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Abstract. Due to a previous publication of the author, it is already known that one-
parametric self-motions of Stewart Gough platforms with planar base and planar plat-
form can be classified into two so-called Darboux Mannheim (DM) types (I and II).
Moreover, the author also presented a method for computing the set of equations yield-
ing a type II DM self-motion explicitly. Based on these equations we prove in this
article the necessity of three conditions for obtaining a type II DM self-motion. Finally,
we give a geometric interpretation of these conditions, which also identifies a prop-
erty of line-symmetric Bricard octahedra, which was not known until now, to the best
knowledge of the author.
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1. Introduction

The geometry of a Stewart Gough (SG) platform with planar base and planar platform (which is
also known as planar SG platform) is given by the six base anchor pointsMi with coordinates
M i := (Ai,Bi ,0)T with respect to the fixed systemΣ0 and by the six platform anchor pointsmi with
coordinatesmi := (ai ,bi,0)T with respect to the moving systemΣ (cf. Fig. 1). By using Study
parameters(e0 : . . . : e3 : f0 : . . . : f3) for the parametrization of Euclidean displacements, the coordi-
natesm′

i of the platform anchor points with respect toΣ0 can be written asKm′
i = Rmi +(t1, t2, t3)T

with

t1 = 2(e0 f1−e1 f0 +e2 f3−e3 f2), t2 = 2(e0 f2−e2 f0+e3 f1−e1 f3),

t3 = 2(e0 f3−e3 f0 +e1 f2−e2 f1), K = e2
0 +e2

1 +e2
2+e2

3 6= 0 and

R = (r i j ) =





e2
0+e2

1−e2
2−e2

3 2(e1e2−e0e3) 2(e1e3+e0e2)
2(e1e2 +e0e3) e2

0−e2
1+e2

2−e2
3 2(e2e3−e0e1)

2(e1e3−e0e2) 2(e2e3+e0e1) e2
0−e2

1−e2
2+e2

3



 .

Now all points of the real 7-dimensional spaceP7
R

, which are located on the so-called Study quadric
Ψ : ∑3

i=0ei fi = 0, correspond to an Euclidean displacement, with exceptionof the three-dimensional
subspacee0 = . . . = e3 = 0 of Ψ, as its points cannot fulfill the normalizing conditionK = 1.
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Figure 1: Sketch of a planar SG platformm1, . . . ,M6.

If the geometry of the manipulator is given as well as the six leg lengths, then the SG platform
is generically rigid, but under particular conditions, themanipulator can perform ann-parametric
motion (n > 0), which is called self-motion. Note that such motions are also solutions to the still
unsolved problem posed 1904 by the French Academy of Sciencefor the Prix Vaillant, which is
also known as Borel Bricard problem (cf. [1, 4, 6, 10]) and reads as follows:

”Determine and study all displacements of a rigid body in which distinct points of the body
move on spherical paths.”

Especially those rigid-body motions are of interest, wheremore than five points possess spher-
ical trajectories. In this context, we only want to mention the well-known theorem of Duporcq [5],
which can be formulated in the following way:

”If five points of a planeP move on five fixed spheres whose centers lie on a fixed planeP′, then
there exist onP a sixth point which also describes such a sphere.”

1.1. Types of self-motions

In this and the next subsection we sketch the results and ideas of the central work [15] in this context.
It is already known, that manipulators which are singular inevery possible configuration, pos-

sess self-motions in each pose (overC). As these so-called architecturally singular SG platforms are
well studied and classified (for the planar case we refer to [8, 12, 20, 21] and for the non-planar case
note [9, 13]), we are only interested in non-architecturally singular SG platforms with self-motions.
Until now only few self-motions of this type are known, as their computation is a very complicated
task. To the best knowledge of the author, a complete and detailed review of these self-motions was
given in [18].

Due to the publications [7, 11], it is known that the setL of additional legs, which can be
attached to a given planar SG platformm1, . . . ,M6 without restricting the forward kinematics, is
determined by a linear system of equations given in Eq. (30) of [11]. As the solvability condition
of this system is equivalent to the criterion given in Eq. (12) of [2], also the singularity surface of
the manipulator does not change by adding legs ofL . Moreover, it was shown in [11], that in the
general caseL is one-parametric and that the base anchor pointsMi as well as the corresponding
platform anchor pointsmi of L are located on planar cubic curvesC andc, respectively.

