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Abstract. Due to a previous publication of the author, it is alreadywnadhat one-
parametric self-motions of Stewart Gough platforms withnglr base and planar plat-
form can be classified into two so-called Darboux Mannheiriv)Bypes (I and II).
Moreover, the author also presented a method for computmgét of equations yield-
ing a type Il DM self-motion explicitly. Based on these egoa$ we prove in this
article the necessity of three conditions for obtainingety DM self-motion. Finally,
we give a geometric interpretation of these conditions,citalso identifies a prop-
erty of line-symmetric Bricard octahedra, which was notwnaintil now, to the best
knowledge of the author.
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1. Introduction

The geometry of a Stewart Gough (SG) platform with planaeksasd planar platform (which is
also known as planar SG platform) is given by the six base @nphints M; with coordinates
M; := (A, B;,0)T with respect to the fixed systelp and by the six platform anchor pointg with
coordinatesm; := (a;,b;,0)T with respect to the moving systel (cf. Fig. 1). By using Study
parametergey:...:e3: fo:...: f3) for the parametrization of Euclidean displacements, thoedio
natesm; of the platform anchor points with respectigcan be written aKkm/ = Rm; + (tl,tz,tg)T
with

t1 = 2(epfr—erfo+exfz—esfy), to =2(epfo —exfo+e3fr —erfa),

t3=2(epfz—esfo+ e fr—exfy), K=ej+el+e5+65+£0 and
B+ -e—-6 2eer—ees) 2(e1e3+epey)

R:(I’ij): .

2ee+ o) G-+ -6 2(ee3—epe)
2(e163— €082)  2(e263+ €0€1) €€ S+

Now all points of the real 7-dimensional spaﬁg which are located on the so-called Study quadric
W: 53 e fi =0, correspond to an Euclidean displacement, with excepfitite three-dimensional
subspacey = ... = e3 =0 of ¥, as its points cannot fulfill the normalizing conditi&n= 1.
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Figure 1: Sketch of a planar SG platform, ..., Me.
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If the geometry of the manipulator is given as well as the sgklengths, then the SG platform
is generically rigid, but under particular conditions, thanipulator can perform amparametric
motion (1 > 0), which is called self-motion. Note that such motions dse golutions to the still
unsolved problem posed 1904 by the French Academy of Sciemndge Prix Vaillant, which is
also known as Borel Bricard problem (cf. [1, 4, 6, 10]) andiseas follows:

"Determine and study all displacements of a rigid body in evhdistinct points of the body
move on spherical paths.”

Especially those rigid-body motions are of interest, whragge than five points possess spher-
ical trajectories. In this context, we only want to mentibe tvell-known theorem of Duporcq [5],
which can be formulated in the following way:

"If five points of a planeP move on five fixed spheres whose centers lie on a fixed platien
there exist orP a sixth point which also describes such a sphere.”

1.1. Types of self-motions

In this and the next subsection we sketch the results and afe¢he central work [15] in this context.

It is already known, that manipulators which are singulagvery possible configuration, pos-
sess self-motions in each pose (0Ugr As these so-called architecturally singular SG plat®are
well studied and classified (for the planar case we refer,t®2820, 21] and for the non-planar case
note [9, 13]), we are only interested in non-architectyrsilhgular SG platforms with self-motions.
Until now only few self-motions of this type are known, asitl@mputation is a very complicated
task. To the best knowledge of the author, a complete andatetaview of these self-motions was
given in [18].

Due to the publications [7, 11], it is known that the sétof additional legs, which can be
attached to a given planar SG platform, ..., Mg without restricting the forward kinematics, is
determined by a linear system of equations given in Eq. (80)1. As the solvability condition
of this system is equivalent to the criterion given in Eq.)(@2[2], also the singularity surface of
the manipulator does not change by adding leggofMoreover, it was shown in [11], that in the
general case” is one-parametric and that the base anchor pditas well as the corresponding
platform anchor points; of .# are located on planar cubic curvésndc, respectively.

Assumption 1 We assume that there exist such cukiesid C (which can also be reducible) in the
Euclidean domain of the platform and the base, respectively
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Now, we consider the complex projective extensRirof the Euclidean 3-spadg?, i.e.

