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Abstract

Due to previous publications of the author, it is already known that one-parametric self-motions of general planar
Stewart Gough platforms can be classified into two so-calledDarboux Mannheim (DM) types (I and II). Moreover, the
author also presented a method for computing the set of equations yielding a type II DM self-motion explicitly. Based
on these equations we prove in this article the necessity of three conditions for obtaining a type II DM self-motion.
Finally, we give a geometric interpretation of these conditions, which also identifies a property of line-symmetric
Bricard octahedra, which was not known until now, to the bestknowledge of the author.
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1. Introduction

The geometry of a planar Stewart Gough (SG) platform is givenby the six base anchor pointsMi with coordinates
M i := (Ai, Bi, 0)T with respect to the fixed systemΣ0 and by the six platform anchor pointsmi with coordinates
mi := (ai , bi, 0)T with respect to the moving systemΣ. By using Study parameters (e0 : . . . : e3 : f0 : . . . : f3) for the
parametrization of Euclidean displacements, the coordinatesm′i of the platform anchor points with respect toΣ0 can
be written asKm′i = R mi + (t1, t2, t3)T with

t1 = 2(e0 f1 − e1 f0 + e2 f3 − e3 f2), t2 = 2(e0 f2 − e2 f0 + e3 f1 − e1 f3),

t3 = 2(e0 f3 − e3 f0 + e1 f2 − e2 f1), K = e2
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Now all points of the real 7-dimensional spaceP7
R
, which are located on the so-called Study quadricΨ :

∑3
i=0 ei fi = 0,

correspond to an Euclidean displacement, with exception ofthe subspacee0 = . . . = e3 = 0 ofΨ, as these points cannot
fulfill the normalizing conditionK = 1.

If the geometry of the manipulator is given as well as the six leg lengths, then the SG platform is in general rigid,
but it can even happen that the manipulator can perform ann-parametric motion (n > 0), which is called self-motion.
Note that such motions are also solutions to the famous BorelBricard problem (cf. [1, 4, 5, 10, 19]). This still unsolved
problem was posed 1904 by the French Academy of Science for the Prix Vaillant and reads as follows:”Determine
and study all displacements of a rigid body in which distinctpoints of the body move on spherical paths.”
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1.1. Types of self-motions

In this and the next subsection we give a very short review of the results and ideas stated in [16], where more
details and also some concrete examples can be found.

It is already known, that manipulators which are singular inevery possible configuration, possess self-motions in
each pose. These manipulators are so-called architecturally singular SG platforms [11] and they are well studied: For
the characterization of architecturally singular planar SG platforms we refer to [8, 13, 18, 20]. For the non-planar case
we refer to [9, 14]. Therefore, we are only interested in the computation of self-motions of non-architecturally singular
SG platforms. Until now only few self-motions of this type are known, as their computation is a very complicated
task. A detailed review of these self-motions was given by the author in [16] (see also [6]).

Moreover, it is known that if a planar SG platform with anchorpointsm1, . . . ,M6 is not architecturally singular,
then at least a one-parametric setL of legs exists, which can be attached to the given manipulator without restricting
the forward kinematics [7, 12]. The underlying linear system of equations is given in Eq. (30) of [12]. As the
solvability condition of this system is equivalent to the criterion given in Eq. (12) of [2], also the singularity surface
of the manipulator does not change by adding legs ofL. Moreover, it was shown that in general the base anchor
pointsMi as well as the corresponding platform anchor pointsmi of L are located on planar cubic curvesC andc,
respectively.

Assumption 1. We assume that there exist such cubicsc andC (which can also be reducible) in the Euclidean domain
of the platform and the base, respectively.

Now, we consider the complex projective extensionP3
C

of the Euclidean 3-spaceE3, i.e.

ai =
xi

wi
, bi =

yi

wi
, Ai =

Xi

Wi
, Bi =

Yi

Wi
. (1)

Note that ideal points are characterized bywi = 0 andWi = 0, respectively. Therefore we denote in the remainder
of this article the coordinates of anchor points, which are ideal points, byxi , yi andXi ,Yi , respectively. For all other
anchor points we use the coordinatesai, bi andAi , Bi, respectively.