Assumption 1 We assume that there exist such cubicsc andC (which can also be reducible) in the
Euclidean domain of the platform and the base, respectively.
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Now, we consider the complex projective extensionP3
C

of the Euclidean 3-spaceE3, i.e.

ai =
xi

wi
, bi =

yi

wi
, Ai =

Xi

Wi
, Bi =

Yi

Wi
, (1)

and replacing the coordinates(ai,bi ,0)T of mi and(Ai ,Bi,0)T of Mi by homogeneous coordinates
(wi : xi : yi : 0)T and(Wi : Xi : Yi : 0)T , respectively. Note that ideal points of the platform (base)
are characterized bywi = 0 (Wi = 0). Therefore, we denote in the remainder of this article the
coordinates of anchor points, which are ideal points, byxi ,yi and Xi,Yi , respectively. For finite
anchor points we use the coordinatesai ,bi andAi ,Bi, respectively.

The correspondence between the points ofC andc in P3
C

, which is determined by the geometry
of the manipulatorm1, . . . ,M6, can be computed according to [7, 11] or [2] under consideration
of Eq. (1). As this correspondence has not to be a bijection, apoint ∈ P3

C
of c (resp.C) is in

general mapped to a non-empty set of points∈ P3
C

of C (resp.c). We denote this set by the term
corresponding locationand indicate this fact by the usage of bracelets{}. Moreover, it should be
noted that the corresponding location of a real point contains real points as well.

In P3
C

the cubicC has three ideal pointsU1,U2,U3, where at least one of these points (e.g.U1)
is real. The remaining pointsU2 andU3 are real or conjugate complex. Then we compute the
corresponding locations{u1} ,{u2} ,{u3} of c (⇒ {u1} contains real points). We denote the ideal
points ofc by u4,u5,u6, where again one (e.g.u4) has to be real. The remaining pointsu5 andu6 are
again real or conjugate complex. Then we compute the corresponding locations{U4} ,{U5} ,{U6}
of C (⇒ {U4} contains real points).

Assumption 2 For guaranteeing a general case, we assume that each of the corresponding loca-
tions{u1}, {u2}, {u3} ,{U4}, {U5}, {U6} consists of a single point. Moreover, we assume that no
four collinear platform anchor pointsu j or base anchor pointsU j ( j = 1, . . . ,6) exist.

Now the basic idea can simply be expressed by attaching the special ”legs”1 uiUi ∈ L with
i = 1, . . . ,6 to the manipulatorm1, . . . ,M6, which have the following kinematic interpretation (cf.
[15]): The attachment of the ”leg”uiUi for i ∈ {1,2,3} corresponds with the so-called Darboux
constraint, that the platform anchor pointui moves in a plane of the fixed system orthogonal to
the direction of the ideal pointUi . Moreover, the attachment of the ”leg”uiUi for i ∈ {4,5,6}
corresponds with the so-called Mannheim constraint, that aplane of the moving system orthogonal
to ui slides throughUi . Note that this Mannheim condition is the inverse of the Darboux condition.

By removing the originally six legsmiMi with i = 1, . . . ,6 we remain with the manipulator
u1, . . . ,U6, which is uniquely determined due to Assumption 1 and 2. Moreover, under consideration
of Assumption 1 and 2, the following statement holds (cf. [15]):

Theorem 1 The manipulatoru1, . . . ,U6 is redundant and therefore architecturally singular. More-
over, all anchor points of the platformu1, . . . ,u6 and as well of the baseU1, . . . ,U6 are distinct.

It was also proven in [15] that there only exist type I and typeII Darboux Mannheim (DM)
self-motions, where the definition of types reads as follows:

Definition 1 AssumeM is a one-parametric self-motion of a non-architecturally singular SG plat-
formm1, . . . ,M6. ThenM is of the type n DM if the corresponding architecturally singular manip-
ulator u1, . . . ,U6 has an n-parametric self-motionU (which includesM ). Note that the numbering
of types is done with Roman numerals; i.e. n= I , II , . . .