Xi yi Xi Yi
ai_Wi7 bl—WiyAi_W7 BI—Wv (1)
and replacing the coordinatés;, b, 0)" of m; and(A;,B;,0)" of M; by homogeneous coordinates
(Wi :x :yi:0)T and(W : X : Y : 0)T, respectively. Note that ideal points of the platform (hase
are characterized by; = 0 W = 0). Therefore, we denote in the remainder of this article the
coordinates of anchor points, which are ideal pointsxby; andX;,Y;, respectively. For finite
anchor points we use the coordinasgd; andA;, B, respectively.

The correspondence between the point§ ahdc in P2, which is determined by the geometry
of the manipulatoms, ..., Mg, can be computed according to [7, 11] or [2] under considarat
of Eg. (1). As this correspondence has not to be a bijectigpgiat € Pé of ¢ (resp.C) is in
general mapped to a non-empty set of poi@lﬁé of C (resp.c). We denote this set by the term
corresponding locatiomnd indicate this fact by the usage of bracelets Moreover, it should be
noted that the corresponding location of a real point costeeal points as well.

In Pé the cubicC has three ideal pointsy, U, U3, where at least one of these points (&lg)
is real. The remaining pointd, and Uz are real or conjugate complex. Then we compute the
corresponding locationfu1 }, {uz},{us} of c (= {u1} contains real points). We denote the ideal
points ofc by ug, us, ug, Where again one (e.g4) has to be real. The remaining pointsandug are
again real or conjugate complex. Then we compute the cayneipg locationgUas},{Us},{Us}
of C (= {U4} contains real points).

Assumption 2 For guaranteeing a general case, we assume that each of tinesponding loca-
tions{us}, {uz}, {us},{Us}, {Us}, {Us} consists of a single point. Moreover, we assume that no
four collinear platform anchor points; or base anchor pointsj (j = 1,...,6) exist.

Now the basic idea can simply be expressed by attaching #aadplegs? uiU; € £ with
i =1,...,6 to the manipulatomy,...,Mg, which have the following kinematic interpretation (cf.
[15]): The attachment of the "legiiU; for i € {1,2,3} corresponds with the so-called Darboux
constraint, that the platform anchor poiptmoves in a plane of the fixed system orthogonal to
the direction of the ideal pointi. Moreover, the attachment of the "legiU; for i € {4,5,6}
corresponds with the so-called Mannheim constraint, tipdéae of the moving system orthogonal
to u; slides throughU;. Note that this Mannheim condition is the inverse of the Darsbcondition.

By removing the originally six legsiM; with i = 1,...,6 we remain with the manipulator
us, ..., Us, which is uniquely determined due to Assumption 1 and 2. ideee, under consideration

of Assumption 1 and 2, the following statement holds (cf]J15

Theorem 1 The manipulatous, ..., Ug is redundant and therefore architecturally singular. More
over, all anchor points of the platform, ..., ug and as well of the base1, ..., Ug are distinct.

It was also proven in [15] that there only exist type | and typpParboux Mannheim (DM)
self-motions, where the definition of types reads as foltows

Definition 1 Assume# is a one-parametric self-motion of a non-architecturaitygilar SG plat-
formmsy,...,Mg. Then.# is of the type n DM if the corresponding architecturally sitey manip-
ulatorug,...,Ug has an n-parametric self-motio# (which includes#'). Note that the numbering
of types is done with Roman numerals; i.e=h,IlI,...

We have to quote the word legs in this context, as it is impis$o attach physical legs with infinite length to the
platform.
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1.2. Type Il DM self-motions

In the remainder of the article we only study type Il DM selétions. The author [15] was already
able to compute the set of equations yielding a type || DM-ga&stion explicitly. This symbolic
computation, which is repeated in subsection 2.5, is basddeoanalytical versions of the Darboux
and Mannheim constraints, which are given next:

Darboux constraint:  The constraint that the platform anchor paipfi = 1,2, 3) moves in a plane
of the fixed system orthogonal to the direction of the ideahpd; can be written as (cf. [15])

Qi Xi(aria+biriz+t1) +Yi(airzi +birpa+t2) + LIK = 0,

with X, Y;,a, bj, L € C. Thisis ahomogeneous quadratic equation in the Study deasny, . . ., f3,
whereX; andY; denote the conjugate complexXfandy;, respectively.