The correspondence between the points ofC andc in P3
C
, which is determined by the geometry of the manipulator

m1, . . . ,M6, can be computed according to [7, 12] or [2] under consideration of Eq. (1). As this correspondence has
not to be a bijection, a point∈ P3

C
of c resp.C is in general mapped to a non-empty set of points∈ P3

C
of C resp.c.

We denote this set by the termcorresponding locationand indicate this fact by the usage of brackets{ }.
In P3

C
the cubicC has three ideal pointsU1,U2,U3, where at least one of these points (e.g.U1) is real. The remain-

ing pointsU2 andU3 are real or conjugate complex. Then we compute the corresponding locations{u1} , {u2} , {u3} of
c (⇒ {u1} contains real points). We denote the ideal points ofc by u4, u5, u6, where again one (e.g.u4) has to be real.
The remaining pointsu5 andu6 are again real or conjugate complex. Then we compute the corresponding locations
{U4} , {U5} , {U6} of C (⇒ {U4} contains real points).

Assumption 2. For guaranteeing a general case, we assume that each of the corresponding locations{u1}, {u2},
{u3} , {U4}, {U5}, {U6} consists of a single point. Moreover, we assume that no 4 collinear platform anchor pointsu j or
base anchor pointsU j ( j = 1, . . . , 6) exist.

Now the basic idea can simply be expressed by attaching the special legsuiUi ∈ L with i = 1, . . . , 6 to the
manipulatorm1, . . . ,M6. The attachment of the special leguiUi for i ∈ {1, 2, 3} corresponds with the so-called Darboux
constraint, that the platform anchor pointui moves in a plane of the fixed system orthogonal to the direction of the ideal
point Ui . Moreover, the attachment of the special leguiUi for i ∈ {4, 5, 6} corresponds with the so-called Mannheim
constraint, that a plane of the moving system orthogonal toui slides through the pointUi .

By removing the originally six legsmiMi with i = 1, . . . , 6 we remain with the manipulatoru1, . . . ,U6, which is
uniquely determined due to Assumption 1 and 2. Moreover, under consideration of Assumption 1 and 2, the following
statement holds (cf. [16]):

Theorem 1. The manipulatoru1, . . . ,U6 is redundant and therefore architecturally singular. Moreover, all anchor
points of the platformu1, . . . , u6 and as well of the baseU1, . . . ,U6 are distinct.
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It was also proven in [16] that there only exist type I and typeII Darboux Mannheim (DM) self-motions, where
the definition of types reads as follows:

Definition 1. AssumeM is a one-parametric self-motion of a non-architecturally singular SG platformm1, . . . ,M6.
ThenM is of the type n DM if the corresponding architecturally singular manipulatoru1, . . . ,U6 has an n-parametric
self-motionU (which includesM).

1.2. Type II DM self-motions

In the remainder of the article we focus on type II DM self-motions. The author [16] was already able to compute
the set of equations yielding a type II DM self-motion explicitly (cf. subsection 2.5). This was only possible by the
usage of the analytical versions of the Darboux and Mannheimconstraints, which are repeated next:

Darboux constraint:.The constraint that the platform anchor pointui (i = 1, 2, 3) moves in a plane of the fixed system
orthogonal to the direction of the ideal pointUi can be written as (cf. [16])

Ωi : Xi(air11 + bir12 + t1) + Yi(air21 + bir22 + t2) + Li K = 0,

with Xi ,Yi , ai , bi, Li ∈ C. This is a homogeneous quadratic equation in the Study parameters whereXi andYi denote
the conjugate complex ofXi andYi , respectively.

