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1. Stewart Gough platform (SGP)

The geometry of a (planar) SGP is given by:

• six (coplanar) base anchor points Mi

• six (coplanar) platform points mi

Mi and mi are connected with a SPS leg.

Theorem. Merlet [9]

A SGP is singular (infinitesimal flexible,
shaky) if and only if the carrier lines of the
six SPS legs belong to a linear line complex.

A SGP is called architecturally singular if it
is singular in any possible configuration.

basebasebasebasebasebasebasebasebasebasebasebasebasebasebasebasebase

platformplatformplatformplatformplatformplatformplatformplatformplatformplatformplatformplatformplatformplatformplatformplatformplatform
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1. Review

Theorem 1. Nawratil [10,11]

A planar SGP possesses a quadratic singularity surface in the space of translations
for any orientation of the platform if and only if rk(N) = 4 holds with

NT :=

(
1 a1 b1 A1 B1
... ... ... ... ...

1 a6 b6 A6 B6

)
, (1)

where Mi = (Ai, Bi, 0)
T (resp. mi = (ai, bi, 0)

T ) are the coordinates of Mi (resp.
mi) with respect to the fixed frame (resp. moving frame).

Theorem 2. Karger [8]

rk(N) = 3 ⇐⇒ base and platform are affinely equivalent.

Moreover Karger [8] noted that rk(N) < 3 implies architecturally singular designs
and that for rk(N) = 4 ”no special properties are known so far”.
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2. Existence theorem

Theorem 3.
Every non-architecturally singular SGP has
triples of anchor points (Mi,Mj,Mk) and
(mi,mj,mk) with i, j, k ∈ {1, . . . , 6} in a
way that the triangles △(MiMjMk) and
△(mimjmk) are not degenerated; i.e. they
do not collapse into a line or even a point.

Proof: The proof is split into three
Lemmata. For details please see Lemma
1-3 of the presented paper.
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2. Existence theorem

Lemma 3 involves a very lengthy discussion of cases, where some of them are illustrated above.
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3. Geometric interpretation of rk(N)=4

W.l.o.g. we can choose the fixed and moving frame in a way that the first base
and platform anchor point are located in their origins; i.e. a1 = b1 = A1 = B1 = 0.
rk(N) = 4 ⇔ rk(n) = 3 with

nT :=

(
a2 b2 A2 B2
... ... ... ...

a6 b6 A6 B6

)
. (2)

Lemma 4.
The rank of n is invariant under regular affinities of the platform and the base.

Proof: We apply planar affine transformations τ0 to the base and τ to the platform,
respectively,

τ0 : Mi 7→ TMi and τ : mi 7→ tmi,

where T and t with det(T) 6= 0 6= det(t) are the matrices of these transformations.
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3. Geometric interpretation of rk(N)=4

We build the analogous matrix as given in Eq. (2) with respect to the coordinates
of τ0(Mi) and τ(mi). This 5× 4 matrix is denoted by ñT . Then the determinant
of the 4 × 4 submatrix ñi of ñ, which is obtained by removing the ith column of
ñ, factors into det(T) det(t) det(ni). �

Theorem 4.
rk(N) = 4 ⇐⇒ There exists a regular
affinity α from the planar platform to
the planar base of the non-architecturally
singular SGP in a way that α(mi) and Mi

are located on lines of a parallel line pencil
with vertex P at infinity.

M1

M2

α(m1)

α(m2)

M3

α(m3)

α(m4)

M4
M5

α(m5)

α(m6)

M6
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3. Geometric interpretation of rk(N)=4

Proof: Due to the existence Theorem and the last lemma we can assume w.l.o.g.:

M1 = m1 = (0, 0, 0)T , M2 = m2 = (1, 0, 0)T , M3 = m3 = (0, 1, 0)T .

”⇒” By basic operations on columns of the matrix n we obtain



1 0 0 0 0

0 1 0 0 0

0 0 A4 − a4 A5 − a5 A6 − a6

0 0 B4 − b4 B5 − b5 B6 − b6


 ,

which implies that (Ai − ai)(Bj − bj) = (Aj − aj)(Bi − bi) has to hold for

pairwise distinct i, j ∈ {4, 5, 6}, which already proves ”⇒”.
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3. Geometric interpretation of rk(N)=4

”⇐” Under our assumptions the coordinates of the anchor points can be written

as:
M1 = m1 = (0, 0, 0)T , M4 = m4 + ξ4p, (3)

M2 = m2 = (1, 0, 0)T , M5 = m5 + ξ5p, (4)

M3 = m3 = (0, 1, 0)T , M6 = m6 + ξ6p, (5)

where p = (p1, p2, 0)
T is the direction of the parallel line pencil. By applying

analogous column operations as in ”⇒” we see that rk(n) = 3 holds. �

Corollary 1.
rk(N) = 4 ⇔ There exists a configuration of the planar non-architecturally singular
SGP where all six legs are not coplanar but are contained in a parallel plane pencil.
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4. Rational parametrization of the singularity locus

Coordinatization of planar SGPs with rk(N) = 4:
Take the coordinates of Eqs. (3-5) and apply planar affine transformations τ0 and
τ , where one can assume w.l.o.g. that T21 = t21 = 0 and T11 > 0 < t11 holds. If
one wants to eliminate the factor of similarity one can set e.g. t11 = 1.