Mannheim constraint: The constraint that the plane orthogonaluto(i = 4,5, 6) through the
platform point(g;, h;,0) slides through the poind; of the fixed system can be written as (cf. [15])

_|_
-0,

M Xi[Ari+Birar — gK — 2(epf1 — €1 fo — e2f3 + €3f2)]
VilAri2+Birso —hiK —2(epfo + €1 f3 — €2 fo — e3fy)]
with x;, i, A, Bi, gi, hi € C. This is again a homogeneous quadratic equation in the $adyneters
€, ..., f3, wherex; andy; denote the conjugate complexxgfandy;.
The content of the following lemma was also proven in [15]:

Lemma 1 Without loss of generality (w.l.0.g.) we can assume thaatgebraic variety of the two-
parametric self-motion of the manipulatot, ..., Ug is spanned bW, Q1,Q2, Q3,My4,Ms. More-
over, we can choose following special coordinate systerig and= w.l.o.g.: X =Yo =Yz =Xx4 =
ys=landa=Dby=ys=A4=Bs=Yy=hy=05=0.

An important step in direction of a complete classificatibtype 11 DM self-motions was done
by the following basic result, which was proven in [14]:

Theorem 2 If the corresponding manipulatan, . . ., Ug of a planar SG platform (fulfilling Assump-
tions 1, 2 and Lemma 1) with a type 1l DM self-motion does niéitifneither the three equations

L1(X2 —X3) —L2a+L3z =0, ax(Xz—X3)+X3(Xzby —Xzbg) +by—bz =0, )
ag(X2 — X3) + X2(Xabp — X3bs) + by — bz =0,
nor the three equations
L1(X2—X3) —Lo+L3 =0, ax(Xz—Xz) —X3(Xoby —X3bz) —by+bs =0, 3)

a3(X2 - Yg) - Xz(izbg - ngg) —by+b3=0,

then it has to have further three collinear anchor pointshe base or in the platform beside the
pointsUj, U2, Uz andug, us, ug.

Based on this theorem we prove the following much strongarltevithin this article:

Theorem 3 The corresponding manipulatat, . .., Ug of a planar SG platform (fulfilling Assump-
tions 1, 2 and Lemma 1) with a type Il DM self-motion has tolfulfe three conditions either of
Eq. (2) or Eq. (3).
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2. Preparatory work for the proof of Theorem 3

For the proof of Theorem 3 we have to show that there existemesponding manipulatat, . .., Ug
of a planar SG platform (fulfilling Assumptions 1, 2 and Lemm)avith a type Il DM self-motion,
which does not fulfill either the three conditions of Eq. (2)Hg. (3).

Due to Theorem 2 and due to Lemma 2 of [8] we can even restrictetues to manipula-
torsug,...,Us, which have three collinear platform pointsuj, ux and three collinear base points
Uy, Um, Un beside the pointd1, U, Uz andug, us, ug where(i, j,k, I, m,n) consists of all indices from
1to 6.

As we have different types of anchor points (real, complettd;j infinite), we have to distin-
guish the following four cases of three collinear pointss{te the tripledJ1, U2, U3 andug, us, ug):

A. U, U4, Us collinear & up,us, ug collinear): Asus andug are both real or conjugate complex,
this case is equivalent i@, uz, us collinear ¢& U1, Uy, Ug collinear).

Moreover, by exchanging the platform and the base the abwwoecases are also equivalent

to u1,up,uy collinear & Us, Us, Ug collinear) anduq, uz, us collinear ¢ U,, Us, Ug collinear),

respectively.

B. Uy, U4, Us collinear & u1,us, ug collinear): Asus andug are both real or conjugate complex,
this case is equivalent 10, us, us collinear ¢ Uz, Ua, Ug collinear).
Moreover, adJ, and U3 are both real or conjugate complex, these cases are alscakui
to U3, Uy, Us collinear ¢ uy,us,ug collinear) anduy, up, us collinear ¢ Uz, Ug, Ug collinear),
respectively.

. up,us,uy collinear (& U1, Us, Ug collinear)

ug, u2,us collinear ¢ Uy, Us, Ug collinear)
In the following we discuss these four types A-D in more detai

o 0

2.1. Collinearity of type A

U1, Us, Us are collinear foBs = 0. As due to Assumption 2 no four platform anchor pointer
base anchor pointd; are allowed to be collinear, we can stop the discussion & &/:

e up,u3,ug collinear & by, — bz =0),

e u1,up,uz collinear & axbs — agb, = 0),

e up,us,us collinear (& xs(bp —bz) —ax+az = 0),

because then the pointk, Us, Us, Ug are collinear due to Lemma 2 of [8], which yields a contra-
diction. Due to Theorem 1 alsés(X; — X3) # 0 has to hold, as otherwise the base anchor points
are not pairwise distinct. Finally, we can assuxae# 0 w.l.0.g., because both poirtis andU3 do

not belong to the triple of collinear points.