Mannheim constraint:.The constraint that the plane orthogonal toui (i = 4, 5, 6) through the platform point (gi , hi, 0)
slides through the pointUi of the fixed system can be written as (cf. [16])

Πi : xi [Air11 + Bir21 − giK − 2(e0 f1 − e1 f0 − e2 f3 + e3 f2)]+

yi [Air12 + Bir22 − hiK − 2(e0 f2 + e1 f3 − e2 f0 − e3 f1)] = 0,

with xi , yi,Ai , Bi, gi, hi ∈ C. This is again a homogeneous quadratic equation in the Studyparameters wherexi andyi
denote the conjugate complex ofxi andyi .

The content of the following lemma was also proven in [16]:

Lemma 1. Without loss of generality (w.l.o.g.) we can assume that thealgebraic variety of the two-parametric self-
motion of the manipulatoru1, . . . ,U6 is spanned byΨ,Ω1,Ω2,Ω3,Π4,Π5. Moreover, we can choose following special
coordinate systems inΣ0 andΣw.l.o.g.: X1 = Y2 = Y3 = x4 = y5 = 1 and a1 = b1 = y4 = A4 = B4 = Y1 = h4 = g5 = 0.

An important step in direction of a complete classification of type II DM self-motions was done by the following
basic result, which was proven in [15]:

Theorem 2. If neither the three equations

L1(X2−X3)−L2+L3 = 0, a2(X2−X3)+X3(X2b2−X3b3)+b2−b3 = 0, a3(X2−X3)+X2(X2b2−X3b3)+b2−b3 = 0,
(2)

nor the three equations

L1(X2−X3)−L2+L3 = 0, a2(X2−X3)−X3(X2b2−X3b3)−b2+b3 = 0, a3(X2−X3)−X2(X2b2−X3b3)−b2+b3 = 0,
(3)

are fulfilled, then the corresponding manipulatoru1, . . . ,U6 of a planar SG platform (fulfilling Assumptions 1, 2 and
Lemma 1) with a type II DM self-motion, has to have further three collinear anchor points in the base or in the
platform beside the pointsU1,U2,U3 andu4, u5, u6.

Based on this theorem we prove the following much stronger result within this article:

Theorem 3. The corresponding manipulatoru1, . . . ,U6 of a planar SG platform (fulfilling Assumptions 1, 2 and
Lemma 1) with a type II DM self-motion has to fulfill the three conditions either of Eq. (2) or Eq. (3).

3



2. Preparatory work for the proof of Theorem 3

For the proof of Theorem 3 we have to show that there exists no corresponding manipulatoru1, . . . ,U6 of a planar
SG platform (fulfilling Assumptions 1, 2 and Lemma 1) with a type II DM self-motion, which does not fulfill either
the three conditions of Eq. (2) or Eq. (3).

Due to Theorem 2 and due to Lemma 2 of [8] we can even restrict ourselves to manipulatorsu1, . . . ,U6, which
have three collinear platform pointsui , u j , uk and three collinear base pointsUl ,Um,Un beside the pointsU1,U2,U3

andu4, u5, u6 where (i, j, k, l,m, n) consists of all indices from 1 to 6.
As we have different types of anchor points (real, complex, finite, infinite), we have to distinguish the following

four cases of three collinear points (beside the triplesU1,U2,U3 andu4, u5, u6):

A. U1,U4,U5 collinear (⇔ u2, u3, u6 collinear): Asu5 andu6 are both real or conjugate complex, this case is equiva-
lent tou2, u3, u5 collinear (⇔ U1,U4,U6 collinear).

Moreover, by exchanging the platform and the base the above two cases are also equivalent tou1, u2, u4 collinear
(⇔ U3,U5,U6 collinear) andu1, u3, u4 collinear (⇔ U2,U5,U6 collinear), respectively.

B. U2,U4,U5 collinear (⇔ u1, u3, u6 collinear): Asu5 andu6 are both real or conjugate complex, this case is equiva-
lent tou1, u3, u5 collinear (⇔ U2,U4,U6 collinear).