Based on this coordinatization we compute the Plücker coordinates of the carrier
lines li of the six legs by (li, l̂i) := (m′

i −Mi,Mi × li), where m′

i is the location-
vector of mi with respect to the fixed system; i.e. m′

i = N−1Rmi + s with

R =

(
r11 r12 r13
r21 r22 r23
r31 r32 r33

)
=

(
e20 + e21 − e22 − e23 2(e1e2 − e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)

2(e1e3 − e0e2) 2(e2e3 + e0e1) e20 − e21 − e22 + e23

)
,

N = e20 + e21 + e22 + e23 and s = (s1, s2, s3)
T .
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4. Rational parametrization of the singularity locus

The lines l1, . . . , l6 belong to a linear line complex if and only if S = 0 holds with

S :=

∣∣∣∣
l1 . . . l6

l̂1 . . . l̂6

∣∣∣∣ .

Therefore the singularity locus Σ, which is quadratic in s1, s2, s3 according to
Theorem 1, is given by S = 0 (can be computed explicitly by e.g. Maple).

For the parametrization of the singularity locus we follow the idea of Coste and

Moussa [3]. It can be seen by direct computations that the ideal point W in
direction (r23 : −r13 : 0) is located on the projective closure of Σ.

Remark: W is the ideal point of the intersection line of platform and base. ⋄
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4. Rational parametrization of the singularity locus

Now the parallel line bundle B through W given by:

B :

(
r13u

r23u

v

)
+ w

(
r23

−r13
0

)
(6)

can be used for the rational parametrization: We plug these coordinates of B into
S = 0 and obtain an equation of the form p+ qw = 0. If we insert w = −p/q back
into Eq. (6) we get the desired rational parametrization of Σ(u, v, e0 : . . . : e3),
which is well defined for all orientations with q 6= 0.

Remark: Note that one can obtain a rational parametrization by using a line bundle
through any (rational) point of the quadric; for instance the origin instead of the
ideal point W. The advantage of using W is that we even get a graph-representation
of the singularity surface. ⋄
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5. Direct kinematics

The condition that the point mi is located on a sphere with center Mi and radius
di is a quadratic condition Ki = 0 (e.g. Husty [5]) in e0, . . . , e3, s1, s2, s3. Then
one considers the linear combination:

Q := κ1K1 + κ2K2 + κ3K3 + κ4K4 + κ5K5 + κ6K6.

According to Karger [8] there exists a (5 − rk(N))-dimensional solution set for
(κ1 : . . . : κ6) 6= (0 : . . . : 0) in a way that Q is free of translation parameters (but
still quadratic in the Euler parameters).

Therefore rk(N) = 4 implies the existence of two linear independent linear
combinations Q1 and Q2. Moreover one can solve the system of equations
K2 − K1 = K3 − K1 = K4 − K1 = 0, which is linear in s1, s2, s3 for these
unknowns. Inserting the resulting expressions into K1 implies a condition O of
degree 8 in the Euler parameters.
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5. Direct kinematics

Therefore the direct kinematics reduces to the intersection of an octic surface
O = 0 and two quadrics Q1 = Q2 = 0 in the Euler parameter space, which shows
the following result considering Bezout’s theorem.

Theorem 5.
A planar SGP with rk(N) = 4 has not more than 32 solutions (over C) for the
direct kinematics problem.

An example verifying these upper bound of 32 (over C) is given in Aigner [1].

Open problems in this context:

? Example of planar SGPs with rk(N) = 4 possessing 32 real solutions.

? Characterization of planar SGPs with rk(N) = 4 having self-motions.
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6. Leg-replacement

We consider the set L of legs, which can be added to a SGP without changing:

• neither the direct kinematics (cf. Husty et al [6]),

• nor the set of singular configurations (cf. Borras et al [2]).

From these papers it is known that for a
planar SGP a one-parametric set L exists,
where the platform (resp. base) anchor
points are located on a planar cubic curve
c (resp. C) on the platform (resp. base).

It can be shown (cf. Aigner [1]) by direct
computation that P is located on C and
α−1(P) on c with P and α of Theorem 4.
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6. Leg-replacement

As the leg-replacement is
singular-invariant, α(m) ∈ α(c)
and the corresponding base
point M ∈ C have to be located
on a line through P.

The corresponding platform
point α(mP) ∈ α(c) (resp. base
point MP ∈ C) of P ∈ C
(resp. P ∈ α(c)) is located
on the asymptote A of C
(resp. asymptote α(a) of α(c))
through P.

α(m4)α(m3) M3

α(m1)

M1

α(c)

α(m2)

M2

α(m5)

M6

α(mP)
α(m6)

M5
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MP

C

A α(a)
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7. Conclusion and references

This detailed study of planar SGPs with rk(N) = 4 gives:

• a geometric interpretation of the rank condition,

• a rational parametrization of the singularity locus,

• an upper bound for the solution of the direct kinematics problem,

• special properties of the anchor point loci for singular-invariant leg-replacement.

In addition an existence theorem for non-architecturally singular SGPs is presented.

All references refer to the list of publications given in the presented paper:

Aigner, B., Nawratil, G.: Planar Stewart Gough platforms with quadratic singularity surface.

New Trends in Mechanism and Machine Science: Theory and Industrial Applications

(P. Wenger, P. Flores eds.) pages 93–102, Springer (2016) ISBN: 978-3-319-44155-9
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