2.2. Collinearity of type B

Uz, U4, Us are collinear forAs = XoBs. Now we can stop the discussion of case B if:

e u1,up,uz collinear & axbs —agb, = 0),

e uj,us,ug collinear & bz =0),

e u1,u3,us collinear & az — xshs = 0),

because then the poirltis, Uy, Us, Ug are collinear, a contradiction. Due to Theorem 1 &50<; —
X3) # 0 has to hold, as otherwise the base anchor points are naigailistinct. Moreover, we can
stop the discussion of case B\Up is real (& X, € R, especiallyX; = 0) because then this case is
equivalent to case A.
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2.3. Collinearity of type C

up,us,uq are collinear fob, = bs. We can stop the discussion of case Uif U4, Us are collinear
(& Bs = 0), because then the poinis, us, us, ug are collinear, a contradiction. Moreovies # 0
has to hold because otherwise u»,us,us are collinear, a contradiction. Due to Theorem 1 also
(ap —ag) (X2 — X3) # 0 has to hold, as, = uz resp.U, = U3 yield a contradiction. In addition, we
can assum& # 0 w.l.0.g., because the corresponding point§paindU3 belong to the triple of
collinear points.

We can also assume thag, U4, Us are not collinear€ As — XoBs # 0), because this case was
already discussed in case B.

2.4. Collinearity of type D

u1,u2,us are collinear folmybz — azb, = 0. Now we can stop the discussion of case D if:

e Uq,U4,Us collinear (& Bs = 0),

e Uz, Uy, Us collinear (& As — XoBs = 0),

e U3, U4, Us collinear & As — X3Bs = 0),

because then the pointg,u»,u3,ug are collinear, a contradiction. Moreover, we can assume
bobs # 0 because otherwiseg, up, usz, us are collinear £ ap = agby/bs). Clearly, also the points
u1,u2,us, us are not allowed to be collinear which implias— xsbs % 0. Moreover we can assume
by # bz because otherwise we get = ug, a contradiction. Due to Theorem 1 ale — X3) # 0

has to hold, a¥/, = U3 yields a contradiction. In addition, we can assufae“ 0 w.l.0.g., because
the corresponding points tf, andUs belong to the triple of collinear points.

2.5. Preparatory computations

In the following we describe how the sé&tof equations yielding a type 1l DM self-motion can be
computed explicitly (cf. section 3.2 of [15]). Note that theof for the general case of Theorem 3
(cf. section 3) is based on this s€t

We solve the linear system of equatidfdsQq, Qo M4 for fy,..., f3 and plug the obtained ex-
pressions in the remaining two equatiénhis yields in general two homogeneous polynomials
Q[40] andlM[96] in the Euler parameters of degree 2 and 4, respectively. Thar in the square
brackets gives the number of terms.

Finally, we compute the resultant ©fandll with respect to one of the Euler parameters. Here
we choos@ g. This yields a homogeneous polynomiidll17 652 of degree 8 irey, &, €3. In the
following we denote the coefficients df, e’z, % of I by Ijjx. We get a set’ of 24 equation$x =0
in the 14 unknownsab, by, as, bs, As, Bs, X2, X3, Xs, L1, L2, L3, g4, hs).

Moreover, we denote the coefficientseye}, €, €; of Q and by Qjjq andlMjq, respectively.

Finally, it should be said that all symbolic computationgevdone with NAPLE 14 on a high-
capacity computef.

2Foreyes — e1e3 # 0 this can be done w.l.0.g., as this factor belongs to the méraior of f;.

3Therefore we are looking for a common factorfindrl, which depends ogg.

4CPU: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40 GHz, RAM: 8 GRydHdisk: 2x250 GB, Graphic: nVidia
7xX00GT or 8x00GT, Operating system: Linux x64 (Kernel 23865B)
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3. Proving the general case of Theorem 3

For the general case we have to ass@pgd 130007 0, as only those solutions &f correspond to
type Il self-motions, which do not cause a vanishing of theflccient of the highest power @& in

Q orT1. In the following we prove this general case for all types Aeflzollinearity. For each type
the proof is done by contradiction, i.e. we stop the disarsor the cases listed in the respective
subsections (subsection 2.1-2.4) or if the three conditadrieq. (2) or Eq. (3) are fulfilled.