Moreover, asU2 andU3 are both real or conjugate complex, these cases are also equivalent toU3,U4,U5 collinear
(⇔ u1, u2, u6 collinear) andu1, u2, u5 collinear (⇔ U3,U4,U6 collinear), respectively.

C. u2, u3, u4 collinear (⇔ U1,U5,U6 collinear)

D. u1, u2, u3 collinear (⇔ U4,U5,U6 collinear)

In the following we discuss these four types A–D in more detail:

2.1. Collinearity of type A

U1,U4,U5 are collinear forB5 = 0. As due to Assumption 2 no four platform anchor pointsui or base anchor
pointsUi are allowed to be collinear, we can stop the discussion of type A if:

• u2, u3, u4 collinear (⇔ b2 − b3 = 0),

• u1, u2, u3 collinear (⇔ a2b3 − a3b2 = 0),

• u2, u3, u5 collinear (⇔ x5(b2 − b3) − a2 + a3 = 0),

because then the pointsU1,U4,U5,U6 are collinear due to Lemma 2 of [8], which yields a contradiction. Due to
Theorem 1 alsoA5(X2−X3) , 0 has to hold, as otherwise the base anchor points are not pairwise distinct. Finally, we
can assumeX2 , 0 w.l.o.g., because both pointsU2 andU3 do not belong to the triple of collinear points.

2.2. Collinearity of type B

U2,U4,U5 are collinear forA5 = X2B5. Now we can stop the discussion of case B if:

• u1, u2, u3 collinear (⇔ a2b3 − a3b2 = 0),

• u1, u3, u4 collinear (⇔ b3 = 0),

• u1, u3, u5 collinear (⇔ a3 − x5b3 = 0),

because then the pointsU2,U4,U5,U6 are collinear, a contradiction. Due to Theorem 1 alsoB5(X2 − X3) , 0 has to
hold, as otherwise the base anchor points are not pairwise distinct. Moreover, we can stop the discussion of case B, if
U2 is real (⇔ X2 ∈ R, especiallyX2 = 0) because then this case is equivalent to case A.
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2.3. Collinearity of type C

u2, u3, u4 are collinear forb2 = b3. We can stop the discussion of case C ifU1,U4,U5 are collinear (⇔ B5 = 0),
because then the pointsu2, u3, u4, u6 are collinear, a contradiction. Moreoverb2 , 0 has to hold because otherwise
u1, u2, u3, u4 are collinear, a contradiction. Due to Theorem 1 also (a2− a3)(X2− X3) , 0 has to hold, asu2 = u3 resp.
U2 = U3 yield a contradiction. In addition, we can assumeX2 , 0 w.l.o.g., because the corresponding points ofU2

andU3 belong to the triple of collinear points.
We can also assume thatU2,U4,U5 are not collinear (⇔ A5 − X2B5 , 0), because this case was already discussed

in case B.

2.4. Collinearity of type D

u1, u2, u3 are collinear fora2b3 − a3b2 = 0. Now we can stop the discussion of case D if:

• U1,U4,U5 collinear (⇔ B5 = 0),

• U2,U4,U5 collinear (⇔ A5 − X2B5 = 0),

• U3,U4,U5 collinear (⇔ A5 − X3B5 = 0),

because then the pointsu1, u2, u3, u6 are collinear, a contradiction. Moreover, we can assumeb2b3 , 0 because
otherwiseu1, u2, u3, u4 are collinear (⇒ a2 = a3b2/b3). Clearly, also the pointsu1, u2, u3, u5 are not allowed to be
collinear which impliesa3 − x5b3 , 0. Moreover we can assumeb2 , b3 because otherwise we getu2 = u3, a
contradiction. Due to Theorem 1 also (X2 − X3) , 0 has to hold, asU2 = U3 yields a contradiction. In addition, we
can assumeX2 , 0 w.l.o.g., because the corresponding points ofU2 andU3 belong to the triple of collinear points.

