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Abstract

Due to previous publications of the author, it is alreadywndhat one-parametric self-motions of general planar
Stewart Gough platforms can be classified into two so-c@i@dboux Mannheim (DM) types (I and Il). Moreover, the
author also presented a method for computing the set ofieqsatielding a type 1| DM self-motion explicitly. Based
on these equations we prove in this article the necessitigreetconditions for obtaining a type Il DM self-motion.
Finally, we give a geometric interpretation of these cdndg, which also identifies a property of line-symmetric
Bricard octahedra, which was not known until now, to the lestvledge of the author.
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1. Introduction

The geometry of a planar Stewart Gough (SG) platform is gbxethe six base anchor pointg with coordinates
M; := (A, B;,0)" with respect to the fixed systeBEy and by the six platform anchor points; with coordinates
m; := (a;, b, 0)" with respect to the moving systel By using Study parametersy(: ... : e3: fo : ... : f3) for the
parametrization of Euclidean displacements, the cootelama/ of the platform anchor points with respectg can
be written askm/ = Rmj + (t1, to, t3) " with

t1 = 2(epfr —erfo + &f3 — &3f2), to = 2(eof2 — exfo + €3f1 — €1 3),
ts=2(fs-esfo+rafo-ef), K=&g+e+&+e&+0 and
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Now all points of the real 7-dimensional spa%]{g, which are located on the so-called Study quaﬂ’rthf;O efi =0,
correspond to an Euclidean displacement, with exceptitimosubspace) = ... = e3 = 0 of ¥, as these points cannot
fulfill the normalizing conditiorK = 1.

If the geometry of the manipulator is given as well as the sixlengths, then the SG platform is in general rigid,
but it can even happen that the manipulator can performarametric motionr( > 0), which is called self-motion.
Note that such motions are also solutions to the famous Boiedrd problem (cf. [1, 4, 5, 10, 19]). This still unsolved
problem was posed 1904 by the French Academy of Scienceddptitx Vaillant and reads as follow¥Determine
and study all displacements of a rigid body in which distipeints of the body move on spherical paths”
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1.1. Types of self-motions

In this and the next subsection we give a very short revievhefresults and ideas stated in [16], where more
details and also some concrete examples can be found.

It is already known, that manipulators which are singulagvery possible configuration, possess self-motions in
each pose. These manipulators are so-called architdgtsirsgjular SG platforms [11] and they are well studied: For
the characterization of architecturally singular plan@r@atforms we refer to [8, 13, 18, 20]. For the non-planaecas
we refer to [9, 14]. Therefore, we are only interested in thraputation of self-motions of non-architecturally singul
SG platforms. Until now only few self-motions of this typeedtnown, as their computation is a very complicated
task. A detailed review of these self-motions was given lgyahthor in [16] (see also [6]).

Moreover, it is known that if a planar SG platform with anclpointsms, . .., Mg is not architecturally singular,
then at least a one-parametric gebf legs exists, which can be attached to the given manipugtbout restricting
the forward kinematics [7, 12]. The underlying linear systef equations is given in Eqg. (30) of [12]. As the
solvability condition of this system is equivalent to thé&emion given in Eq. (12) of [2], also the singularity suréac
of the manipulator does not change by adding leg€ofMoreover, it was shown that in general the base anchor
pointsM; as well as the corresponding platform anchor pomi®f £ are located on planar cubic curvésandc,
respectively.

Assumption 1. We assume that there exist such cubiasadC (which can also be reducible) in the Euclidean domain
of the platform and the base, respectively.

Now, we consider the complex projective extensiRgnof the Euclidean 3-spadg®, i.e.

X Yi Xi Yi
&= b'_wi’A'_Wi’ B'_Wi' 1)
Note that ideal points are characterizedvigy= 0 andW, = 0, respectively. Therefore we denote in the remainder
of this article the coordinates of anchor points, which deal points, by, y; andX;, Y;, respectively. For all other
anchor points we use the coordinaggd; andA;, B;, respectively.

The correspondence between the poiniS ahdc in P%, which is determined by the geometry of the manipulator
m1, ..., Msg, can be computed according to [7, 12] or [2] under considmraif Eq. (1). As this correspondence has
not to be a bijection, a poirt Pg of c resp.C is in general mapped to a non-empty set of po&n@ of C resp.c.

We denote this set by the terrorresponding locatiomnd indicate this fact by the usage of bracKets

In P% the cubicC has three ideal pointd;, U,, U3, where at least one of these points (&lg).is real. The remain-
ing pointsU, andUs are real or conjugate complex. Then we compute the correlépgfocationgus}, {u,}, {us} of
¢ (= {ua} contains real points). We denote the ideal points by uy, us, ug, where again one (e.g4) has to be real.
The remaining pointss andug are again real or conjugate complex. Then we compute thesmonding locations
{Ua}, {Us}, {Ug} of C (= {U4} contains real points).

Assumption 2. For guaranteeing a general case, we assume that each of thiesponding locationgus}, {uz},
{us}, {U4}, {Us}, {Ug} consists of a single point. Moreover, we assume that no #ealt platform anchor points; or
base anchor pointsj (j = 1,.. ., 6) exist.

Now the basic idea can simply be expressed by attaching theiaddegsuU; € £ withi = 1,...,6 to the
manipulatoms, . .., M. The attachment of the special leg); fori € {1, 2, 3} corresponds with the so-called Darboux
constraint, that the platform anchor poinmoves in a plane of the fixed system orthogonal to the diredithe ideal
pointU;. Moreover, the attachment of the special lgg; for i € {4, 5, 6} corresponds with the so-called Mannheim
constraint, that a plane of the moving system orthogonaj stides through the poird;.

By removing the originally six legaiM; with i = 1,...,6 we remain with the manipulates, . . ., Us, which is
uniquely determined due to Assumption 1 and 2. Moreovereuodnsideration of Assumption 1 and 2, the following
statement holds (cf. [16]):

Theorem 1. The manipulatows, ..., Ug is redundant and therefore architecturally singular. Mover, all anchor
points of the platfornus, . .., us and as well of the badd,, . . ., Ug are distinct.
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It was also proven in [16] that there only exist type | and tyigearboux Mannheim (DM) self-motions, where
the definition of types reads as follows:

Definition 1. AssumeM is a one-parametric self-motion of a non-architecturallygilar SG platfornms, ..., Me.
ThenM is of the type n DM if the corresponding architecturally sifey manipulatoru, . . ., Ug has an n-parametric
self-motion/ (which includesm).

1.2. Type Il DM self-motions

In the remainder of the article we focus on type 1l DM self-ions. The author [16] was already able to compute
the set of equations yielding a type Il DM self-motion exjtlic(cf. subsection 2.5). This was only possible by the
usage of the analytical versions of the Darboux and Mannlkeimstraints, which are repeated next:

Darboux constraint:. The constraint that the platform anchor pain(i = 1, 2, 3) moves in a plane of the fixed system
orthogonal to the direction of the ideal polditcan be written as (cf. [16])

Q¢ Xi(aryg +birga +tr) + Yi(airzs + birpz + to) + LiK = 0,

with X, Y;, &, b;, Lj € C. This is a homogeneous quadratic equation in the Study pEieaswhereX; andY; denote
the conjugate complex of; andY;, respectively.

Mannheim constraint:.The constraint that the plane orthogonaliigi = 4, 5, 6) through the platform pointy, h;, 0)
slides through the poir; of the fixed system can be written as (cf. [16])

IT; : Xi[Air11 + Biro1 — giK — 2(epf1 — e1fo — exf3 + e3fo)] +
Vi[Airiz + Biroo — hiK — 2(epf2 + €1 f3 — 2 fg — e3f1)] = 0,

with %, i, A, Bi, g, hy € C. This is again a homogeneous quadratic equation in the taidymeters wheng andy;
denote the conjugate complexxgfandy;.
The content of the following lemma was also proven in [16]:

Lemma 1. Without loss of generality (w.l.0.g.) we can assume thaathebraic variety of the two-parametric self-
motion of the manipulatayy, . . ., Ug is spanned by, Q1, Q,, Qs, 14, [15. Moreover, we can choose following special
coordinate systems fy andX w.l.o.g.: X% =Yo=Ys=x3=ys=1landa =b1=y;=A4=Bs=Y1=hy; =95 =0.

An important step in direction of a complete classificatidiype 11 DM self-motions was done by the following
basic result, which was proven in [15]:

Theorem 2. If neither the three equations

Li(Xo—X3)—La+L3 =0, ax(Xoa—X3)+Xs(Xabo—Xsbg) +bp—bg = 0, ag(Xp—X3) +Xo(Xobp —X3bz) +b—b3 = 0,
(2)

nor the three equations

Li(Xo—X3)—La+Lg =0, @x(Xa—Xz)—Xa(Xabz—Xahs)—bo+bs = 0, ag(Xa—Xz)—Xz(Xohz — X3bs) —bo+bs = 0,

(3)
are fulfilled, then the corresponding manipulatag,. . ., Ug of a planar SG platform (fulfilling Assumptions 1, 2 and
Lemma 1) with a type Il DM self-motion, has to have furtheeéhcollinear anchor points in the base or in the
platform beside the pointd;, Uy, Uz anduy, us, ug.

Based on this theorem we prove the following much strongarltevithin this article:

Theorem 3. The corresponding manipulatar, ..., Ug of a planar SG platform (fulfilling Assumptions 1, 2 and
Lemma 1) with a type Il DM self-motion has to fulfill the thremditions either of Eq. (2) or Eq. (3).



2. Preparatory work for the proof of Theorem 3

For the proof of Theorem 3 we have to show that there existormesponding manipulataer, . . ., Ug of a planar
SG platform (fulfilling Assumptions 1, 2 and Lemma 1) with @a¢yll DM self-motion, which does not fulfill either
the three conditions of Eq. (2) or Eq. (3).

Due to Theorem 2 and due to Lemma 2 of [8] we can even restrisedres to manipulatons,, . . ., Us, which
have three collinear platform points, u;, ux and three collinear base poirtls, Un, Un beside the pointsl;, Us, Uz
anduy, us, ug Where (, j, k, I, m, n) consists of all indices from 1 to 6.

As we have dierent types of anchor points (real, complex, finite, infinitee have to distinguish the following
four cases of three collinear points (beside the triplgdJ,, Uz andug, us, ug):

A. U, Uy, Us collinear (& uy, us, ug collinear): Asus andug are both real or conjugate complex, this case is equiva-
lent touy, uz, us collinear & Us, Ug, Ug collinear).