1We have to quote the word legs in this context, as it is impossible to attach physical legs with infinite length to the
platform.
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1.2. Type II DM self-motions

In the remainder of the article we only study type II DM self-motions. The author [15] was already
able to compute the set of equations yielding a type II DM self-motion explicitly. This symbolic
computation, which is repeated in subsection 2.5, is based on the analytical versions of the Darboux
and Mannheim constraints, which are given next:

Darboux constraint: The constraint that the platform anchor pointui (i = 1,2,3) moves in a plane
of the fixed system orthogonal to the direction of the ideal point Ui can be written as (cf. [15])

Ωi : Xi(air11+bir12+ t1)+Yi(air21+bir22+ t2)+LiK = 0,

with Xi,Yi ,ai ,bi,Li ∈C. This is a homogeneous quadratic equation in the Study parameterse0, . . . , f3,
whereXi andYi denote the conjugate complex ofXi andYi , respectively.

Mannheim constraint: The constraint that the plane orthogonal toui (i = 4,5,6) through the
platform point(gi,hi,0) slides through the pointUi of the fixed system can be written as (cf. [15])

Πi : xi [Air11+Bir21−giK−2(e0 f1−e1 f0−e2 f3+e3 f2)]+

yi [Air12+Bir22−hiK −2(e0 f2+e1 f3−e2 f0−e3 f1)] = 0,

with xi ,yi ,Ai,Bi ,gi,hi ∈C. This is again a homogeneous quadratic equation in the Studyparameters
e0, . . . , f3, wherexi andyi denote the conjugate complex ofxi andyi .

The content of the following lemma was also proven in [15]:

Lemma 1 Without loss of generality (w.l.o.g.) we can assume that thealgebraic variety of the two-
parametric self-motion of the manipulatoru1, . . . ,U6 is spanned byΨ,Ω1,Ω2,Ω3,Π4,Π5. More-
over, we can choose following special coordinate systems inΣ0 andΣ w.l.o.g.: X1 = Y2 = Y3 = x4 =
y5 = 1 and a1 = b1 = y4 = A4 = B4 = Y1 = h4 = g5 = 0.

An important step in direction of a complete classification of type II DM self-motions was done
by the following basic result, which was proven in [14]:

Theorem 2 If the corresponding manipulatoru1, . . . ,U6 of a planar SG platform (fulfilling Assump-
tions 1, 2 and Lemma 1) with a type II DM self-motion does not fulfill neither the three equations

L1(X2−X3)−L2+L3 = 0, a2(X2−X3)+X3(X2b2−X3b3)+b2−b3 = 0,

a3(X2−X3)+X2(X2b2−X3b3)+b2−b3 = 0,
(2)

nor the three equations

L1(X2−X3)−L2+L3 = 0, a2(X2−X3)−X3(X2b2−X3b3)−b2+b3 = 0,

a3(X2−X3)−X2(X2b2−X3b3)−b2+b3 = 0,
(3)

then it has to have further three collinear anchor points in the base or in the platform beside the
pointsU1,U2,U3 andu4,u5,u6.

Based on this theorem we prove the following much stronger result within this article:

Theorem 3 The corresponding manipulatoru1, . . . ,U6 of a planar SG platform (fulfilling Assump-
tions 1, 2 and Lemma 1) with a type II DM self-motion has to fulfill the three conditions either of
Eq. (2) or Eq. (3).
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2. Preparatory work for the proof of Theorem 3

For the proof of Theorem 3 we have to show that there exists no corresponding manipulatoru1, . . . ,U6
of a planar SG platform (fulfilling Assumptions 1, 2 and Lemma1) with a type II DM self-motion,
which does not fulfill either the three conditions of Eq. (2) or Eq. (3).

Due to Theorem 2 and due to Lemma 2 of [8] we can even restrict ourselves to manipula-
torsu1, . . . ,U6, which have three collinear platform pointsui ,u j ,uk and three collinear base points
Ul ,Um,Un beside the pointsU1,U2,U3 andu4,u5,u6 where(i, j,k, l ,m,n) consists of all indices from
1 to 6.