2.5. Preparatory computations

In the following we describe how the setE of equations yielding a type II DM self-motion can be computed
explicitly. Note that the proof for the general case of Theorem 3 (cf. section 3) is based on this setE.

We solve the linear system of equationsΨ,Ω1,Ω2,Π4 for f0, . . . , f3 and plug the obtained expressions in the
remaining two equations.1 This yields in general two homogeneous polynomialsΩ[40] andΠ[96] in the Euler param-
eters of degree 2 and 4, respectively. The number in the square brackets gives the number of terms.

Finally, we compute the resultant ofΩ andΠ with respect to one of the Euler parameters. Here we choose2 e0.
This yields a homogeneous polynomialΓ[117 652] of degree 8 ine1, e2, e3. In the following we denote the coefficients
of ei

1, e
j
2, e

k
3 of Γ by Γi jk . We get a setE of 24 equationsΓi jk = 0 in the 14 unknowns (a2, b2, a3, b3, A5, B5, X2, X3, x5,

L1, L2, L3, g4, h5).
Moreover, we denote the coefficients ofei

0ej
1, e

k
2, e

l
3 of Ω andΠ byΩi jkl andΠi jkl , respectively.

Finally, it should be said that all symbolic computations were done with M 14 on a high-capacity computer.3

3. Proving the general case of Theorem 3

For the general case we have to assumeΩ2000Π3000 , 0, as only those solutions ofE correspond to type II self-
motions, which do not cause a vanishing of the coefficient of the highest power ofe0 in Ω andΠ, respectively. In the
following we prove this general case for the four different types A–D of collinearity.

For each type the proof is done by contradiction, i.e. we stopthe discussion for the cases listed in the respective
subsections (subsection 2.1–2.4) or if the three conditions of Eq. (2) or Eq. (3) are fulfilled.

3.1. For the collinearity of type A

Γ800 can only vanish without contradiction (w.c.) forL1 = g4 or for FA[8] = 0.

1For e0e2 − e1e3 , 0 this can be done w.l.o.g., as this factor belongs to the denominator of fi .
2Therefore we are looking for a common factor ofΩ andΠ, which depends one0.
3CPU: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40 GHz, RAM: 8 GB, Hard disk: 2x250 GB, Graphic: nVidia 7x00GT or 8x00GT, Operating

system: Linux x64 (Kernel 2.6.18-53)

5



3.1.1. FA = 0
We can expressL1 from FA = 0. Now we distinguish two cases:

1. L1 , g4: ThenΓ710 = 0 impliesa2 = a3 − X2b2 + X3b3. NowΓ620 cannot vanish w.c..

2. L1 = g4: We can computeh5 from the only non-contradicting (non-c.) factor ofΓ602. Now Γ530 can only vanish
w.c. for:

a. L3 = X3(L2 − b2)/X2 + X3(a2 − a3) + b3: We can expressA5 from the only non-c. factor ofΓ422. Again we
distinguish two cases:

i. X2b2−X3b3+a2−a3 , 0: NowΓ350 has only one non-c. factor, which can be solved forL2. ThenΓ314 = 0
impliesb3 = 0. Now we getx5 = −X3 from Γ206 = 0. ThenΓ080 can only vanish w.c. for:

⋆ X3 = 0: NowΓ026 = 0 yields the contradiction.

⋆ b2 = X2a2 − X3a3, X3 , 0: Γ026 cannot vanish w.c..

ii. a3 = X2b2 − X3b3 + a2: ThenΓ260 = 0 impliesL2 = 2X
2
2b2 + X2a2 + b2. Moreover, we can solve the only

non-c. factor ofΓ242 for x5.

⋆ AssumingX2b3 − X3b2 , 0: Under this assumption we can computea2 from the only non-c. factor of
Γ080. NowΓ224 = 0 yields the contradiction.

⋆ b3 = X3b2/X2: ThenΓ080 can only vanish w.c. forX3 = 0 or X2 = −X3. In both casesΓ026 = 0 yields
the contradiction.

b. a2 = X3b3 − X2b2 + a3, X2X3(a2 − a3) + X2(b3 − L3) − X3(b2 − L2) , 0: NowΓ440 = 0 yields the contradiction.