Moreover, by exchanging the platform and the base the abvavedses are also equivalentutg u,, us collinear
(& Us, Us, Ug collinear) anduy, ug, ug collinear (& U, Us, Ug collinear), respectively.

B. Uy, Uy, Us collinear (& us, us, ug collinear): Asus andug are both real or conjugate complex, this case is equiva-
lent tous, uz, us collinear & Ua, Ug, Ug collinear).

Moreover, asJ, andUsz are both real or conjugate complex, these cases are als@bqiitoUs, Uy, Us collinear
(& ug, Uy, ug collinear) anduy, uy, us collinear (& Us, Ug, Ug collinear), respectively.

C. Uy, us, ug collinear (& Uy, Us, Ug collinear)

D. ug, up, uz collinear (& Uy, Us, Ug collinear)

In the following we discuss these four types A-D in more detai

2.1. Collinearity of type A

Ui, Uy, Us are collinear foBs = 0. As due to Assumption 2 no four platform anchor poimt®r base anchor
pointsU; are allowed to be collinear, we can stop the discussion & #y[f:

e Up, U3, Uy collinear (= by — bz = 0),
e Uy, Uy, Uz collinear (& azbz — agb, = 0),
e Up, Uz, Us collinear & xs(b, — bg) — az + ag = 0),

because then the points, Us, Us, Ug are collinear due to Lemma 2 of [8], which yields a contraditt Due to
Theorem 1 als@s(Xz — X3) # 0 has to hold, as otherwise the base anchor points are natipaidistinct. Finally, we
can assum&; # 0 w.l.o.g., because both poirits andUs do not belong to the triple of collinear points.

2.2. Collinearity of type B
Uy, Uy, Us are collinear forAs = X;Bs. Now we can stop the discussion of case B if:

e U3, Uy, Uz collinear (& azbs — agh, = 0),
® Ug, U3, ug collinear (= bs = 0),
® Uy, U3, Us collinear (& as — xsbs = 0),

because then the pointlk, Us, Us, Ug are collinear, a contradiction. Due to Theorem 1 d@gfX, — X3) # 0 has to
hold, as otherwise the base anchor points are not pairnésacti Moreover, we can stop the discussion of case B, if
Uz is real (& X, € R, especiallyX, = 0) because then this case is equivalent to case A.



2.3. Collinearity of type C

Uy, Us, Uy are collinear foib, = bs. We can stop the discussion of case ©/if Uy, Us are collinear & Bs = 0),
because then the points, us, us, ug are collinear, a contradiction. Moreovier # 0 has to hold because otherwise
us, Ug, Ug, Uy are collinear, a contradiction. Due to Theorem 1 aiso-(az)(Xz2 — X3) # 0 has to hold, as, = uz resp.

U, = Us yield a contradiction. In addition, we can assuiie# 0 w.l.0.g., because the corresponding pointt)pf
andU; belong to the triple of collinear points.

We can also assume thag, U, Us are not collinearé As — X2Bs # 0), because this case was already discussed
in case B.

2.4. Collinearity of type D
us, Uy, Uz are collinear folaybs — azhb, = 0. Now we can stop the discussion of case D if:

e Uy, Uy, Us collinear (& Bs = 0),
e Uy, U4, Us collinear & As — XBs = 0),
e Us, Uy, Us collinear (& As — X3Bs = 0),

because then the points, u, us, ug are collinear, a contradiction. Moreover, we can assbpiig # 0 because
otherwiseus, uy, us, us are collinear & a, = agby/bz). Clearly, also the pointsy, up, us, us are not allowed to be
collinear which impliesag — xsbs # 0. Moreover we can assunie # bz because otherwise we get = uz, a
contradiction. Due to Theorem 1 alsky(— X3) # 0 has to hold, al, = U3 yields a contradiction. In addition, we
can assum&;, # 0 w.l.0.g., because the corresponding pointsoandU; belong to the triple of collinear points.

2.5. Preparatory computations

In the following we describe how the s&tof equations yielding a type Il DM self-motion can be compute
explicitly. Note that the proof for the general case of T3 (cf. section 3) is based on this &et

We solve the linear system of equatiofisQ,, Qp, 114 for fo, ..., f3 and plug the obtained expressions in the
remaining two equationsThis yields in general two homogeneous polynomé{$0] andI1[96] in the Euler param-
eters of degree 2 and 4, respectively. The number in the sduackets gives the number of terms.

Finally, we compute the resultant 6f andIT with respect to one of the Euler parameters. Here we cRamse
This yields a homogeneous polynoniigl 17 652] of degree 8 i\y, &, 3. In the following we denote the céicients
of €, ), & of I by Tjjc. We get a sef of 24 equation§;j = 0 in the 14 unknownsa, by, as, bs, As, Bs, Xz, Xs, Xs,
L1, Lo, L3, G4, hs). _

Moreover, we denote the cfigients ofee], €, &, of Q@ andIl by Qjjq andIT;jq, respectively.

Finally, it should be said that all symbolic computationseveone with MpLe 14 on a high-capacity computer.

3. Proving the general case of Theorem 3

For the general case we have to ass@pgollzooo # 0, as only those solutions &f correspond to type Il self-
motions, which do not cause a vanishing of thefiorent of the highest power @& in Q andIl, respectively. In the
following we prove this general case for the fouffdient types A—D of collinearity.

For each type the proof is done by contradiction, i.e. we gtepdiscussion for the cases listed in the respective
subsections (subsection 2.1-2.4) or if the three conditidiieq. (2) or Eq. (3) are fulfilled.

3.1. Forthe collinearity of type A
I'gpp can only vanish without contradiction (w.c.) fbg = g4 or for FA[8] = 0.

1Foreye, — ere3 # 0 this can be done w.l.0.g., as this factor belongs to therd@raior of f;.

2Therefore we are looking for a common factorandIl, which depends ogg.

3CPU: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40 GHz, RAM: 8 GRrdHdisk: 2x250 GB, Graphic: nVidia 7x00GT or 8x00GT, Opieigit
system: Linux x64 (Kernel 2.6.18-53)



311. =0
We can expresk; from Fa = 0. Now we distinguish two cases:

1. L1 # ga: ThenI'710 = 0 impliesay = az — Xsby + X3bs. Now I'gzg cannot vanish w.c..

2. Ly = g4: We can computés from the only non-contradicting (non-c.) factor Bfo,. Now I's3g can only vanish
w.c. for:

a. L = X3(Lo — by)/Xo + Xa(ap — ag) + bs: We can expresfs from the only non-c. factor oF42,. Again we
distinguish two cases:

Xoby — Xsbs +a, —az # 0: NowI 350 has only one non-c. factor, which can be solvedfarThenl's;s = 0

impliesbz = 0. Now we getxs = —X3 from I';06 = 0. Thenl'pgy can only vanish w.c. for:
* X3 =0: NowTI'g6 = 0 yields the contradiction.
* by = Xoay — Xaag, X # 0: [p26 cannot vanish w.c..

. ag = Xobp — X3bz + ap: Thenl'zep = 0 impliesL, = 2i§b2 + Xpay + bp. Moreover, we can solve the only

non-c. factor ofi",4; for Xs.

* AssumingXsbs — Xzb, # 0: Under this assumption we can compatdgrom the only non-c. factor of
Togo. Now I'p24 = 0 yields the contradiction.

* bg = X3by/X: ThenTog can only vanish w.c. foKs = 0 or X, = —Xs. In both case$gzs = 0 yields
the contradiction.

b. a = ngg - Xzbz + ag, ¥2Y3(az - a3) + Xz(bg - L3) - Xg(bz - Lz) # 0: NowI'g40=0 YIe|dS the contradiction.

3.12. R #0
Now L; = g4 has to hold. Theillggg factors intoGa[8] HA[16]>.

1. Ga[8] = 0: We can expresis; from Ga[8] = 0. NowT';7¢0 can only vanish w.c. for:

a. ap = Xsbs — Xob, + az: We can solve the only non-c. factor B, for hs. Now we can expresis; from the
only non-c. factor of go2.

x5 # 0: Under this assumption we can compAtgrom the only non-c. factor df,g0. Then we can express
L, from the only non-c. factor ofpe2. Now the resultant of the only non-c. factorslabs andI'as with
respect toXz can only vanish w.c. for:

* bz = 0: NowT 404 impliesxs = X3. Finally,I'oz6 = O yields the contradiction.

* X5 = Xa, ba # 0: NowI'440 = O impliesas = Xsbs andI'404 = 0 yields the contradiction.

* ag = —Xobg, ba(Xs — X3) # 0: NowI404 = 0 impliesb, = —bs andl'440 = 0 yields the contradiction.

. X5 = 0: We distinguish two cases:

* Xobs — X3b, # 0: Under this assumption we can expraggrom the only non-c. factor of,60. Then
we can computés from the only non-c. factor df449. Now I"404 cannot vanish w.c..

* bz = X3by/Xo: Now I'ago can only vanish w.c. foXs = 0. Thenl'440 = 0 impliesAs = —az. Now we
can solve the only non-c. factor Bf; for L,. Finally, oo = O yields the contradiction.

b. VA[16] = O,ngg - Xzbz —ap+az#0:

xs # 0: Under this assumption we can compAtgfrom Va[16] = 0. Then can solve the only non-c. factor
of I'g2o for hs. Now we can expreds; from the only non-c. factor dfgp,. Moreover, we can solve the only
non-c. factor oflpg, for L. Now the diference of the only non-c. factors Bf4o andI'404 can only vanish
w.c. forbs = 0. Thenl'440 = 0 impliesxs = X3 andI'422 = 0 yields the contradiction.

. X5 = 0: Now we can solv&/, = 0 for L3. Then we can compute; from the only non-c. factor ofgzo.

Now [gg2 implieshs = 0. Then the dterence of the only non-c. factors Bfso andI'404 can only vanish
w.c. for X3 = 0. NowTI'440 = O impliesag = —As. From the only non-c. factor dfs»; = 0 we express.,.
ThenI'oz6 = 0 yields the contradiction.