3.1. Collinearity of type A

I"soo can only vanish without contradiction (w.c.) fof = g4 or for F4[8] = 0.

3.1.1.Fo=0

We can expresk; from Fa = 0. Now we distinguish two cases:
1. L1 # ga: Thenl710= 0 impliesa, = ag — Xob, + X3bz. Now Mgog cannot vanish w.c..

2. L1 = g4: We can computés from the only non-contradicting (non-c.) factoriofp,. Now IM's39
can only vanish w.c. for:
a. L3 = X3(L2 —by) /X2 + X3(az — ag) + bs: We can expres8s from the only non-c. factor of
I"422. Again we distinguish two cases:
i. Xobp —X3zbs+a, —ag # 0: Now M350 has only one non-c. factor, which can be solved

for Lo. Thenl314= 0 impliesbs = 0. Now we getxs = —X3 from IN';06 = 0. Thenl ggp
can only vanish w.c. for:

* X3 =0: Now I o6 = 0 yields the contradiction.
* by = Xpap — X3ag, X3 # 0: [gpg Cannot vanish w.c..

ii. ag= Xohy — X3bz+ay: Thenlygp = 0 impliesL, = 2Y§b2 + Xoap +by. Moreover, we
can solve the only non-c. factor bf42 for Xs.

* AssumingX,bs — X3by # 0: Under this assumption we can compagdgrom the only
non-c. factor of ggg. Now IN'>24 = 0 yields the contradiction.

x bz = X3byp/X5: Thenlggp can only vanish w.c. foKz = 0 or X, = —X3. In both cases
INo26 = O yields the contradiction.
b. ay = X3bz — Xoby+ag, XoX3(ag —ag) + Xz (bg —Lg) — X3(bp —Ly) # 0: NowT 449 = 0 yields
the contradiction.

3.1.2.Fa#£0

Now L1 = g4 has to hold. Thelli ggo factors intoGa[8]Ha[16]2.
1. Ga[8] = 0: We can expreds; from Ga[8] = 0. Now[ 1709 can only vanish w.c. for:

a. ap = X3bz — Xoby +az: We can solve the only non-c. factor bfog for hs. Now we can
expresd.3 from the only non-c. factor df gg».

I. x5 = 0: We distinguish two cases:
*x Xobz — X3zby # 0: Now we can expresag from the only non-c. factor of ,60. Then
we can computés from the only non-c. factor df 440. Now I" 404 Cannot vanish w.c..
x bz = X3bp/X5: Now Iz can only vanish w.c. fokz = 0. Thenl 440 = 0 implies
As = —az. Now we can solve the only non-c. factorofz, for Ly. Finally, M'gos =0
yields the contradiction.
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ii. X5 # 0: Under this assumption we can compétefrom the only non-c. factor of »g0.
Then we can expreds from the only non-c. factor of gg>. Now the resultant of the
only non-c. factors of 404 andl 440 With respect toX3 can only vanish w.c. for:

* b3 =0: Now T 404 impliesxs = Xs. Finally, g2 = 0 yields the contradiction.
* X5 =Xz, b3 # 0: NowT 449= 0 impliesaz = X,bz andl 404 = 0 yields the contradiction.

* agz = —Yzbg, b3(X5 — Xg) #0: NowTl404=0 impliesb2 = —bzandlsy =0 yields
the contradiction.

b. VA[lG] =0, X3b3 —Xzbg —apt+az#0:

i. Xxs = 0: Now we can solv&/s = 0 for L3. Then we can computes from the only non-c.
factor ofMgo. Now INgg2 implieshs = 0. Then the difference of the only non-c. factors
of I 440 @andr 404 can only vanish w.c. foXz = 0. NowT 440= 0 impliesaz = —As. From
the only non-c. factor df 42> = 0 we express,. Thenl oo = 0 yields the contradiction.

ii. X5 # 0: Under this assumption we can compAtefrom Va[16] = 0. Then can solve the
only non-c. factor of gy for hs. Now we can expreds; from the only non-c. factor of
IM602. Moreover, we can solve the only non-c. factofgg, for L,. Now the difference of
the only non-c. factors df 449 andrl 404 can only vanish w.c. fobz = 0. Thenlg40=0
impliesxs = X3 andl 422 = 0 yields the contradiction.