3.1.2. FA , 0
Now L1 = g4 has to hold. ThenΓ080 factors intoGA[8]HA[16]2.

1. GA[8] = 0: We can expressL1 from GA[8] = 0. NowΓ170 can only vanish w.c. for:

a. a2 = X3b3 − X2b2 + a3: We can solve the only non-c. factor ofΓ620 for h5. Now we can expressL3 from the
only non-c. factor ofΓ602.

i. x5 , 0: Under this assumption we can computeA5 from the only non-c. factor ofΓ260. Then we can express
L2 from the only non-c. factor ofΓ062. Now the resultant of the only non-c. factors ofΓ404 andΓ440 with
respect toX3 can only vanish w.c. for:

⋆ b3 = 0: NowΓ404 impliesx5 = X3. Finally,Γ026 = 0 yields the contradiction.

⋆ x5 = X3, b3 , 0: NowΓ440 = 0 impliesa3 = X2b3 andΓ404 = 0 yields the contradiction.

⋆ a3 = −X2b3, b3(x5 − X3) , 0: NowΓ404 = 0 impliesb2 = −b3 andΓ440 = 0 yields the contradiction.

ii. x5 = 0: We distinguish two cases:

⋆ X2b3 − X3b2 , 0: Under this assumption we can expressa3 from the only non-c. factor ofΓ260. Then
we can computeA5 from the only non-c. factor ofΓ440. NowΓ404 cannot vanish w.c..

⋆ b3 = X3b2/X2: Now Γ260 can only vanish w.c. forX3 = 0. ThenΓ440 = 0 impliesA5 = −a3. Now we
can solve the only non-c. factor ofΓ422 for L2. Finally,Γ026 = 0 yields the contradiction.

b. VA[16] = 0, X3b3 − X2b2 − a2 + a3 , 0:

i. x5 , 0: Under this assumption we can computeA5 from VA[16] = 0. Then can solve the only non-c. factor
of Γ620 for h5. Now we can expressL3 from the only non-c. factor ofΓ602. Moreover, we can solve the only
non-c. factor ofΓ062 for L2. Now the difference of the only non-c. factors ofΓ440 andΓ404 can only vanish
w.c. forb3 = 0. ThenΓ440 = 0 impliesx5 = X3 andΓ422 = 0 yields the contradiction.

ii. x5 = 0: Now we can solveVA = 0 for L3. Then we can computeb3 from the only non-c. factor ofΓ620.
Now Γ602 impliesh5 = 0. Then the difference of the only non-c. factors ofΓ440 andΓ404 can only vanish
w.c. for X3 = 0. NowΓ440 = 0 impliesa3 = −A5. From the only non-c. factor ofΓ422 = 0 we expressL2.
ThenΓ026 = 0 yields the contradiction.
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2. HA[16] = 0,GA[8] , 0: We distinguish two cases:

a. X2a2 − X3a3 , 0: Under this assumption we can computeh5 from HA[16] = 0.

i. x5 , 0: Under this assumption we can computeA5 from the only non-c. factor ofΓ620. Moreover, we can
computeL3 from the only non-c. factor ofΓ602. Now the difference of the only non-c. factors ofΓ440 and
Γ404 can only vanish w.c. forb3 = 0. ThenΓ440 = 0 impliesx5 = X3. Now Γ422 = 0 impliesL1 = 2a3.
Finally,Γ242 = 0 yields the contradiction.

ii. x5 = 0: We can solve the only non-c. factor ofΓ620 for b3. Then we expressL3 from the only non-c. factor
of Γ602. Then the difference of the only non-c. factors ofΓ440 andΓ404 can only vanish w.c. forX3 = 0. Now
Γ440 = 0 impliesa3 = −A5 and fromΓ422 = 0 we getL1 = −2A5. ThenΓ026 = 0 yields the contradiction.