2. HA[16] = 0, GA[8] # 0: We distinguish two cases:

a. Xoap — Xzag # 0: Under this assumption we can comphgdrom Ha[16] = 0.

i. x5 # 0: Under this assumption we can comp#tefrom the only non-c. factor dfgo. Moreover, we can
computels from the only non-c. factor dlfgp,. Now the diference of the only non-c. factors Bf40 and
I'404 can only vanish w.c. fob; = 0. Thenl'yyo = 0 impliesxs = X3. Now I'422 = 0 impliesL; = 2ags.
Finally, I'242 = 0 yields the contradiction.

ii. x5 =0: We can solve the only non-c. factorlaf,o for bs. Then we expresiss from the only non-c. factor
of I'sp2. Then the dference of the only non-c. factorslafso andl' 404 can only vanish w.c. foXz = 0. Now
T'440 = 0 impliesaz = —As and fromI'42, = 0 we getl; = —2As. Thenlgy = 0 yields the contradiction.

b. a, = Xzas/X2: Now Ha can only vanish w.c. foAsXs + Xzaz = 0.

i. x5 # 0: Under this assumption we can solve the last equatioAfoNow we can expreds; from the only
non-c. factor ofl's20. Then we can compute; from the only non-c. factor dfgg.. Now the diference of
the only non-c. factors df440 andI'404 can only vanish w.c. fobs = 0. Thenl'440 = 0 impliesxs = Xs.
Now I's22 = 0 impliesL; = 2az. Finally,I'242 = 0 yields the contradiction.

ii. x5 =0: NowHa = 0impliesXz = 0. Then we can expresg from the only non-c. factor dfszo. Moreover,
we can computés from the only non-c. factor ofgo. Then the dference of the only non-c. factors of
['440 andT 404 can only vanish w.c. fobs = 0. NowTI'440 = 0 impliesaz = —As and fromI'42, = 0 we get
L1 = —2As. ThenI'gps = 0 yields the contradiction.

3.2. Forthe collinearity of type B
I'gpp can only vanish w.c. fob, = bs, L; = g4 or Fg[8] = 0.

3.21. b=bs

From the only non-c. factor dfg,o Wwe can comput®s. Then we can expresg from the only non-c. factor of
I's02. Now we computés from the diference of the only non-c. factors Biso andI'404. Then we can express
from the only non-c. factor df440. Now we can computes from the only non-c. factor df42».

1. X3 # 0: Then we can solve the only non-c. factodg§o for b,. Finally,I';g6 = 0 yields the contradiction.

2. X3 = 0: Now the only non-c. factor df,e9 can be solved foas. Then we can compute, from the only non-c.
factor ofI'y24. Finally,I'242 = 0 yields the contradiction.

3.22. B=0,by # bs

We can expresk; from Fg = 0. As forLy # g4, ['710 = O yieldsag = a; — Xsbs + Xzb, andTgo = O the
contradiction, we can assunhe = g4: Now we can computls from the only non-c. factor ofgo2. ThenI'szp can
only vanish w.c. for:

1. Lz = X3(La — by)/ Xz + Xa(ap — ag) + bz: We can expresgs from the only non-c. factor df 42o.
a. Xoby — X3bs + a» — ag # 0: Now I'ssg has only one non-c. factor, which can be solvedlfgr Then we can

express, from the only non-c. factor df3;4 = 0.

i. Xo(BZ - babs) + X2Bs(bs — Bs) — ag(b2 — Bs) # 0: Under this assumption we can compMigfrom the only
non-c. factor of"y06. ThenI'sy4 = 0 yields the contradiction.

ii. XZ(BE — bybs) + X,Bs(bz — Bs) — as(b, — Bs) = 0: As for Bs = b, this equation yields a contradiction, we
can assum@s # b,. Now we can solve this equation fag. ThenI'zos = 0 impliesb, = 0 andI'j34 = 0
yields the contradiction.

b. a, = X3bs — Xob, + az: Then we can solve the only non-c. factoddgo for L.

i. X2(bs — ) + ag(Xs — X2) — Xa2(Xshs — Xoby) # 0: Under this assumption we can expr8ggrom the only
non-c. factor ofi",42. NowI'1;6 can only vanish w.c. for:
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* ag = —bsXs: As for by = —X,h,/ X5 the conditiorogp cannot vanish w.C. we can assuds + Xoby #
0. Under this assumption we can solve the only non-c. fadtbggp for Xs.
(@) Xo = Xz — 2?2 # 0: Under this assumption we can comphbgdrom the only non-c. factor of ps>.
Then it is not dfficult to see, thakyys andl'g44 Cannot vanish w.c..
(B) Xo—Xo— 2?2 = 0: In this case we séf, = m+in with m, n € R. Then the resultant of the equation
of item (8) and the only non-c. factor dfys, with respect ta cannot vanish w.c..

* by = (ngg + a3)/(i2 - Xz), ag + b3X2_¢ 0: ThenI'ggo = O impliesb3 = —Xg&g/(ig)(z). Now we can
solve the only non-c. factor dfye, for Xs. Finally,I'os4 = O yields the contradiction.

* ag = Xa(Xabs — X2bz) /(X3 — X2), (02(Xz2 — X2) — X3bs — ag)(ag + bsXz) # 0: NowTogo = O implies
Xz = 0. ThenIl'gg2 cannot vanish w.c..

ii. ag = [X3(bs — bp) — Xo(Xshs — X2b2)]/(Xz — X3): ThenI'242 can only vanish w.c. for:

* X3 = —Xa: Now 'y = 0 impliesb, = Bs andI'ggo = 0 yields the contradiction.

* Xo =inwithn e R, X3 + Xz # 0: NowI'x06 = 0 impliesbs = Bs and fromI'ggg = 0 we getXz = —in.
Finally, I'ps2 = 0 yields the contradiction.

2. a3 = Xoby — Xabz + ay, XaXo(az —az) + Xa(b2— Lo) — Xa(bs— L3) # 0: In this casd 440 = O yields the contradiction.

3.23. R#0, b, # bs
Now L; = g4 has to hold. Theiligg, factors intoGg[8]Hg[18]°.

1. Gg[8] = 0: We can expresis; from Gg[8] = 0. NowT';7¢0 can only vanish w.c. for:

a. ag = Xoby — X3bs + ap: We can solve the only non-c. factor B for hs. Now we can expresis; from the
only non-c. factor of'gp2. Then we can compuie from the only non-c. factor df 0. Moreover, we express
L, from the only non-c. factor dfpg.. We computes, from the sum of the only non-c. factors Bf4o andI 404

i. (b2 + Bs)(bs — Bs) # 0: Under this assumption we can solve the only non-c. fadtdig; for Xz. Then
I'404 = 0 yields the contradiction.
ii. Bs =—hy orBs = bs: In both case§ys = 0 cannot vanish w.c..

b. Vg[18] = 0, Xob, — X3bs — ag + @, # 0: We can computhbs from Vg[18] = 0. Then we can express from
the only non-c. factor ofpg,. Now we can also solve the only non-c. factodg$ for Xs. Moreover, we can
computel, from the only non-c. factor dfgpp. We compute, from the sum of the only non-c. factors Bfso
andI 404

i. X2Bs(bz — bp) — X3ba(Bs — by) + Xoba(Bs + bz) # 0: Under this assumption we can expragsrom the
only non-c. factor of g26. ThenI'sso = 0 yields the contradiction.

ii. XoBs(bs—by) — X3bs(Bs—by) + Xoba(Bs +bs) = 0: As for Bs = —by, this equation cannot vanish w.c., we can
assumeBs + b, # 0. Now we can computﬁg from this equation. Thehp,s = O yields the contradiction.

2. Hg[18] = 0, Gg[8] # O:

a. Xoap — Xaaz # 0: Under this assumption we can comphidrom Hg[18] = 0. Then we can express from
the only non-c. factor ofg20. Now we can compute;, from the only non-c. factor dfgg,. Moreover, we can
solve the sum of the only non-c. factorslafiy andl 404 for Xa.

i. Xo(BZ — bobg) - X2Bs(Bs + bs) + a3(Bs + by) # 0: Under this assumption we can expragsérom the only
non-c. factor ofl"404.
* ag # 0: Under this assumption we can comptefrom the only non-c. factor off,0s. Then we can
computel 3 from the only non-c. factor df4,,. We can solve the only non-c. factoriof,4 for b,. Now
242 = 0 impliesag = —Xobs. Then it can easily be seen, that, andI'gos cannot vanish w.c..
* ag = 0: NowTI'z06 = 0 yields the contradiction.
ii. Xa(BE — bobg) — X2Bs(Bs + bs) + as(Bs + by) = 0: As for Bs = —b, this equation cannot vanish w.c., we
can assumés + b, # 0. Now we can solve this equation fag. ThenI'4o4 = O impliesb, = 0. Finally,
I'206 = 0 yields the contradiction.



b. a, = Xzas/X2: Now Hg can only vanish w.c. foks = —Xzas/(X2Bs). Then we can solve the only non-c. factor
of T'ez0 for hs. Now we can computk, from the only non-c. factor dfgoo. Moreover, we can express from
the sum of the only non-c. factors Bfso andI'404. Then we compute the filerenceD of the only non-c. factors
of I'yep @andT'ps2. As for b, = —Bs the expressiod cannot vanish w.c., we can assulpe+ Bs # 0. Now we
can solve the only non-c. factor Bffor Xz. ThenI'xgo = O yields the contradiction.

3.3. Forthe collinearity of type C

We can solve the only non-c. factor B§, for Bs. Then we can expreds from the only non-c. factor of gz
Moreover, we can compute; from the sum of the only non-c. factors Bf4o andI 404.

1. (X2 — X3)(As — Xsbz) — (X2 + X3)(a2 — a3) # 0: Under this assumption we can exprgssrom the only non-c.
factor ofI'404. ThenI'so, = 0 cannot vanish w.c..

2. As = (X2 + X3)(az2 — a3)/(Xa — X3) + Xsha: ThenI404 can only vanish w.c. for:

a. ap = bs(Xo — X3) + ag: Then we can compute; from the only non-c. factor df 42,.
i. x5 # 0: Under this assumption we can solve the only non-c. fadtdkes for as. ThenI',go = 0 implies
X3 = 0 andI'zz4 = 0 yields the contradiction.
ii. x5 =0: NowI'20s = 0 impliesX3 = 0 andl'»24 = 0 yields the contradiction.
b. @y = ba(X3 — X) + az, ba(Xz — X3) — @2 + a3 # 0: Then we can compute from the only non-c. factor df425.
i. x5 # 0: Under this assumption we can solve the only non-c. fadtdkes for as. ThenIl',g0 = 0 implies
X3 = 0 andl'24, = 0 yields the contradiction.
ii. x5 =0: NowI'20s = 0 impliesX3 = 0 andl'z42 = 0 yields the contradiction.
c. Pc[12] = 0, (b3(X2 — X3) — @z + ag)(b3(Xz — Xz) — @ + ag) # 0: We can solvéc[12] = 0 for hs.
i. X3 # Xs: Under this assumption we can expr@gsdrom the only non-c. factor oF 5. ThenI'zps = O

implies X3 = 0. Then we can compute; from the only non-c. factor ofgg,. Now I'z42 = 0 implies
X2 = x5 andI224 = 0 yields the contradiction.

ii. X3 = Xs: Now I'569 can only vanish w.c. for:

* X5 = 0: We compute_; from the only non-c. factor ofge,. ThenT'as, = 0 impliesaz = Xybs and
I'224 = 0 yields the contradiction.