As we have different types of anchor points (real, complex, finite, infinite), we have to distin-
guish the following four cases of three collinear points (beside the triplesU1,U2,U3 andu4,u5,u6):
A. U1,U4,U5 collinear (⇔ u2,u3,u6 collinear): Asu5 andu6 are both real or conjugate complex,

this case is equivalent tou2,u3,u5 collinear (⇔ U1,U4,U6 collinear).
Moreover, by exchanging the platform and the base the above two cases are also equivalent
to u1,u2,u4 collinear (⇔ U3,U5,U6 collinear) andu1,u3,u4 collinear (⇔ U2,U5,U6 collinear),
respectively.

B. U2,U4,U5 collinear (⇔ u1,u3,u6 collinear): Asu5 andu6 are both real or conjugate complex,
this case is equivalent tou1,u3,u5 collinear (⇔ U2,U4,U6 collinear).
Moreover, asU2 andU3 are both real or conjugate complex, these cases are also equivalent
to U3,U4,U5 collinear (⇔ u1,u2,u6 collinear) andu1,u2,u5 collinear (⇔ U3,U4,U6 collinear),
respectively.

C. u2,u3,u4 collinear (⇔ U1,U5,U6 collinear)

D. u1,u2,u3 collinear (⇔ U4,U5,U6 collinear)
In the following we discuss these four types A–D in more detail:

2.1. Collinearity of type A

U1,U4,U5 are collinear forB5 = 0. As due to Assumption 2 no four platform anchor pointsui or
base anchor pointsUi are allowed to be collinear, we can stop the discussion of type A if:
• u2,u3,u4 collinear (⇔ b2−b3 = 0),

• u1,u2,u3 collinear (⇔ a2b3−a3b2 = 0),

• u2,u3,u5 collinear (⇔ x5(b2−b3)−a2+a3 = 0),
because then the pointsU1,U4,U5,U6 are collinear due to Lemma 2 of [8], which yields a contra-
diction. Due to Theorem 1 alsoA5(X2−X3) 6= 0 has to hold, as otherwise the base anchor points
are not pairwise distinct. Finally, we can assumeX2 6= 0 w.l.o.g., because both pointsU2 andU3 do
not belong to the triple of collinear points.

2.2. Collinearity of type B

U2,U4,U5 are collinear forA5 = X2B5. Now we can stop the discussion of case B if:
• u1,u2,u3 collinear (⇔ a2b3−a3b2 = 0),

• u1,u3,u4 collinear (⇔ b3 = 0),

• u1,u3,u5 collinear (⇔ a3−x5b3 = 0),
because then the pointsU2,U4,U5,U6 are collinear, a contradiction. Due to Theorem 1 alsoB5(X2−
X3) 6= 0 has to hold, as otherwise the base anchor points are not pairwise distinct. Moreover, we can
stop the discussion of case B, ifU2 is real (⇔ X2 ∈ R, especiallyX2 = 0) because then this case is
equivalent to case A.
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2.3. Collinearity of type C

u2,u3,u4 are collinear forb2 = b3. We can stop the discussion of case C ifU1,U4,U5 are collinear
(⇔ B5 = 0), because then the pointsu2,u3,u4,u6 are collinear, a contradiction. Moreoverb2 6= 0
has to hold because otherwiseu1,u2,u3,u4 are collinear, a contradiction. Due to Theorem 1 also
(a2−a3)(X2−X3) 6= 0 has to hold, asu2 = u3 resp.U2 = U3 yield a contradiction. In addition, we
can assumeX2 6= 0 w.l.o.g., because the corresponding points ofU2 andU3 belong to the triple of
collinear points.

We can also assume thatU2,U4,U5 are not collinear (⇔ A5−X2B5 6= 0), because this case was
already discussed in case B.

2.4. Collinearity of type D

u1,u2,u3 are collinear fora2b3−a3b2 = 0. Now we can stop the discussion of case D if:
• U1,U4,U5 collinear (⇔ B5 = 0),

• U2,U4,U5 collinear (⇔ A5−X2B5 = 0),

• U3,U4,U5 collinear (⇔ A5−X3B5 = 0),
because then the pointsu1,u2,u3,u6 are collinear, a contradiction. Moreover, we can assume
b2b3 6= 0 because otherwiseu1,u2,u3,u4 are collinear (⇒ a2 = a3b2/b3). Clearly, also the points
u1,u2,u3,u5 are not allowed to be collinear which impliesa3−x5b3 6= 0. Moreover we can assume
b2 6= b3 because otherwise we getu2 = u3, a contradiction. Due to Theorem 1 also(X2−X3) 6= 0
has to hold, asU2 = U3 yields a contradiction. In addition, we can assumeX2 6= 0 w.l.o.g., because
the corresponding points ofU2 andU3 belong to the triple of collinear points.