2. Ha[16] = 0, Ga[8] # 0: We distinguish two cases:
a. Xpap — X3ag # 0: Under this assumption we can comphggrom Ha[16] = 0.

i. Xxs = 0: We can solve the only non-c. factor [o§»g for bs. Then we expresiss from the
only non-c. factor of gg2. Then the difference of the only non-c. factord afipandrl 404
can only vanish w.c. foKz = 0. Now 2490 = 0 impliesaz = —As and froml 40, = 0 we
getL, = —2As. Thenl g2 = 0 yields the contradiction.

ii. x5 0: Now we can computés from the only non-c. factor df go9. Moreover, we can
computelz from the only non-c. factor of gg>. Now the difference of the only non-c.
factors ofl 440 andr 404 can only vanish w.c. fobz = 0. Thenl 440 = 0 impliesxs = Xs.
Now IM422 = 0 impliesL1 = 2az. Finally, 242 = 0 yields the contradiction.

b. a; = X3a3/X2: Now Hp can only vanish w.c. foAsXs + Xzaz = 0.

i. X5 =0: NowHa = 0 impliesX3 = 0. Then we can expresg from the only non-c. factor
of g2o. Moreover, we can compule; from the only non-c. factor of ggo. Then the
difference of the only non-c. factors 6f40 andl 404 can only vanish w.c. fobz = 0.
Now 440 = 0 impliesaz = —As and froml 420 = 0 we getL; = —2As. Thenlgog=0
yields the contradiction.

ii. x5 0: Under this assumption we can solve the last equatioAgoNow we can express
hs from the only non-c. factor of 9. Then we can computes from the only non-c.
factor ofMgg2. Now the difference of the only non-c. factorsiofso andl 404 can only
vanish w.c. fos = 0. Thenl 440 = 0 impliesxs = X3. Now 422 = 0 impliesL; = 2as.
Finally, I'»242 = 0 yields the contradiction.

3.2. Collinearity of type B-D

For the collinearity of type B, C and D the case study can beedoran analogous way, which is
given in full detail in the corresponding technical repd®].
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4. Proving the special cases of Theorem 3

For the proof of the special cas@spod13000= 0 andeye, — e1e3 = 0 (cf. footnote 2) we also refer
to section 4 and 5, respectively, of the corresponding teahmneport [16], as these case studies
exceed the number of pages for an usual journal article. ilesless, we encourage the interested
reader to have a look at [16], as the presented discussiar tswial.

Note that the discussion of special cases given in [16] fesghe proof of Theorem 3. [

5. Addendum

At the time of writing the convolute of papers [14, 15, 16, &Ad the article at hand, the author
was under the assumption that Duporcq’s theorem (cf. seddidgs correct (under consideration of
the projective closure). However, recent studies on Dupstbeorem (cf. [19]) showed, that this
is not the case, which also has the following minor effectta@ngroblem under consideration:

Due to the new result obtained in [19], it can also occur that;) = (uj,Uj) holds fori # j
with® eitheri, j € {1,2,3} ori, j € {4,5,6}, which contradicts the second part of Theorem 1. After
a perhaps necessary renumbering of indices and an exchatigepatform and the base, one can
assume w.l.0.g., that the sixth "leg” (cf. footnote 1) cades with the fifth one.

Still, the manipulatouq, . .., Ug is redundant as two "legs” coincide, but only the points . ., us
as well adly, ..., Us are distinct (cf. Theorem 1). Nevertheless, Lemma 1 is alsofor this case
and therefore Theorem 2 holds for this exceptional case ASwe

However, Lemma 2 of [8], which was used in section 2, stilldsoWith the exception, that
the collinearity ofuj,us,us (resp.Ui, Us,Us) no longer implies the collinearity dfj, U, U, (resp.
uj,uk,u) for pairwise distincti, j,k,1 € {1,...,4}. This only effects the proof of Theorem 3 in
the way that additionally the collinearity af, u2,us has to be checked, as this case is no longer
equivalent with the collinearity of type A. This can be domal@gously to the outlined procedure,
which shows that Theorem 3 remains valid for the special.case

Moreover, as the determination of all planar SG platformthwi type 11 DM self-motion is
based on Theorem 3, also the results within [17] take thiggtkenal case under consideration.
Therefore, this special case does not cause any additygelitDM self-motions.

This closes the small gap, opened by the new result on Dujgdiegprem (cf. [19]).