* ap = Xshs: Now I',06 CANNot vanish w.c..

3.4. For the collinearity of type D
['soo can only vanish w.c. fok, = g4 or if Fp[8] = 0 is fulfilled identically.

341 B[8] =0
We can expresk; from Fp[8] = 0.

1. L1 # g4: Now I'710 has only one non-c. factor, which can be solvedaprThenI'soo cannot vanish w.c..
2. L1 = g4: We can expresiss from the only non-c. factor dfgoo.

a. ag(by — bs) + ba(Xaby — X3bs) # 0: NowIs30 has only one non-c. factor, which can be solvedlfarThen we
can computé\s from the only non-c. factor df42,. Now we can expreds, from the only non-c. factor df3;4.
Then we can solve the only non-c. factod@fg for Xs. Finally, I';06 = O yields the contradiction.

b. ag = bs(Xoby — X3bg)/(bs — by): Then we can compute; from the only non-c. factor of 440. Now we can
expressAs from the only non-c. factor df ;0. Then we can solve the only non-c. factoda$, for L,.

i. Xs(bo — bs) + Xoby — X3bs # 0: Under this assumptidryes has only one non-c. factor, which can be solved
for Xs. ThenI'pze = O yields the contradiction.

ii. X5 = (X3bs — X2b2)/(b2 — bs): Now I'xz4 = 0 yields the contradiction.
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3.4.2. B8] # 0
Now L; = g4 has to hold. Theillgg, factors intoGp[8]Hp[18]2.

1. Gp[8] = 0: We can expresis; from Gp[8] = 0. NowI';179 can only vanish w.c. for:

a. ag = by(Xsbs — Xby)/(b2 — bs): We can solve the only non-c. factor By for hs. Now we can expresis
from the only non-c. factor df 440.

X5(bp — bz) + Xoby — X3bs # 0: Under this assumptiohyeo has only one non-c. factor, which can be
solved forxs. Then we can compute; from the only non-c. factor ofgop. Finally, I'404 = O yields the
contradiction.

X5 = (Xsbz — Xoby) /(b2 — bs): Then we can compute; from the only non-c. factor df,0s. Now we can
expresd., from the only non-c. factor dfs,. Finally, I'422 = 0 yields the contradiction.

b. Vp[18] = 0, az(b, — bs) + b3(Xab, — X3bs) # 0: We can expredss from Vp[18] = 0.

x5 # 0: Under this assumption we can comp#atgfrom the only non-c. factor ofg20. Moreover, we can
solve the only non-c. factor dfsp, for Ls. Then we can express from the only non-c. factor df pez.

* az — Xsbs # 0: Under this assumptidryzs has only one non-c. factor, which can be solvedrThen
I'404 = O yields the contradiction.

* ag = Xshs: AgainT4o4 = 0 yields the contradiction.

. X5 = 0: As for X3 = Xb,/bs the expressiofigyo cannot vanish w.c., we can assuigh, — Xzbs # 0.

Now we can expresBs from the only non-c. factor dfszo. Then we can compute; from the only non-c.
factor ofT'ps2. Now we can expreds, from the only non-c. factor dfgo.. Moreover, we can solve the only
non-c. factor of 440 for As. Then we can compute from the only non-c. factor df 404. Finally,I'z06 = 0
yields the contradiction.

2. Hp[18] = 0,Gp[8] # 0: We distinguish the following three cases.

a. ag(Xaby — Xsbs) # 0: Under this assumption we can comphigrom Hp[18] = 0. Then we can compu®s

from the only non-c. factor dfg,0. Now we can expreds, from the only non-c. factor dfgpz. As forag = Xsbs
the expressioliy g4 cannot vanish w.c. we can assume- Xsbs # 0. Under this assumptidryso has only one
non-c. factor, which can be solved fag. Then we can expreds from the only non-c. factor df 404. Finally,

I'206 = 0 yields the contradiction.

b. az = 0: NowHp can only vanish w.c. for:
i. x5 = 0: We can computés from the only non-c. factor of 0. Then we can expreds from the only

non-c. factor of"gg, andAs from the only non-c. factor df,g. Finally, I';06 = O yields the contradiction.

. As = 0: We can computbs from the only non-c. factor ofg2o. Then we can expreds from the only

non-c. factor off'so,. Now we can solve the only non-c. factor Bjgo for Xs. ThenI'zos = 0 implies
X3 = Xobp/bz andI'gez = 0 yields the contradiction.

C. X3 = Xaby/bs, a3 # 0: NowHp = 0 impliesag = —AsbsXs/(X2b,). We can computés from the only non-c.
f_actor of ['s20. Then we can expreds, from the only non-c. factor ofgp,. Now I'z60 can only vanish for
X2 = —BsXs/b, or As = —Xsh,. In both case§,94 = 0 yields the contradiction.

4. Proving the special cas&ogoll3000 = 0 of Theorem 3

We do not discuss the special case for all four types A—D séplgr(as done for the general case) in order to
shorten the proof. We distinguish between thfedent types only if this is necessary during the study of €ase
Therefore this discussion is a generalization of the onergir the corresponding technical report of [15].

For the discussion of the special cases we can as3u(Xe — X3) # 0, because this also holds true for each of the
four types A-D (cf. subsection 2.1-2.4).

If we sete equal to zero for anye {0, ..., 3}, thenQ andII have to be fulfilled identically. It can immediately be
seen, that the conditions implied By = 0 already yield a contradiction. Therefore we can assegagse; # 0 for
this section of the proof.
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4.1. Q2000 = 0, Q1000l13000 # O

From Q000 = O we can exprests;. Moreover, we can computg from Q = 0 and plug the resulting expression
into I, which yields in the numerator a homogeneous polynoif{tHl0058] of degree 7 iry, &, 3. Now I'7op can
only vanish w.c. for:

1. by = bs: ThenI'43p can only vanish for:

a. ay = ag + ba(Xz — X3): Now the only non-c. factor of35, can be solved fog,. Finally, To7g = O yields the
contradiction.

b. gs = (Lo — Lz + Xpap — X3za3)/ (X2 — X3), @ — a3 — ba(Xz — X2) # 0: NowI'340 = 0 yields the contradiction.

2. 04 = (Lo — L3 + by — ba + Xoay — Xaaz)/ (X2 — X3), by # ba: ThenI's1o cannot vanish w.c..

4.2. Q2000 = I3000 = 0, Q100012000 # O

Again we express; from Q000 = 0. It can immediately be seen frofh = 0, that all codficients 0fllzggp = O
with respect to the remaining Study parameters have to wanisrder to get no contradiction. Therefore we can
computeg, andhs from I13100 = 0 andllzgi0 = O, respectively. We solv@ = 0 for ey and plug it intolT which yields
in the numerator a homogeneous polynorm{al666] of degree 5 iry, e, e3. Now I'spg can only vanish w.c. for:

1. by, = bs: Then the only non-c. factor dfzp, can be solved fokz. NowI'3z0 can only vanish w.c. for:

a. ap = as + bs(Xz — X»): Then the only non-c. factor dfysg can be solved fot,. We can expres8s from the
only non-c. factor of"140. Now I';30 = O impliesBs = —bs.
i. x5 # 0: Under this assumption we can compatefrom the only non-c. factor ofz12. ThenI'yjgs = 0
implies X3 = 0 and froml'p14 = 0 we getX; = —xs. Finally,I'122 = 0 yields the contradiction.
ii. x5 =0: NowTI'212 = 0 impliesX3 = 0 and froml'g14 = O we getag = —X5bs. Again, T2, = 0 yields the
contradiction.
b. ay = ag + Bs(Xz2 — X3), a2 — az — ba(Xz — X) # 0: We distinguish two cases:
i. ag+ X2Bs # 0: Under this assumption the only non-c. factofgfp can be solved fok.,.
* ag — Xobs # 0: Under this assumption the only non-c. factof @f, can be solved foKs.
(@) x5 # 0: Under this assumption we can expras$rom the only non-c. factor df,1,. Thenl'jgs = 0
impliesAs = Xsbs + X»Bs and fromIg14 = 0 we getX, = —xs. Finally,I'12» = 0 yields the contradiction.
(B) x5 = 0: NowT'215 = 0 impliesAs = X,Bs and fromI'g14 = O we getag = —Xobs. Again, 1o = 0
yields the contradiction.
* ag = Xobs: ThenI'yo can only vanish w.c. for:
(a) Xo = x5: NowI'z2o=0 |mpI|esA5 = Xsbs + B5(X3 + 7(5) and fromI'1g4 = O we getX3 =0. Finally,
I'p14 = O yields the contradiction.
(ﬂ) As = XzB5, Xo # Xs5: NowI'212=10 impliesig = —7(5b3/B5 and fromI'1g4 = 0 we getxs = 0. Again,
[o14 = 0 yields the contradiction.
ii. ag = —YzB5: Thenl'4 =0 impliesY3 = X5A5/(Y285) and fromIpzz = 0 we getlLy = Xs5As — Bs. Then
I'104 can only vanish w.c. for:
* X5 = 0: NowI'212 = 0 impliesAs = Xobs. Finally, I'»30 = 0 yields the contradiction.
* As =0, xs # 0: NowI2;12 = 0 impliesX, = —xs. Again, 230 = 0 yields the contradiction.

2. Lz = X3(Lo+by)/Xo+ Xa(az—az) — bz, by # ba: Now the only non-c. factor df410 can be solved fok,. Moreover,
we can expresas from the only non-c. factor df3zo.

a. Bs # 0: Under this assumption we can compréefrom the only non-c. factor ofzoz. Then the diference of
the only non-c. factors df104 andI'239 can only vanish w.c. foK,azbs — Xzagb, = 0.

i. bs # 0: Under this assumption we can expras$rom this equation.
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* (Bsag — Xob2)(X2Bsbs — aghy) # 0: Under this assumption we can compdefrom the only non-c.
factor of"230. Thenl'g14 = O yields the contradiction.

* Xo = B5a3/b§: Now I'104 can only vanish w.c. for:
(o) Bs = bs: AgainTI'g14 = 0 yields the contradiction.
(B) Bs = —bz: Now I'z12 = 0 yields the contradiction.