2.5. Preparatory computations

In the following we describe how the setE of equations yielding a type II DM self-motion can be
computed explicitly (cf. section 3.2 of [15]). Note that theproof for the general case of Theorem 3
(cf. section 3) is based on this setE .

We solve the linear system of equationsΨ,Ω1,Ω2,Π4 for f0, . . . , f3 and plug the obtained ex-
pressions in the remaining two equations.2 This yields in general two homogeneous polynomials
Ω[40] andΠ[96] in the Euler parameters of degree 2 and 4, respectively. The number in the square
brackets gives the number of terms.

Finally, we compute the resultant ofΩ andΠ with respect to one of the Euler parameters. Here
we choose3 e0. This yields a homogeneous polynomialΓ[117652] of degree 8 ine1,e2,e3. In the
following we denote the coefficients ofei

1,e
j
2,e

k
3 of Γ by Γi jk . We get a setE of 24 equationsΓi jk = 0

in the 14 unknowns (a2, b2, a3, b3, A5, B5, X2, X3, x5, L1, L2, L3, g4, h5).
Moreover, we denote the coefficients ofei

0ej
1,e

k
2,e

l
3 of Ω andΠ by Ωi jkl andΠi jkl , respectively.

Finally, it should be said that all symbolic computations were done with MAPLE 14 on a high-
capacity computer.4

2Fore0e2−e1e3 6= 0 this can be done w.l.o.g., as this factor belongs to the denominator of fi .
3Therefore we are looking for a common factor ofΩ andΠ, which depends one0.
4CPU: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40 GHz, RAM: 8 GB, Hard disk: 2x250 GB, Graphic: nVidia

7x00GT or 8x00GT, Operating system: Linux x64 (Kernel 2.6.18-53)
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3. Proving the general case of Theorem 3

For the general case we have to assumeΩ2000Π3000 6= 0, as only those solutions ofE correspond to
type II self-motions, which do not cause a vanishing of the coefficient of the highest power ofe0 in
Ω or Π. In the following we prove this general case for all types A–Dof collinearity. For each type
the proof is done by contradiction, i.e. we stop the discussion for the cases listed in the respective
subsections (subsection 2.1–2.4) or if the three conditions of Eq. (2) or Eq. (3) are fulfilled.

3.1. Collinearity of type A

Γ800 can only vanish without contradiction (w.c.) forL1 = g4 or for FA[8] = 0.

3.1.1.FA = 0

We can expressL1 from FA = 0. Now we distinguish two cases:
1. L1 6= g4: ThenΓ710 = 0 impliesa2 = a3−X2b2+X3b3. Now Γ620 cannot vanish w.c..

2. L1 = g4: We can computeh5 from the only non-contradicting (non-c.) factor ofΓ602. Now Γ530
can only vanish w.c. for:

a. L3 = X3(L2−b2)/X2 +X3(a2−a3)+b3: We can expressA5 from the only non-c. factor of
Γ422. Again we distinguish two cases:

i. X2b2−X3b3 + a2−a3 6= 0: Now Γ350 has only one non-c. factor, which can be solved
for L2. ThenΓ314 = 0 impliesb3 = 0. Now we getx5 = −X3 from Γ206 = 0. ThenΓ080

can only vanish w.c. for:

⋆ X3 = 0: Now Γ026 = 0 yields the contradiction.

⋆ b2 = X2a2−X3a3, X3 6= 0: Γ026 cannot vanish w.c..

ii. a3 = X2b2−X3b3 +a2: ThenΓ260 = 0 impliesL2 = 2X
2
2b2 +X2a2 +b2. Moreover, we

can solve the only non-c. factor ofΓ242 for x5.

⋆ AssumingX2b3−X3b2 6= 0: Under this assumption we can computea2 from the only
non-c. factor ofΓ080. Now Γ224 = 0 yields the contradiction.