b. a2 = X3a3/X2: Now HA can only vanish w.c. forA5x5 + X3a3 = 0.

i. x5 , 0: Under this assumption we can solve the last equation forA5. Now we can expressh5 from the only
non-c. factor ofΓ620. Then we can computeL3 from the only non-c. factor ofΓ602. Now the difference of
the only non-c. factors ofΓ440 andΓ404 can only vanish w.c. forb3 = 0. ThenΓ440 = 0 impliesx5 = X3.
Now Γ422 = 0 impliesL1 = 2a3. Finally,Γ242 = 0 yields the contradiction.

ii. x5 = 0: NowHA = 0 impliesX3 = 0. Then we can expressh5 from the only non-c. factor ofΓ620. Moreover,
we can computeL3 from the only non-c. factor ofΓ602. Then the difference of the only non-c. factors of
Γ440 andΓ404 can only vanish w.c. forb3 = 0. NowΓ440 = 0 impliesa3 = −A5 and fromΓ422 = 0 we get
L1 = −2A5. ThenΓ026 = 0 yields the contradiction.

3.2. For the collinearity of type B

Γ800 can only vanish w.c. forb2 = b3, L1 = g4 or FB[8] = 0.

3.2.1. b2 = b3

From the only non-c. factor ofΓ620 we can computeB5. Then we can expressg4 from the only non-c. factor of
Γ602. Now we computeh5 from the difference of the only non-c. factors ofΓ440 andΓ404. Then we can expressx5

from the only non-c. factor ofΓ440. Now we can computeL3 from the only non-c. factor ofΓ422.

1. X3 , 0: Then we can solve the only non-c. factor ofΓ260 for b2. Finally,Γ206 = 0 yields the contradiction.

2. X3 = 0: Now the only non-c. factor ofΓ260 can be solved fora3. Then we can computeL2 from the only non-c.
factor ofΓ224. Finally,Γ242 = 0 yields the contradiction.

3.2.2. FB = 0, b2 , b3

We can expressL1 from FB = 0. As for L1 , g4, Γ710 = 0 yieldsa3 = a2 − X3b3 + X2b2 andΓ620 = 0 the
contradiction, we can assumeL1 = g4: Now we can computeh5 from the only non-c. factor ofΓ602. ThenΓ530 can
only vanish w.c. for:

1. L3 = X3(L2 − b2)/X2 + X3(a2 − a3) + b3: We can expressx5 from the only non-c. factor ofΓ422.

a. X2b2 − X3b3 + a2 − a3 , 0: Now Γ350 has only one non-c. factor, which can be solved forL2. Then we can
expressa2 from the only non-c. factor ofΓ314 = 0.

i. X2(B2
5− b2b3)+X2B5(b3− B5)− a3(b2− B5) , 0: Under this assumption we can computeX3 from the only

non-c. factor ofΓ206. ThenΓ314 = 0 yields the contradiction.

ii. X2(B2
5 − b2b3) + X2B5(b3 − B5) − a3(b2 − B5) = 0: As for B5 = b2 this equation yields a contradiction, we

can assumeB5 , b2. Now we can solve this equation fora3. ThenΓ206 = 0 impliesb2 = 0 andΓ134 = 0
yields the contradiction.

b. a2 = X3b3 − X2b2 + a3: Then we can solve the only non-c. factor ofΓ260 for L2.

i. X2
2(b3− b2)+ a3(X3 − X2)− X2(X3b3− X2b2) , 0: Under this assumption we can expressB5 from the only

non-c. factor ofΓ242. NowΓ116 can only vanish w.c. for:
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⋆ a3 = −b3X2: As for b3 = −X2b2/X2 the conditionΓ080 cannot vanish w.c. we can assumeX2b3+X2b2 ,

0. Under this assumption we can solve the only non-c. factor of Γ080 for X3.

(α) X2 − X2 − 2X
3
2 , 0: Under this assumption we can computeb2 from the only non-c. factor ofΓ062.