* Bs = aghy/(Xabs): ThenI'jgs = 0 impliesaz = —X;bs andIyy, = 0 yields the contradiction.

ii. bz =0: Now the last equation implie§; = 0 and froml';p4 = O we geta, = az — X,Bs. Finally, 14 = 0
yields the contradiction.
b. Bs = 0: Now I3, = O impliesbs = 0 and fromI';g4 = O we getxs = —X3. Thenl',3p = 0 yieldsX; = 0 and
I'014 cannot vanish w.c..

4.3. Q2000 = 3000 = 12000 = 0, Q100011000 # O

Again we expresk; from Qxp00 = 0. It can immediately be seen frafh= 0, that all codicients oflTjpgo = O (for
i = 2,3) with respect to the remaining Study parameters have tisivam order to get no contradiction. Therefore
we computeay, andhs from 3300 = 0 andllspi0 = O, respectively. Moreover, we can solMg;o; = 0 andllzp;1 = 0
for L3 andL,, respectively. We solv® = 0 for ey and plug it intolT which yields in the numerator a homogeneous
polynomiall'[191] of degree 5 irey, €, €3. Now 419 can only vanish w.c. for:

1. b = bg: ThenI's, = 0 impliesBs = bs and fromI'szo = 0 we geta, = ag + bs(Xs — X). ThenI'zy; = 0 yields
az = bg(2Xs — X2) and fromI'y40 = 0 we getAs = b3(X,2 — X3 — 3Xs). Now T2, can only vanish w.c. for:

a. X3 = —xs: Then the diference of the only non-c. factors Bfsp andIl'p14 cannot vanish w.c..
b. Xz = —x5: Now I'gso = 0 implies X3 = —4xs andIp14 = O yields the contradiction.

2. b = —Bs, b, # b3 ThenI'sy = 0 impliesa, = Bs(Xz2 — X5) — As and fromI'zo = 0 we getAs = XzBs. Now
I'3p2 = 0 impliesag = bg(X3 — X2 + X5) and fromI'ps = O we getxs = —Xsz. Finally, I';;2 = 0 yields the
contradiction.

4.4. Tlz000 = 0, Q2000012000 # O

It can immediately be seen fro@ = 0 that all codicients ofllzp0 = O with respect to the remaining Study
parameters have to vanish in order to get no contradictiamerdfore we can expregg andhs from Ilz;00 = O
andIlsp10 = O, respectively. Then we compute the resultan©pf0] andI1[44] with respect togy which yields a
homogeneous polynomiB[15153] of degree 8 iy, &, €3. I'pgp can only vanish w.c. in the following two cases:

1. Ly = L1i(Xo — X3) + L3 + Xoas — X3as — by + bs: Then we can solve the only non-c. factorih, for Bs. Now I'17o
can only vanish w.c. for:

a. a; = —XsAs/X2: Thenlgsz = 0 impliesL; = 0 andlszo can only vanish w.c. fotth — bz + Xzaz + XsAs)F[7] = O:
i. by = bz — Xza3 — XsAs: Now I's30 = 0 impliesLs = bs — Xsas andI'gzs can only vanish w.c. for:
* Xo = —xs: ThenI'szo = 0 yields the contradiction.
* bg = Xzag + XsAs — AsXz, X2 # —Xs: NOW I'z4 = 0 impliesXs = 1/X; and fromI's2; = O we get
X3 = 1/X,. ThenI'yps = 0 yields the contradiction.

ii. F[7] =0,by —bs + Xsaz + XsAs # 0: As forb, = bz the expressioff cannot vanish w.c., we can assume
b, # bs. Under this assumption we can expréggrom F[7] = 0. ThenI'o2¢ can only vanish w.c. for:
* Xo = —xs: Moreover'440 = 0 impliesAs = Xsb, and fromI's2, = 0 we getag = —X3bs. Thenlzg = 0
implies X3 = x5 andI';p6 = 0 yields the contradiction.
* As = Yzbz, Xo # —X5: Now I'z00 = 0O impIiesa3 = b3(7(5 + Xz - Yg) FinaIIy, I'314=0 y|6|dS the
contradiction.

b. a = a3 — Xoby + X3bg, Xzas + XsAs # 0: Thenl'260 cannot vanish w.c..
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2. ay = —XsAs/ X2, L1(Xa — X3) — Lo + L3 + Xpap — Xza3 — by + bs # 0: Then we can solve the only non-c. factor of
260 for by. Now 440 can only vanish w.c. for:

a. Xz = xs: As for Bs = 0, the conditiol g2 = 0 yieldsL, = Xs(L1 + As) andI'z0s = O the contradiction we can
assumeBs # 0. Under this assumption we can solwg, = O for L3. ThenI'404 can only vanish w.c. for:
i. a3 = XsBs + X3bs — As: We distinguish further two cases:
* X3Bs + Xsbs # 0: Under this assumption we can exprégsrom the only non-c. factor df,0s. Then

we can computé, from the only non-c. factor ofgs2. Now I'gz6 = O implies X3 = —xs and finally
I'422 = 0 yields the contradiction.

* bs = —X3Bs/Xs: Now I'xos can only vanish w.c. for:
(@) X3 = 0: Thenl4y, = 0 impliesL; = 2XsBs — 2As and finally['gg, = O yields the contradiction.
(B) X3 = —xs, X3 # 0: We can expresk; from the only non-c. factor of s2,. ThenT'gez = 0 implies
Bs = As(2X2 + 1)/%s andloz6 = O yields the contradiction.
ii. Ly =Xs(Ly+ As) — Bs, X5Bs + X3bs — As —as # 0: Then we can computg from the only non-c. factor of
T'420. NowTI'314=0 impIiesLl = —2A5 — 2X5Bs.
* X3Bs + Xsbs # 0: Under this assumption we can exprégs§rom the only non-c. factor dif'242. Now
I'206 = 0 impliesX3 = 0 and finallyI'ps2 = 0 yields the contradiction.
* bg = —X3Bs/Xs5: Now o4 = 0 impliesXz = 0. Finally,I'x24 = 0 yields the contradiction.
b. As = X2Bs, Xo # Xs: FromIgp2 = 0 we can expresls;. Thenl'ge, can only vanish w.c. for:
i. Ly = 0: ThenI'y, = 0 impliesag = bs(Xs + X2 — X3) and fromI'z, = 0 we getXs = Xs. NowI'314 = 0
impliesX; = —xs and fromI';ps = 0 we getl, = Bs(iﬁ —1). Finally,I'404 = 0 yields the contradiction.
ii. X5 = —Xsa3/(X2Bs), L1 # 0: Now the only non-c. factor dfgss can be solved foBs. Finally, [gs = O
yields the contradiction.

4.5. Tlz000 = 12000 = 0, 22000l 11000 # O

It can immediately be seen frofh = 0 that all codficients oflTipoo = O (fori = 2, 3) with respect to the remaining
Study parameters have to vanish in order to get no contradictherefore we can expreggsandhs from I13;00 = O
andIlzp10 = O, respectively. Moreover, we can computeandL; from I1,10; = 0 andIlzp11 = O, respectively. Then
we solvell = 0 for ey and plug it intoQ which yields in the numerator a homogeneous polynoif2408] of degree
8iney, e, es. o2 = 0 impliesBs = b,. Thenl'syg can only vanish for:

1. by = 0: NowTI'404 can only vanish w.c. for:

a. As = —ap: Now I'z06 = O implies Xz = —xs and fromI'zgo = O we getls = bs + X3(2a, — a3). ThenIggy = 0
impliesbs = Xzas + Xsap and fromIge; = O we geta, = az(1 — X37(5)/7<§. Finally, I';s, = 0 yields the
contradiction.

b. L = bs+Xa(az—az—As), As # —ao: NowI'3zs0 = 0 impliesa, = az+ Xsbz andl'zep = 0 yields the contradiction.
2. G[8] = 0, b, # 0: We can solvé&[8] = 0 for Ls. Thenl'szp = 0 impliesa, = Xsbz — Xob, + az. Finally I's40 cannot
vanish w.c..

4.6. Q2000 = Q1000=0
We can expresk; anda, from Q2000 = 0 andQq901 = 0, respectively. A€2q002 Cannot vanish w.c. we proceed as
follows:

1. TIpooz # 0: Now we compute the resultant @fandIl with respect taes which yie_Ids,a homogeneous polynomial
I[87839] of degree 8 iy, €1, €. In the following we denote the céicients ofe, e}, € of I' by Ijj.. Now I'ogo
equals b, — b3)[Xa(Xabo — X3bs) + az(X2 — X3)]H[10].

a. by = bs: Then we can expreds from the only non-c. factor of,0s. Now we can computés from the only
non-c. factor of'710. Thenl'pe = 0 impliesBs = —bz andl'314 = 0 yields the contradiction.
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b. az = —Xo(Xoby — X3bs)/ (X2 — X3), by # bs: Then we can expreds from the only non-c. factor df,0s. Now
I'170 can only vanish w.c. for:
i. g4 = 0: We distinguish two cases:

* X5 # 0: Under this assumption we can exprégsrom the only non-c. factor ofggg. ThenI'4oq = 0
implieshs = Bs — bs — L3. Now we can expresiss from the only non-c. factor dfpgz. ThenI'pze can
only vanish w.c. for:

(@) X3 = 0: NowTg02 = 0 impliesh, = —X5Bs/X». Finally, 224 = 0 yields the contradiction.
(ﬂ) b, = ngg/yz, Xz # 0: NowTIgp = O impliesb3 = —7(5B5/X3. FinaIIy, I'eoo = 0 YIe|dS the
contradiction.

* X5 = 0: NowI'ggg can only vanish w.c. for:

(a) Xz = 0: NowIgo, =0 impliesbz = A5/¥2 and fromI'ge; = O we getL3 = hs — Bs — bs. Finally,
I'134 = 0 yields the contradiction.
(B) by = X3ba/ X5, X3 # 0: NowTgo2 = 0 impliesbs = As/ X3 andl'ay4 = 0 yields the contradiction.
ii. by = X3bs/X2, g4 # 0: NowI'ggo can only vanish w.c. foAs = 0 or xs = 0. In both caseFep = 0 yields
the contradiction.

c. H[10] = 0, (b2 — bs)[X2(X2by — X3bs) + a3(X2 — X3)] # 0: We can solvéd[10] = 0 for g4. Then we can express
Lz from the only non-c. factor df,06. Moreover, we can compute from the only non-c. factor dfsos. Then
I's02 = 0 impliesaz = b3X3 + X5Bs — As. Now we can solve the only non-c. factorlgf,s for L. Thenl'pss = 0
impliesAs = XsBs. Now the diference of the only non-c. factors Bfgp andI'p2 can only vanish w.c. for:

i. bj=0fori=2ori=3:Inboth caseFys = 0 yields the contradiction.

il. Xz = =Xz, bobs # 0: NowI'260 can only vanish w.c. for:
* X3 = X5: Now I'g20 = 0 impliesBs = bz andI'z42 = 0 yields the contradiction.
* X3 = —X5. Now I'gog = O cannot vanish w.c..