⋆ b3 = X3b2/X2: ThenΓ080 can only vanish w.c. forX3 = 0 orX2 = −X3. In both cases
Γ026 = 0 yields the contradiction.

b. a2 = X3b3−X2b2+a3, X2X3(a2−a3)+X2(b3−L3)−X3(b2−L2) 6= 0: NowΓ440= 0 yields
the contradiction.

3.1.2.FA 6= 0

Now L1 = g4 has to hold. ThenΓ080 factors intoGA[8]HA[16]2.
1. GA[8] = 0: We can expressL1 from GA[8] = 0. NowΓ170 can only vanish w.c. for:

a. a2 = X3b3−X2b2 + a3: We can solve the only non-c. factor ofΓ620 for h5. Now we can
expressL3 from the only non-c. factor ofΓ602.

i. x5 = 0: We distinguish two cases:

⋆ X2b3−X3b2 6= 0: Now we can expressa3 from the only non-c. factor ofΓ260. Then
we can computeA5 from the only non-c. factor ofΓ440. Now Γ404 cannot vanish w.c..

⋆ b3 = X3b2/X2: Now Γ260 can only vanish w.c. forX3 = 0. ThenΓ440 = 0 implies
A5 = −a3. Now we can solve the only non-c. factor ofΓ422 for L2. Finally, Γ026 = 0
yields the contradiction.
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ii. x5 6= 0: Under this assumption we can computeA5 from the only non-c. factor ofΓ260.
Then we can expressL2 from the only non-c. factor ofΓ062. Now the resultant of the
only non-c. factors ofΓ404 andΓ440 with respect toX3 can only vanish w.c. for:

⋆ b3 = 0: NowΓ404 impliesx5 = X3. Finally,Γ026 = 0 yields the contradiction.

⋆ x5 = X3, b3 6= 0: NowΓ440= 0 impliesa3 = X2b3 andΓ404= 0 yields the contradiction.

⋆ a3 = −X2b3, b3(x5−X3) 6= 0: Now Γ404 = 0 impliesb2 = −b3 andΓ440 = 0 yields
the contradiction.

b. VA[16] = 0, X3b3−X2b2−a2+a3 6= 0:

i. x5 = 0: Now we can solveVA = 0 for L3. Then we can computeb3 from the only non-c.
factor ofΓ620. Now Γ602 impliesh5 = 0. Then the difference of the only non-c. factors
of Γ440 andΓ404 can only vanish w.c. forX3 = 0. NowΓ440= 0 impliesa3 =−A5. From
the only non-c. factor ofΓ422 = 0 we expressL2. ThenΓ026= 0 yields the contradiction.

ii. x5 6= 0: Under this assumption we can computeA5 from VA[16] = 0. Then can solve the
only non-c. factor ofΓ620 for h5. Now we can expressL3 from the only non-c. factor of
Γ602. Moreover, we can solve the only non-c. factor ofΓ062 for L2. Now the difference of
the only non-c. factors ofΓ440 andΓ404 can only vanish w.c. forb3 = 0. ThenΓ440 = 0
impliesx5 = X3 andΓ422 = 0 yields the contradiction.

2. HA[16] = 0, GA[8] 6= 0: We distinguish two cases:

a. X2a2−X3a3 6= 0: Under this assumption we can computeh5 from HA[16] = 0.

i. x5 = 0: We can solve the only non-c. factor ofΓ620 for b3. Then we expressL3 from the
only non-c. factor ofΓ602. Then the difference of the only non-c. factors ofΓ440 andΓ404

can only vanish w.c. forX3 = 0. NowΓ440 = 0 impliesa3 = −A5 and fromΓ422 = 0 we
getL1 = −2A5. ThenΓ026 = 0 yields the contradiction.

ii. x5 6= 0: Now we can computeA5 from the only non-c. factor ofΓ620. Moreover, we can
computeL3 from the only non-c. factor ofΓ602. Now the difference of the only non-c.
factors ofΓ440 andΓ404 can only vanish w.c. forb3 = 0. ThenΓ440 = 0 impliesx5 = X3.
Now Γ422 = 0 impliesL1 = 2a3. Finally,Γ242 = 0 yields the contradiction.

b. a2 = X3a3/X2: Now HA can only vanish w.c. forA5x5 +X3a3 = 0.