6. Geometric interpretation of the necessary conditions

As noted in [14], the equations Eqg. (2) and Eq. (3) arise froendondition thaf of subsection 2.5
does not depend @ andes or e; andey, respectively. By computin@2000+ Q0002 Q2000— Qooo2
andQ1gp1 it can immediately be seen that the conditions of Eg. (2) ¢tsmlze written as:

Li(X2—X3) —Lo+L3=0, Xzap—Xgag+by—b3=0, Xyby—Xszbz—ap+az=0. (4)

By computinnggoo+ Q0020 Q0200— Qoo20andQp1101t can immediately be seen that Eq. (3) can
be rewritten as:

Ll(Yz — Yg) —Lo+L3=0, Xsap—Xzazg—bp+b3=0, Xob,—Xszbz+a—az=0. (5)

In the following we give the geometric interpretation of E4j), which is sketched in Fig. 2a:

SIf (uj,Uj) = (uj,U;) holds fori € {1,2,3} andj € {4,5,6}, we would end up with four collinear points.
6To be totally correct, we also have to prove Theorem 2 for feeisl cases = 0 (asxs # 0 cannot be assumed
any longer w.l.o.g.), which can be done analogously to [14].
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a) b)

3a

Figure 2: a) Sketch of the geometric interpretation of theessary conditions. b) Axonometric
view of a line-symmetric Bricard octahedroly = (1,0,0), 25 = (5,3,—6), 3a = (—2,—7,—9) and
the line of symmetry is the z-axis.

l. L1(X2—X3) — Lo+ L3 =0 expresses that the three lings g (i = 1, 2,3) with homogeneous
line coordinatesL; : X; : Yi] have a common point (= the three Darboux planes belong to a
pencil of planes).

Il. Xzby —X3bs —a +ag = 0 expresses that the three lings= [uj, U] (i = 1,2,3) with U; = (0 :
Xi :Yj) have a common poirg.

ll. Xpap — X3ag+ by — bz = 0 expresses that the three lings:= [u; ,Uf] (i=1,2,3) with Uf =
(0:—Y; : Xj) have a common poirg".
Note that the items Il and Il only hold if the coordinate sysits of the platform and base are chosen
according to Lemma 1 and if these two coordinate systemickan
The geometric interpretation of Eq. (5) is equivalent wiile bne given above, if one rotates
the platform about the x-axis with angfe Therefore the two triples of necessary conditions are
connected by this rotation, which is represented in theBpdeameter space by the transformation

(cf. [10]): (o, €1,€2,€3) — (—€1,€0, —€3,€2).

Remark 1 It is interesting to note, that the given necessary condgionly arise from the three
Darboux constraints. A purely geometric proof of the neitgsds these conditions for a type || DM
self-motion of a general planar SG platform seems to be a toatped task. o

6.1. Line-symmetric Bricard octahedra

We denote the vertices of the line-symmetric Bricard oafatwe [3] by 14, 1p, 2a, 2b, 3a, 3p, Where
va andvy are symmetric with respect to the limdor v € {1,2,3} (see Fig. 2b). Moreovesg;ik
denotes the face spanned hy2;,3, with i, j,k € {a,b}. Under consideration of this notation we
can formulate the following theorem, which is illustrataedrig. 3:

Theorem 4 Every line-symmetric Bricard octahedron has the propehiat tthe following three
planes, orthogonal t@jj,, have a common lin&;y:

* plane orthogonal td1;,2;] though3, where k# k' € {a,b},

* plane orthogonal td2;, 3] thoughl; where i i’ € {a,b},

= plane orthogonal td3y, 1] though2;; where j# |’ € {a,b}.
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bbb
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Figure 3: a) lllustration of Theorem 4 on the basis of the loethion given in Fig. 2b far=j =k =
a, whereTaaa is printed betweel,a andeéyyy,. b) All eight possible axesijk of this octahedron
are drawn betweegx andgy j.

Proof: It was already proven by the author in Corollary 1 of [15] ttet continuous flexion of a line-
symmetric Bricard octahedron is a type Il DM self-motion.eftthe theorem follows immediately
by item I. ]

7. Conclusion

In this article we have proven the necessity of three comwltifor obtaining a type Il DM self-
motion of a general planar SG platform (cf. Theorem 3). Muezpwe also gave a geometric inter-
pretation of these conditions (cf. section 6), which idiedi a property of line-symmetric Bricard
octahedra, which was not known until now, to the best knogdeaf the author (cf. Theorem 4).

Finally, it should be noted that Theorem 3 is the key for theexeination of all planar SG
platforms with a type Il DM self-motion (cf. [17]).