2. Tpooz = 0, Iggo2 # O: It can immediately be seen frofh = 0 that all codicients ofllygo3 = 0 with respect to the
remaining Study parameters have to vanish in order to gebntradiction. Therefore we can expréssandL,
from Ilp103 = 0 andllpoy3 = O, respectively. Now we compute the resultanféndIl with respect tees which
yields (X — X3)°I'[7821], wherel is a homogeneous polynomial of degree &ijne;, . In the following we
denote the cd@cients ofe], €, € of I" by I'j.. Now I'goo can only vanish w.c. for:

a. by = bs: Then we can expresg from the only non-c. factor df719. Now I'gg2 = 0 impliesgs = 0 and from
I'260 = 0 we getBs = bs. Finally,I'gg, = 0 yields the contradiction.

b. az = XsAs/Xo — Xobo + X3bs, by # bs: Now we can expreds; from the only non-c. factor dfgpg. ThenI'zogs = O
impliesgs = 0 andl'go2 can only vanish w.c. for:
i. x5 = 0: Now the only non-c. factor dfy,¢ can be solved foks. ThenI'gpsz can only vanish w.c. for:
* X3 =0: NowI'404 = 0 impliesAs = X,Bs andI'x24 = 0 yields the contradiction.
* As = X3zbs, X3 # 0: Again,I'»o4 = 0 yields the contradiction.

ii. As=X2Bs, x5 # 0: We can expresis from the only non-c. factor dfpps. Now I'z24 = 0 impliesX; = Xs
and fromIpg, = 0 we getXs = —xs. Finally,I'»42 = 0 yields the contradiction.

3. Tgoos = Igooz = 0, Iggo1 # O: It can immediately be seen frofda = 0 that all codicients ofllggg = O (for
i = 2, 3) with respect to the remaining Study parameters have tislwvamorder to get no contradiction. Therefore
we can express andL, from Ip103 = 0 andIlgoy3 = O, respectively. Moreover, we can compgteandLs from
1102 = 0 andIIyp12 = O, respectively. Now we compute the resultan€o&ndIT with respect tees which yields
Xz - 23)21“[1766]! wherd" is a homogeneous polynomial of degree &jre;, &. In the following we denote the
codficients ofel, e}, € of I' by I'jjc. Now I'sgo can only vanish w.c. for:

a. by = bs: Then we can express from the only non-c. factor df71o. Now I';gp = O impliesBs = bs. Finally,
I'os2 = 0 yields the contradiction.
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b. ag = XsAs/Xz—X2bz+ X3bs, b, # bs: Now we can expreds; from the only non-c. factor dfgzo. Thenl'as = 0
impliesAs = X,Bs andI'gg2 = 0 yields the contradiction.

4. Tloooz = Ioooz = Mooor = 0, o300 # O: It can immediately be seen frofd = 0 that all codficients ofllggg = O
(fori = 1,2, 3) with respect to the remaining Study parameters have tisivan order to get no contradiction.
Therefore we can expresg andL, from Ip103 = 0 andIlpo13 = O, respectively. Moreover, we can compute
04 and Lz from IT1102 = O andIlip12 = O, respectively.llp;2; = 0 impliesBs = b,. FromIly = 0 we get
As = as + Xsb, — X3bs. Now ITp211 can only vanish w.c. for:

a. Xz = xs: We distinguish two cases:

i. Bs # bz Under this assumptiofoz00 # 0 holds and due to our assumptiligzgp # O we can compute
the resultant of2 andIT with respect tae;, which yields &3 — 7(;,)2931"[1013], wherd’ is a homogeneous
polynomial of degree 6 imy, &, €3. Now the codficient ofeg of I cannot vanish w.c..

ii. Bs = bs: In this case;00 cannot vanish w.c. and therefore we can again compute th#aesofQ and
IT with respect ta;, which yields &3 — Xs)*epI[50], wherel is a homogeneous polynomial of degree 6 in
€, &2, €3. Again the coéficient ofeg of I cannot vanish w.c..

b. Bs = 0, X2 # Xs5: ThenIlgzo1 = 0 yields the contradiction.

5. Tgooz = ooz = Hogo1 = Ioz00 = 0: It can immediately be seen frofa = 0 that all codficients ofllggg = 0
(fori = 1,2, 3) with respect to the remaining Study parameters have tislvan order to get no contradiction.
Therefore we can expresg and L, from Ilg103 = 0 andIlpo13 = O, respectively. Moreover, we can compute
04 and Lz from I11102 = O andIljp12 = O, respectively.llp;2; = 0 impliesBs = by. FromIlyp1 = 0 we get
As = as + Xsh, — X3bs. Now IIp211 can only vanish w.c. for:

a. Xo = xs: Now ITp300 = 0 impliesaz = bsXs. We distinguish two cases:

i. Bs # b Under this assumptiofoz00 # 0 holds andloz00 can also not vanish w.c.. Therefore we can
compute the resultant & andIT with respect toey, which yields &3 — Xs)?B2e3e3I'[87], whereT is a
homogeneous polynomial of degree &ine,, es. Now the codicient ofe‘s1 of I' cannot vanish w.c..

ii. Bs = bs: In this cas&g100 andIIoogo cannot vanish w.c. and therefore we can again compute thiéaes
of Q andIl with respect tee;, which yields &3 — 7<5)3B§e0e21“[16], wherel is a homogeneous polynomial
of degree 4 irgy, ,, €3. Again the coéicient ofe\,,4 of I' cannot vanish w.c..

b. Bs = 0, Xz # Xs: ThenlIlpzp1 = 0 yields the contradiction.

4.7. Tz000 = 12000 = 1000= 0

In contrast td1;990 = O, it can immediately be seen frafn= 0 that all codficients oflTjggp = O (fori = 2, 3) with
respect to the remaining Study parameters have to vanistdar to get no contradiction. Therefore we can solve
3100 = O for ga, 3910 = O for hs, I1101 = O for L, andIlzgy; = O for L.

4.7.1. T1900 = 0 does not vanish identically for alkee,, e3
If the codficientZ of e§ of IT1p00 Vanishes, theml 9o = O only depends omy, e, and this already yields together
with Q = 0 the contradiction. Therefore we can assuime 0. Now we have to distinguish the following cases:

1. Qooodloooz # 0: We can compute the resultantl®fpog andQ resp.IT with respect taes, which yieldsR? andR",
respectively. NowR® andR! have to vanish independently &, e;, &, whereR!! spits up intoe, P[8] Q[38]%:

a. P[8] = 0: Note thatP = 0 is a quadratic homogeneous polynomial in the unknosyne. Now the coéficient
of e% impliesb, = —Bs and from the coficient ofeg we geta, = —XsAs/Xo. Then the cofficient of e;e,

impliesAs = X,Bs. Finally, IT1000 = O yields a contradiction.

b. Q[38] = 0: Note thatQ = 0 is a quartic homogeneous polynomiakine,. We denote the cdicients ofe"leé
of Q by Qij. Now Qo4 can only vanish w.c. for:

i. by = —Bs: ThenQyo can only vanish w.c. for:
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* Bs = 0: As Q s fulfilled identically, we consideR® which splits up intoS[91]T[4]2. It can easily be
seen that the cdicients of the homogeneous linear polynonTi§d] = 0 in e;, &, cannot vanish w.c..
Therefore we seB[91] equal to zero, which is a quartic homogeneous polynbmiay, e;,e,. The
codficient of% of S already yields the contradiction.

* a = Bs(Xs — X2) — As, Bs # 0: Now Q31 cannot vanish w.c..

ii. a = Xoby —XsBs + As, by # —Bs: Now Q4o can only vanish w.c. for:

* by = Bs: ThenQq3 = 0 yields the contradiction.

* As = X5Bs, by # Bs: Now Qz; can only vanish w.c. for:

(@) X2 = xs: As Qis fulfilled identically, we consideR® which is a homogeneous polynomial of degree
6 in ey, €1, &. Now the coéicient of e implies an expression fdrs. Moreover, the coéicient ofefes
impliesbs = X3as/X2 and from the coficient ofeZe} we getXs = —xs. Finally, the coéicient of e}
yields the contradiction.

(B) X2 = —Xs, X2 # x5. Now Q22 = 0 yields the contradiction.

2. Tgooz = 0, Qpooz # 0: We can comput8s from ITpio3 = O.

a. Xz # Xs: Under this assumption we can exprégsgrom fromIlgp13 = 0. Now it can easily be seen thBbgo2
cannot vanish w.c.. Therefore we can compute the resulfditgo andII with respect taes, which yieldsR"™.
R splits up and can only vanish w.c. f&{6] = 0 or Q[14]. It can easily be seen that the @@eients of the
quadratic homogeneous polynomiak 0 in the unknowng,, &; cannot vanish w.c.. Therefore we $gt= 0
which is also a quadratic polynomial in the unknovease,. We denote the cdicients ofe'leé of Q by Qj;.
Now Qo2 = 0 impliesa, = —Xs5As/X>. ThenQ11 can only vanish w.c. for:

i. X5 =0: Now Qo = 0 yields the contradiction.
ii. Xo=-1/%s, x5 # 0: ThenIl1g0 = O yields the contradiction.

b. X5 = Xs: Now IIpg13can only vanish w.c. for:

i. a2 = As: ThenlIlyggo is a factor ofll. Therefore we can only compute the resultanilefy andQ with
respect tes, which yields a homogeneous polynomRi{[674] of degree 6 irey, e1, . We denote the
codficients ofe,e] ek of Q by Ri- Now R can only vanish w.c. for:

* As = Xsbp: ThenRy, impliesLs = —X3a3 — b and fromR{,, we getbs = Xsaa/%. Finally, RS,, = 0
yields the contradiction.