i. x5 = 0: NowHA = 0 impliesX3 = 0. Then we can expressh5 from the only non-c. factor
of Γ620. Moreover, we can computeL3 from the only non-c. factor ofΓ602. Then the
difference of the only non-c. factors ofΓ440 andΓ404 can only vanish w.c. forb3 = 0.
Now Γ440 = 0 impliesa3 = −A5 and fromΓ422 = 0 we getL1 = −2A5. ThenΓ026 = 0
yields the contradiction.

ii. x5 6= 0: Under this assumption we can solve the last equation forA5. Now we can express
h5 from the only non-c. factor ofΓ620. Then we can computeL3 from the only non-c.
factor ofΓ602. Now the difference of the only non-c. factors ofΓ440 andΓ404 can only
vanish w.c. forb3 = 0. ThenΓ440 = 0 impliesx5 = X3. Now Γ422 = 0 impliesL1 = 2a3.
Finally, Γ242 = 0 yields the contradiction.

3.2. Collinearity of type B–D

For the collinearity of type B, C and D the case study can be done in an analogous way, which is
given in full detail in the corresponding technical report [16].
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4. Proving the special cases of Theorem 3

For the proof of the special casesΩ2000Π3000= 0 ande0e2−e1e3 = 0 (cf. footnote 2) we also refer
to section 4 and 5, respectively, of the corresponding technical report [16], as these case studies
exceed the number of pages for an usual journal article. Nevertheless, we encourage the interested
reader to have a look at [16], as the presented discussion is not trivial.

Note that the discussion of special cases given in [16] finishes the proof of Theorem 3. �

5. Addendum

At the time of writing the convolute of papers [14, 15, 16, 17]and the article at hand, the author
was under the assumption that Duporcq’s theorem (cf. section 1) is correct (under consideration of
the projective closure). However, recent studies on Duporcq’s theorem (cf. [19]) showed, that this
is not the case, which also has the following minor effect on the problem under consideration:

Due to the new result obtained in [19], it can also occur that(ui,Ui) = (u j ,U j) holds fori 6= j
with5 eitheri, j ∈ {1,2,3} or i, j ∈ {4,5,6}, which contradicts the second part of Theorem 1. After
a perhaps necessary renumbering of indices and an exchange of the platform and the base, one can
assume w.l.o.g., that the sixth ”leg” (cf. footnote 1) coincides with the fifth one.

Still, the manipulatoru1, . . . ,U6 is redundant as two ”legs” coincide, but only the pointsu1, . . . ,u5
as well asU1, . . . ,U5 are distinct (cf. Theorem 1). Nevertheless, Lemma 1 is also true for this case
and therefore Theorem 2 holds for this exceptional case as well.6

However, Lemma 2 of [8], which was used in section 2, still holds with the exception, that
the collinearity ofui ,u5,u6 (resp.Ui ,U5,U6) no longer implies the collinearity ofU j ,Uk,Ul (resp.
u j ,uk,ul ) for pairwise distincti, j,k, l ∈ {1, . . . ,4}. This only effects the proof of Theorem 3 in
the way that additionally the collinearity ofu1,u2,u4 has to be checked, as this case is no longer
equivalent with the collinearity of type A. This can be done analogously to the outlined procedure,
which shows that Theorem 3 remains valid for the special case.

Moreover, as the determination of all planar SG platforms with a type II DM self-motion is
based on Theorem 3, also the results within [17] take this exceptional case under consideration.
Therefore, this special case does not cause any additional type II DM self-motions.

This closes the small gap, opened by the new result on Duporcq’s theorem (cf. [19]).

6. Geometric interpretation of the necessary conditions

As noted in [14], the equations Eq. (2) and Eq. (3) arise from the condition thatΩ of subsection 2.5
does not depend one0 ande3 or e1 ande2, respectively. By computingΩ2000+Ω0002, Ω2000−Ω0002
andΩ1001 it can immediately be seen that the conditions of Eq. (2) can also be written as:

L1(X2−X3)−L2+L3 = 0, X2a2−X3a3+b2−b3 = 0, X2b2−X3b3−a2+a3 = 0. (4)

By computingΩ0200+Ω0020, Ω0200−Ω0020 andΩ0110 it can immediately be seen that Eq. (3) can
be rewritten as:

