finishes the proof of Lemma 3. �

Therefore we can assume for the discussion of the following proof of Lemma 4 that the four platform anchor
points and the corresponding base anchor points are not both collinear.

Proof of Lemma 4:

Now the platform and the base are planar (⇒ Ci = ci = 0 for i = 1, . . . , 4) and corresponding anchor points are
related within an affinity. W.l.o.g. we can assume that m1 (resp. M1) equals the origin of the moving (resp. fixed)
frame and that m2 (resp. M2) is located on its x-axis. Therefore this implies a1 = b1 = b2 = 0 and A1 = B1 = B2 = 0.
As the legs are not allowed to coincide, we can eliminate the factor of similarity by setting a2 = 1.

This already implies that the affinity is of the form (Ai, Bi)T = A(ai, bi)T for i = 1, . . . , 4, where the 2 × 2
transformation matrix A is given by:

A :=
(
u v
0 w

)
.

Now we can solve the equations Ψ,∆2,1,∆3,1 for f0, f1, f2 if the first three anchor points are not collinear. This can
always be achieved by a renumbering of the legs.

After plugging the obtained solutions for f0, f1, f2 into the equation Λ1, we can compute f3 from it (cf. footnote 6),
but this is not of interest. If we substitute the expressions for f0, f1, f2 into ∆4,1 we get in the numerator a homogeneous
polynomial G[140] of degree 2 in the E parameters. Therefore Γ is again a quadric in P3.

6If Λ1 does not depend on f3, we can only get a 3-dimensional self-motion of type β = 1, as one translational parameter remains free.
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Again the intersection of Γ and N = 0 can only be of dimension β = 2 if either case (A) or case (B) of Section 3.1
holds. The argumentation given in Section 3.1.1 for case (A) is still true, where only the cases (a) and (b) of Section
3.1.1 can appear. In these cases the affinity is singular; i.e. rk(A) < 2. Therefore we can assume for the following
discussion of case (B), that the manipulator is non-degenerated.

In order that Γ contains N = 0, the resultant P[244] of G and N with respect to e3 has to be fulfilled identically.
Note that P is a homogeneous polynomial of degree 4 in e0, e1, e2. It is not difficult to verify by a discussion of cases
that P can only vanish if two legs coincide or in the degenerated cases (a) and (b) of Section 3.1.1. This finishes the
proof of Lemma 4. �

Proof of Lemma 5:

Now the platform and the base are congruent and non-planar. W.l.o.g. we can assume that m1 (resp. M1) equals
the origin of the moving (resp. fixed) frame and that m2 (resp. M2) is located on its x-axis and that m3 (resp. M3)
belongs to the xy-plane of the moving (resp. fixed) frame. Therefore this implies a1 = b1 = b2 = c1 = c2 = c3 = 0 and
A1 = B1 = B2 = C1 = C2 = C3 = 0. Moreover we have ai = Ai, bi = Bi and ci = Ci for the remaining coordinates.
In addition we can assume w.l.o.g. that c4 , 0 holds as otherwise the SG manipulator is planar. As the legs are not
allowed to coincide, we can eliminate the factor of similarity by setting a2 = 1.

Now we can solve the equations Ψ,∆2,1,∆3,1 for f0, f1, f2 if the first three anchor points are not collinear. This is
always the case, as otherwise the SG manipulator is planar.

After plugging the obtained solutions for f0, f1, f2 into the equation Λ1, we can compute f3 from it (cf. footnote 6),
but this is not of interest. If we substitute the expressions for f0, f1, f2 into ∆4,1 we get in the numerator a homogeneous
polynomial G[83] of degree 3 in the E parameters. Therefore Γ is in this case a cubic surface in P3.

Again the intersection of Γ and N = 0 can only be of dimension β = 2 if either case (A) or case (B) of Section
3.1 holds. The argumentation given in Section 3.1.1 for case (A) is still true, but non of the three degenerated cases of
Section 3.1.1 can appear.

Therefore we remain with the discussion of case (B), which can be done as follows: In order that Γ contains
N = 0, the resultant P[342] of G and N with respect to e3 has to be fulfilled identically. Note that P is a homogeneous
polynomial of degree 6 in e0, e1, e2. It is not difficult to verify by a discussion of cases that P can only vanish if two
legs coincide. This finishes the proof of Lemma 5. �
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