* L3 = bg — 2bp — X3zas, As — Xsby # 0: Now Rffoz can only vanish w.c. fab, = bz orb, = —XsAs. In both
casengl06 = 0 yields the contradiction.

ii. x5 = Fi: Now it can easily be seen thH}o, cannot vanish w.c.. Therefore we can compute the resultant
of TT1900 andIT with respect taes, which yieldsR". ThenR! can only vanish w.c. foe (¥a, + As — 2iby) +
iex(az + As) = 0. It can easily be seen that the @dgents of this linear homogeneous polynomial in the
unknownse;, & cannot vanish w.c..

3. Qooo2 = 0, Qooorllogos # 0: We can expresks from Qgoo2 = 0. Moreover, we can compute the resultant of
11000 and Q resp. IT with respect toes, which yieldsR? andR', respectively. NowR? andR" have to vanish
independently oéy, &1, &, whereR!! spits up intoe, P[8]Q[38]%:

a. P[8] = 0: Note that? = 0 is a quadratic homogeneous polynomial in the unknosyns. Now the codicient
of eﬁ impliesb, = —Bs and from the cofficient ofeﬁ we geta, = —XsAs/Xo. Then the cofiicient of ;e
impliesAs = X5Bs. Finally, IT1000 = O yields a contradiction.

b. Q[38] = 0: Note thatQ = 0 is a quartic homogeneous polynomiakine,. We denote the cdicients ofe"leé
of Q by Qij. Now Qo4 can only vanish w.c. for:

i. b, = —Bs: ThenQyo can only vanish w.c. for:

* Bs = 0: As Qs fulfilled identically, we consideR? which splits up intoS[47]T[4]. It can easily be
seen that the cdicients of the homogeneous linear polynonTi§d] = 0 in e;, &, cannot vanish w.c..
Therefore we seB[47] equal to zero, which is a quartic homogeneous polynbmiay, e;, €. The
codficient of% of S already yields the contradiction.
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* ap = Bs(Xs — X2) — As, Bs # 0: Now Q31 cannot vanish w.c..
ii. a = Xoby — XsBs + As, by # —Bs: Now Q40 can only vanish w.c. for:
* by = Bs: ThenQq3 = 0 yields the contradiction.
* As = X5Bs, b, # Bs: Now Qz; can only vanish w.c. for:
(@) X2 = xs: As Qis fulfilled identically, we consideR® which is a homogeneous polynomial of degree
5in ey, €1, €. Now the codficient ofeg yields the contradiction.
(B) X2 = —Xs, X2 # x5. Now Q22 = 0 yields the contradiction.

4. Qpooz = Qooo1 = 0, Ipgoz # 0: We can expresks from Qpoo2 = 0 anda, from Q1001 = 0. Then we compute
the resultant ofl;op0 andIl with respect toes, which yieldsR!'. Now R splits up and can only vanish w.c. for
P[11] =0orQ[49] = 0.

a. P[11] = 0: Now the coéicients of this equation can only vanish w.c. f@r = —Bs, As = X,Bs andag =
Bs(X2 — X5) + X3bz. But thenlIigoo = O yields the contradiction.

b. Q[49] = 0: This is a quartic polynomial in the unknowes e,. We denote the cdicients ofeileé of Q by Qj;.
ThenQp4 can only vanish w.c. for:

i. by = —Bs: Now Q4o can only vanish w.c. for:

*x Bs = 0: ThenQ s fulfilled identically. As now the cd&cient of the highest exponent ef in I1;900and
Q = 0 cannot vanish w.c., we can compute the resultamitgfp = 0 andQ with respect tce,, which
yieldsR®. MoreoverR? = 0 factors intoS[34]T[59] = 0. As the coéicient ofe] of S already yields a
contradiction, we sef equal to zero. The cdiécient ofeg of T impliesaz = X3bs — XsAs/X,. Finally,
the codficient ofef of T yields the contradiction.

* ag = X3bs + XsBs — As, Bs # 0: ThenQs; = 0 yields the contradiction.

ii. ag = X3bs —XsBs + As, by + Bs # 0: Now Q4 can only vanish w.c. for:

* by = Bs: ThenQq3 = 0 yields the contradiction.

* As = Xs5Bs, by — Bs # 0: Now Q13 can only vanish w.c. foK, = +xs. As for X, = —Xs the equation
Q22 = 0 yields the contradiction, we s = xs. ThenQ is fulfilled identically.

(@) b, # bz Under this assumption the highest exponeneofn Q andIl;gp cannot vanish w.c..
Therefore we can compute the resultantbfind the only non-c. factor dfi;ggp With respect toe,
which yieldsR?[87]. Then the cofiicient ofej of R yields the contradiction.

(B) bz = bz: Now Qqoz is fulfilled identically butQg10 and the highest exponent ef in 11000 = 0
cannot vanish w.c.. Therefore we can compute the resulf@atad the only non-c. factor @f;poowith
respect tae;, which yieldsR2[26]. Then the cofficient of e} of R? implies X3 = —Xs — 2/%s. Finally,
the codficient ofeg' of R? yields the contradiction.

5. Qooo2 = ooz = 0, Qooo1 # 0: We can expreslsg from Qoo = 0 andllgi03=0 impIiesbz = X5As5 + Bs — Xzaz.

a. X2 # xs: Under this assumption we can expréssfrom Ilpo;3 = 0. As Ilggo2 cannot vanish w.c. we can
compute the resultant &f,gg0 andII with respect taes, which yieldsR". Now R" splits up and can only vanish
w.c. for P[6] = 0 or Q[14] = 0. As it can easily be seen, that the fiaéents ofP[6] = 0 cannot vanish w.c., we
setQ[14] equal to zero, which is a quadratic polynomial in the nmkinse;, e;,. We denote the cdicients of
e'le‘2 of Q by Qjj. ThenQqz = 0 impliesa, = —XsAs/X,. Now Q11 = 0 can only vanish w.c. for:

i. X2 = —Xs: ThenQyo can only vanish foxs = +1. In both caseBl1po0 = O yields the contradiction.
ii. X5 =—1/Xo, X2 + X5 # 0: Again,IT1000 = O yields the contradiction.
b. X, = Xs: Now Ipg13can only vanish w.c. for:

i. ag = As: Now IT1p00is a factor ofil. Therefore we compute the resultanfbbooandQ with respect taes,
which yieIdsRQ[24_4], MoreoverR®? = 0 is a homogeneous equation of degree &y, ;. We denote
the codficients ofe,e] ek of R? by RT- ThenRg,; can only vanish w.c. for:
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*x Bs = bs: Theanf00 = 0 impliesAs = Xza3/Xs. Now R%’Sz can only vanish w.c. for:
() ag = Xsbs: ThenRS; = 0 impliesX; = 0 andR, = 0 yields the contradiction.
(B) bs = X3a3/%E, Bs # bs: Now RS, = 0 yields the contradiction.
* Bs = —XsAs, Bs # bg: ThenR%, ) = 0 impliesb; = —X3a3 andRS, , = 0 yields the contradiction.
ii. x5 = =i, a, # As: In this case we can compute the resultan®and the only non-c. factor digg with
respect taes, which yieldsR*[207]. MoreoverR® = 0 is a homogeneous equation of degree &ji;, .
We denote the cdicients ofel e of R? by R‘}k ThenRS, = 0imply & = As + bsi ¥ Bsi and from

R, = 0 we getAs = (+Bs ¥ bs ¥ X3ag)i. Finally, R, = 0 yields the contradiction.

6. Qooo2 = Qooo1 = Iogo3 =_0: We can expressg from Qooo2 = 0 andIIgggy = O impliesaz = ag+ Xzbz - ngg.
Moreover we gebs = A5X3b3 — XsBsg from ITgo13= 0.

a. X2 # xs: Under this assumption we can expréssfrom Ilpi03 = 0. As Ilggo2 Cannot vanish w.c. we can
compute the resultant &f,gg0 andII with respect taes, which yieldsR". Now R" splits up and can only vanish
w.c. forP[6] = 0 orQ[14] = 0. As it can easily be seen, that the fia@ents ofP[6] = O cannot vanish w.c., we
setQ[14] equal to zero, which is a quadratic polynomial in the nmkinse;, e;. We denote the cdkcients of
e'le'2 of Q by Qij. ThenQzg = 0 impliesBs = —b,. Now Qp = 0 can only vanish w.c. for:

i. X2 =—xs: ThenQq; = 0 yields the contradiction.
ii. X5 = —1/X5, X2 + x5 # 0: Now ITy000 = O yields the contradiction.

b. X5 = Xs: Now IIp103can only vanish w.c. for:

i. b, = Bs: Now II1ggois a factor offI. The codficient ofeg of TT1000 resp-Qoo20 equaIsYzAg, resp. bz — Bs):

* As(bz — Bs) # 0: Under this assumption we can compute the resultafii g andQ with respect tae,,
which yieldsR?[792]. The coéiicient ofe§ of R? cannot vanish w.c..

*x As = 0, bz # Bs: Now the codficient ofe?2 of IT1p00 cannot vanish w.c., and therefore we can compute
the resultant ofI;000 andQ with respect tae,, which yieldsR?[80]. Then the cofficient of €} of R®
yields the contradiction.

*x bz = Bs, As # 0: Now Qg1 cannot vanish w.c., and therefore we can compute the reswatdl;ogo
andQ with respect ta,, which yieldsR®*[167]. The codficient ofeg of R® cannot vanish w.c..

*x As = 0, b3 = Bs: Now the codficient of%2 of IT1g00 and Qgo10 cannot vanish w.c.. Therefore we can
compute the resultant @f;gp0 andQ with respect tae,, which yieldsR?[22]. Then the cofficient ofeg'
of R? yields the contradiction.

ii. Xz = #i, by # Bs: We distinguish two cases:
* 2As + byi ¥ Bsi # 0: Under this assumption the highest exponerg,ah IT andIlipo0 Cannot vanish

w.c.. Therefore we can compute the resultant of the onlyadaetors ofl1;900 andIT with respect to
€&, which yieldsR'.. It can immediately be seen, tHaf cannot vanish w.c..

* As = (£Bsi Fbgi)/2: NowIIigppcan only vanish w.c. fog; = ¢e§i/e2. Then it can immediately be seen,
thatIl = 0 yields the contradiction.

4.7.2. 11900 = 0 vanishes identically for all g e,, e3
Now I11210=0 impIiesbz = —Bs and fromIIip12 = 0 we getay = —A57(5/X2. ThenIli120 = 0 andII;i02 = 0 can
only vanish w.c. foiX; = xs. Now we distinguish the following cases:

1. Qp200 # 0: We distinguish two cases:

a. by # 0: Due to this assumptiofpzoo # O holds and we can compute the resultan®adndIT with respect to
e; which yieldseﬁF[SZOO], Wherer is a homogeneous polynomial of degree &jney, 3. In the following we

denote the cdicients ofel, e}, € of I' by Tjj. We can solve the only non-c. factor Boo for L3 andI'sps = 0
impliesag = X3bs + BsXs — As.

i. X3Bs + Xsbs # 0: Under this assumption we can compAtgfrom the only non-c. factor df pge.
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* X3 — 2?;7(5 —Xs # 0: Now we can solve the only non-c. factorlihs = 0 for bsz. Thenl'gsz = O yields
the contradiction.