L1(X2−X3)−L2+L3 = 0, X2a2−X3a3−b2 +b3 = 0, X2b2−X3b3+a2−a3 = 0. (5)

In the following we give the geometric interpretation of Eq.(4), which is sketched in Fig. 2a:

5If (ui ,Ui) = (u j ,U j) holds fori ∈ {1,2,3} and j ∈ {4,5,6}, we would end up with four collinear points.
6To be totally correct, we also have to prove Theorem 2 for the special casex5 = 0 (asx5 6= 0 cannot be assumed

any longer w.l.o.g.), which can be done analogously to [14].
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Figure 2: a) Sketch of the geometric interpretation of the necessary conditions. b) Axonometric
view of a line-symmetric Bricard octahedron:1a = (1,0,0), 2a = (5,3,−6), 3a = (−2,−7,−9) and
the line of symmetryl is the z-axis.

I. L1(X2−X3)−L2+L3 = 0 expresses that the three linesti ∈ Σ0 (i = 1,2,3) with homogeneous
line coordinates[Li : Xi : Yi ] have a common pointT (⇒ the three Darboux planes belong to a
pencil of planes).

II. X2b2−X3b3−a2+a3 = 0 expresses that the three linessi := [ui,Ui] (i = 1,2,3) with Ui = (0 :
Xi : Yi) have a common pointS.

III. X2a2−X3a3+b2−b3 = 0 expresses that the three liness⊥i := [ui,U
⊥
i ] (i = 1,2,3) with U

⊥
i =

(0 :−Yi : Xi) have a common pointS⊥.
Note that the items II and III only hold if the coordinate systems of the platform and base are chosen
according to Lemma 1 and if these two coordinate systems coincide.

The geometric interpretation of Eq. (5) is equivalent with the one given above, if one rotates
the platform about the x-axis with angleπ . Therefore the two triples of necessary conditions are
connected by this rotation, which is represented in the Euler parameter space by the transformation
(cf. [10]): (e0,e1,e2,e3) 7→ (−e1,e0,−e3,e2).

Remark 1 It is interesting to note, that the given necessary conditions only arise from the three
Darboux constraints. A purely geometric proof of the necessity of these conditions for a type II DM
self-motion of a general planar SG platform seems to be a complicated task. ⋄

6.1. Line-symmetric Bricard octahedra

We denote the vertices of the line-symmetric Bricard octahedron [3] by1a, 1b, 2a, 2b, 3a, 3b, where
va andvb are symmetric with respect to the linel for v ∈ {1,2,3} (see Fig. 2b). Moreover,εi jk

denotes the face spanned by1i ,2 j ,3k with i, j,k ∈ {a,b}. Under consideration of this notation we
can formulate the following theorem, which is illustrated in Fig. 3:

Theorem 4 Every line-symmetric Bricard octahedron has the property that the following three
planes, orthogonal toεi jk , have a common lineTi jk :
⋆ plane orthogonal to[1i,2 j ] though3k′ where k6= k′ ∈ {a,b},

⋆ plane orthogonal to[2 j ,3k] though1i′ where i 6= i′ ∈ {a,b},

⋆ plane orthogonal to[3k,1i] though2 j ′ where j 6= j ′ ∈ {a,b}.
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1a1b

l
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2b
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TbaaTaab
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Taba Tbab

Figure 3: a) Illustration of Theorem 4 on the basis of the octahedron given in Fig. 2b fori = j = k=
a, whereTaaa is printed betweenεaaa andεbbb. b) All eight possible axesTi jk of this octahedron
are drawn betweenεi jk andεi′ j ′k′ .

Proof: It was already proven by the author in Corollary 1 of [15] thatthe continuous flexion of a line-
symmetric Bricard octahedron is a type II DM self-motion. Then the theorem follows immediately
by item I. �

7. Conclusion

In this article we have proven the necessity of three conditions for obtaining a type II DM self-
motion of a general planar SG platform (cf. Theorem 3). Moreover, we also gave a geometric inter-
pretation of these conditions (cf. section 6), which identified a property of line-symmetric Bricard
octahedra, which was not known until now, to the best knowledge of the author (cf. Theorem 4).

Finally, it should be noted that Theorem 3 is the key for the determination of all planar SG
platforms with a type II DM self-motion (cf. [17]).
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