Acknowledgement The work of the author is supported by Grant No. | 408-N13 efAustrian
Science Fund FWF within the project “Flexible polyhedra énagneworks in different spaces”, an
international cooperation between FWF and RFBR, the Ru$andation for Basic Research.

References

[1] Borel, E.: Mémoire sur les @placementa trajectoires spariques Mémoire présenteés par
divers savants a I’Académie des Sciences de I'Institaiddal de Franc83(1) 1-128 (1908).

[2] Borras, J., Thomas, F., Torras, Gingularity-invariant leg rearrangements in doubly-p&an
Stewart-Gough platform#n Proc. of Robotics Science and Systems, Zaragoza, SHal0).

[3] Bricard, R.: Mémoire sur la teorie de I'octadre articuk, Journal de Mathématiques pures
et appliquées, Liouvill@ 113-148 (1897).

[4] Bricard, R.: Mémoire sur les @placementa trajectoires sphriques Journal deEcole Poly-
techniquell 1-96 (1906).



12 G. Nawratil: Necessary conditions for type Il DM self-mat®of planar Stewart Gough platforms

[5] Duporcq, E.:Sur la correspondance quadratique et rationnelle de deuxdsgplanes et sur
un deplacement remarquahl€omptes Rendus des Séances de ’Académie des SciE2ges
1405-1406 (1898).

[6] Husty, M.: E. Borel's and R. Bricard’s Papers on Displacements with Sal Paths and
their Relevance to Self-Motions of Parallel Manipulatdrg. Symp. on History of Machines
and Mechanisms (M. Ceccarelli ed.), 163-172, Kluwer (2000)

[7] Husty, M., Mielczarek, S., Hiller, M.:A redundant spatial Stewart-Gough platform with a
maximal forward kinematics solution sétdvances in Robot Kinematics: Theory and Appli-
cations (J. Lenarcic, F. Thomas eds.), 147-154, KluwerZ200

[8] Karger, A.. Architecture singular planar parallel manipulatarlechanism and Machine
Theory38(11) 1149-1164 (2003).

[9] Karger, A.: Architecturally singular non-planar parallel manipulat Mechanism and Ma-
chine Theory43(3) 335-346 (2008).

[10] Karger, A.: Parallel manipulators and Borel-Bricard problen€computer Aided Geometric
Design, Special Issue: Advances in Applied Geometry (Blelii M. Lavicka, O. Roschel
eds.)27(8) 669—-680 (2010).

[11] Mielczarek, S., Husty, M.L., Hiller, M.:Designing a redundant Stewart-Gough platform
with a maximal forward kinematics solution sét Proc. of the International Symposion of
Multibody Simulation and Mechatronics (MUSME), Mexico ZiMexico (2002).

[12] Nawratil, G.:On the degenerated cases of architecturally singular ptarzaallel manipula-
tors, Journal for Geometry and Graphit2(2) 141-149 (2008).

[13] Nawratil, G.: A new approach to the classification of architecturally siteg parallel ma-
nipulators Computational Kinematics (A. Kecskemethy, A. Muller §0849-358, Springer
(2009).

[14] Nawratil, G.: Basic result on type Il DM self-motions of planar Stewart Glouplat-
forms Mechanisms, Transmissions, Applications (E.Chr. LoyBsZXorves eds.), 235-244,
Springer (2011).

[15] Nawratil, G.: Types of self-motions of planar Stewart Gough platforMeccanica, DOI:
10.1007/s11012-012-9659-6, SpringerLink (2012).

[16] Nawratil, G.: Necessary conditions for type Il DM self-motions of plangvw&rt Gough
platforms Technical Report No. 219, Geometry Preprint Series, Tunge(2011).

[17] Nawratil, G.: Planar Stewart Gough platforms with a type Il DM self-motidournal of
Geometryl02(1) 149-169 (2011).

[18] Nawratil, G.: Review and recent results on Stewart Gough platforms witimsations Ap-
plied Mechanics and Material$$2151-160 (2012).

[19] Nawratil, G.: Correcting Duporcq’s theorepTechnical Report No. 224, Geometry Preprint
Series, TU Vienna (2012).

[20] Roschel, O., Mick, S.:Characterisation of architecturally shaky platforma&dvances in
Robot Kinematics: Analysis and Control (J. Lenarcic, M.lugty eds.), 465-474, Kluwer
(1998).

[21] Wohlhart, K.:From higher degrees of shakiness to mobjliechanism and Machine Theory
45(3) 467-476 (2010).

Received