* X5 = X3 — 2?;25: Now I'p24 = 0 yields the contradiction.
i. As= —ngz/is: ThenI oo can only vanish w.c. for:
* X3 = 0: NowIg24 = 0 impliesb, = —bg andlp42 = 0 yields the contradiction.
* X3 = —Xs, X3 # 0: Thenlpz4 = 0 cannot vanish w.c..
b. by = 0: NowIIgz00 andIlpzoo Vanish bufilpigo cannot vanish w.c.. Therefore we can compute the resulfdnt o
andII with respect tae; which yieldseﬁF[GZ], wherel is a homogeneous polynomial of degree &jney, es.
In the following we denote the céiiients ofe';), eé, e§ of I" by Iijx. We can solve the only non-c. factor Bfos
for Ls. ThenIgps = 0 imply a3 = Xsbs and fromI'xgs = 0 we getAs = —ba(X3Xs + 1)/Xs. Now I'1o5 = 0 yields
the contradiction.

2. Qo200 = 0, Qo100 # 0: We can expreslss from Qgzo0 = 0.

a. by # 0: Due to this assumptioHpzoo # O holds and we can compute the resultan©o&ndII with respect
to e; which yieldsesI'[621], wherel is a homogeneous polynomial of degree &ine,, e;. In the following
we denote the cdBcients ofél, €}, € of I' by Tjjx. ThenI'goo = 0 impliesh, = b and fromI'oos = O we get
As = —X3as/Xs. Finally,I'303 = 0 yields the contradiction.

b. by = 0: NowIIgz00 andIlpzgo Vanish bufilpigo cannot vanish w.c.. Therefore we can compute the resulfdnt o
andII with respect tae; which yieldsesI'[22], wherel is a homogeneous polynomial of degree &jne,, €s.
Then the cofficient ofeZe3 of I cannot vanish w.c..

3. Qo200 = Qo100 = 0, Ipozo # 0: We can expresks; from Qg0 = 0 andas from Qp110 = 0. Now it can easily be
seen thaf)gozo cannot vanish w.c.. Due to this fact an the assumgiiggdo # 0 we can compute the resultant of
Q andITI with respect tae, which yieldsegr[838], wherel” is a homogeneous polynomial of degree @&jne;, es.
The codficient ofe§ of I impliesb, = bs and from the coficient ofe3e3 we get the contradiction.

4. Qo200 = Qo100 = Tpozo = 0: We can expreskss from Q00 = 0 andag from Qpz10 = 0. Now IIgg30 = O implies
As = BsXs. Then it can easily be seen thgp,pas well adlppz0 cannot vanish w.c.. Therefore we can compute the
resultant of andIl with respect ta,, which yieldseZe2I'[100], wherel” is a homogeneous polynomial of degree
4 in e, €1, €3. The codlicient ofeg of I impliesb, = bz and the cofficient ofeg1 of I' yields the contradiction.

Due to the structufeof Q it can easily be seen, th@tandIl can only have a common factor, which does not depend
on ey (cf. footnote 2) ifQ = 0 has this property too. As this case was already treatedsestion 4.6 we remain with
the discussion of those cases excluded by the assunggtpr eje; # 0 (cf. footnote 1). This discussion is done in
the next section.

5. Proving the special caseye; — e1e3 # 0 of Theorem 3

We split up the proof of this section into the following thresses:

1. Ase = e = & = e3 = 0 does not correspond with an Euclidean motion, we startdke study by considering
the following four cases:

w=e=6=0, g=-ea=-6=0 e@=-g=-6=0, ea=-g=6=0

We only discuss the casg = e; = & = 0 in more detail because the other three cases can be dongansll.
Now ¥ = 0 impliesf; = 0. ThenQ; = 0 yields an expression fdp andQ, = 0 implies an expression fdg. This
cannot yield a two-parametric self-motion as only the hoemapus parametees and fy are free.

40 Zi3=0 ciei2 + C4€p€3 + Cs€162 Wherecy, ... ., ¢s only depend on the geometry of the SG platform.
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2. In this part we discuss the following four special cases:

a. e = e; = 0: Due to item 1 we can assunege; # 0. We can computd, from ¥ = 0. ThenQ; implies
f3 = —L16,/2. ThenlIl, can only vanish w.c. fog, = —L;. Moreover, we can express from I1s. Finally the
codTicients ofe, fo of Q, andQ3 cannot vanish w.c..

b. & = e3 = 0: This case can be done analogously to the last one.

C. g = e3 = 0: Due to item 1 we can assumag, # 0. We can computé from¥ = 0. Then we can expreds
fromIl4 = 0. Moreover, we can compute from ITs = 0. NowQ;, Q, andQ3 have to vanish independently of
the choice of the unknowres, e, f5.

The codficient ofe} of Q, implies an expression fdi. Then we get., from the codlicient ofele} of Q, and
Ls from the codicient ofe] of Q. Then the cofiicients ofel ande; of Q; imply L1 = g4 = 0. Now we can
computea, from the codicient ofe}eg of Q,. Moreover, the cocient ofefe% of Q; implies Bs = XsAs and
from the codficient of el of Q3 we getag = As(1 + X5) — X3bs. Then the cofficient ofe2e2 of Q; can only
vanish w.c. forxs = Fi. Then the cofficient ofeg of Q, implies X, = +i. Finally, the coéicient ofe‘z1 of Q3

yields the contradiction.

d. e; = & = 0: This case can be done analogously to the last one.

3. Due to the discussion of the special cases in item 1 and2tene can assumeye;e;e3 # 0. Therefore we can
solveeye, — e85 = 0 for e,. Moreover, we can SoV®, Q, I, 15 for fo, fq, fo, fs.
Now Q, andQ3 have to vanish independently of the choice of the unknosynes, e;. Therefore the cdicient
of € of Q impliesL; = g4. Then the coglicient of g5e; of Q; yields an expression fdr,. Now we getgs =
2a, — 2Xb, from the codicient ofeje of Q,. Moreover, we geb, = Xob, from the codlicient of €€} of Q,.
Finally the codicient ofeoeieg of Q, cannot vanish w.c.. This finishes the proof of Theorem 3. O

6. Geometric interpretation of the necessary conditions

As noted in [15], the equations Eq. (2) and Eq. (3) arise fioacbndition tha€ of subsection 2.5 does not depend
on ey andes or e andey,, respectively. By computin@2000 + Qoooz Q2000 — Qoooz andQigp1 it can immediately be
seen that the conditions of Eq. (2) can also be written as:

Ll(YZ - Xg) - L2 + L3 = 0, Yzaz - Xgag + b2 - b3 = 0, Yzbz - ngg —adyt+ag = 0. (4)
By computingQoz00 + Q0020 Q0200 — Qooz0 andQp110it can immediately be seen that Eq. (3) can be rewritten as:
Ll(iz - Xg) - L+ L3=0, Xzaz - Xgag —by+b3=0, Xzbz - ngg +a,—az=0. (5)

In the following we give the geometric interpretation of E4), which is sketched in Figure 1(a):

. Ll(Yz_— Xg) — L, + L3 = 0 expresses that the three lings %o (i = 1, 2, 3) with homogeneous line coordinates
[Li : X :Y;] have a common point (= the three Darboux planes belong to a pencil of planes).

Il. Xaby — X3bs — ap + as = 0 expresses that the three lirsgs= [uj, Ui] (i = 1,2, 3) with U; = (0 : X; : ;) have a
common poins.

lll. Xoaz — Xaas + by — bs = 0 expresses that the three lings:= [u;, U; ] (i = 1,2, 3) with U; = (0 : -Y; : X;) have
a common poing*.

Note that the items Il and Il only hold if the coordinate ®sts of the platform and base are chosen according to
Lemma 1 and if these two coordinate systems coincide.

The geometric interpretation of Eq. (5) is equivalent wiie bne given above, if one rotates the platform about
the x-axis with angler. Therefore the two triples of necessary conditions are eotad by this rotation, which is
represented in the Euler parameter space by the transfomget. [10]): (e, €1, €, €3) — (—€1, €y, —€3, €2).

Remark 1. Itis interesting to note, that the given necessary conastamly arise from the three Darboux constraints.
A purely geometric proof of the necessity of these condgifor a type || DM self-motion of a general planar SG
platform seems to be a complicated task. o
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Figure 1: a) Sketch of the geometric interpretation of theessary conditions.
b,c) Line-symmetric Bricard octahedroh; = (1, 0,0), 25 = (5, 3, -6), 35 = (-2, -7, -9) and the line of symmetry is the z-axis.

6.1. Line-symmetric Bricard octahedra

We denote the vertices of the line-symmetric Bricard oatiabwe [3] by 14, 1p, 24, 2b, 3a, 3p, Wherev, andvy,
are symmetric with respect to the lihéor v € {1, 2,3}. Moreover,s;ji denotes the face spanned hy2;, 3 with
i, j,k € {a,b}. Under consideration of this notation we can formulate tkfing theorem, which is illustrated in
Fig. 1b,c:

Theorem 4. Every line-symmetric Bricard octahedron has the propengt the following three planes, orthogonal
to &jjk, have a common lin®;:

* plane orthogonal tq1;, 2;] though3, where k# k' € {a, b},
* plane orthogonal tq2;, 3] thoughl; where i# i’ € {a, b},
* plane orthogonal tq3y, 1;] though2; where j# |’ € {a, b}.

Proof: It was already proven by the author in Corollary 1 of [16] the continuous flexion of a line-symmetric
Bricard octahedron is a type Il DM self-motion. Then the tteeo follows immediately by item I. O

7. Conclusion

In this article we have proven the necessity of three comufitior obtaining a type 1l DM self-motion of a general
planar SG platform (cf. Theorem 3). Moreover, we also gaveantetric interpretation of these conditions cf. section
6), which identified a property of line-symmetric Bricardtaltedra, which was not known until now, to the best
knowledge of the author (cf. Theorem 4).

Finally, it should be noted that Theorem 3 is the key for thieideination of all planar SG platforms with a type
[l DM self-motion, which was already done in [17].
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