Then it is not difficult to see, thatΓ026 andΓ044 cannot vanish w.c..

(β) X2−X2− 2X
3
2 = 0: In this case we setX2 = m+ in with m, n ∈ R. Then the resultant of the equation

of item (β) and the only non-c. factor ofΓ062 with respect ton cannot vanish w.c..
⋆ b2 = (X3b3 + a3)/(X2 − X2), a3 + b3X2 , 0: ThenΓ080 = 0 impliesb3 = −X3a3/(X2X2). Now we can

solve the only non-c. factor ofΓ062 for X3. Finally,Γ044 = 0 yields the contradiction.
⋆ a3 = X2(X3b3 − X2b2)/(X3 − X2), (b2(X2 − X2) − X3b3 − a3)(a3 + b3X2) , 0: Now Γ080 = 0 implies

X3 = 0. ThenΓ062 cannot vanish w.c..
ii. a3 = [X2

2(b3 − b2) − X2(X3b3 − X2b2)]/(X2 − X3): ThenΓ242 can only vanish w.c. for:

⋆ X3 = −X2: Now Γ206 = 0 impliesb2 = B5 andΓ080 = 0 yields the contradiction.
⋆ X2 = in with n ∈ R, X3 + X2 , 0: NowΓ206 = 0 impliesb3 = B5 and fromΓ080 = 0 we getX3 = −in.

Finally,Γ062 = 0 yields the contradiction.

2. a3 = X2b2−X3b3+a2, X3X2(a3−a2)+X3(b2−L2)−X2(b3−L3) , 0: In this caseΓ440 = 0 yields the contradiction.

3.2.3. FB , 0, b2 , b3

Now L1 = g4 has to hold. ThenΓ080 factors intoGB[8]HB[18]2.

1. GB[8] = 0: We can expressL1 from GB[8] = 0. NowΓ170 can only vanish w.c. for:

a. a3 = X2b2 − X3b3 + a2: We can solve the only non-c. factor ofΓ620 for h5. Now we can expressL3 from the
only non-c. factor ofΓ602. Then we can computex5 from the only non-c. factor ofΓ260. Moreover, we express
L2 from the only non-c. factor ofΓ062. We computea2 from the sum of the only non-c. factors ofΓ440 andΓ404.

i. (b2 + B5)(b3 − B5) , 0: Under this assumption we can solve the only non-c. factor of Γ026 for X3. Then
Γ404 = 0 yields the contradiction.

ii. B5 = −b2 or B5 = b3: In both casesΓ026 = 0 cannot vanish w.c..

b. VB[18] = 0, X2b2 − X3b3 − a3 + a2 , 0: We can computeh5 from VB[18] = 0. Then we can expressL3 from
the only non-c. factor ofΓ062. Now we can also solve the only non-c. factor ofΓ620 for x5. Moreover, we can
computeL2 from the only non-c. factor ofΓ602. We computea2 from the sum of the only non-c. factors ofΓ440

andΓ404.

i. X2B5(b3 − b2) − X3b3(B5 − b2) + X2b2(B5 + b3) , 0: Under this assumption we can expressa3 from the
only non-c. factor ofΓ026. ThenΓ350 = 0 yields the contradiction.

ii. X2B5(b3−b2)−X3b3(B5−b2)+X2b2(B5+b3) = 0: As forB5 = −b2 this equation cannot vanish w.c., we can
assumeB5 + b2 , 0. Now we can computeX3 from this equation. ThenΓ026 = 0 yields the contradiction.

2. HB[18] = 0,GB[8] , 0:

a. X2a2 − X3a3 , 0: Under this assumption we can computeh5 from HB[18] = 0. Then we can expressx5 from
the only non-c. factor ofΓ620. Now we can computeL2 from the only non-c. factor ofΓ602. Moreover, we can
solve the sum of the only non-c. factors ofΓ440 andΓ404 for X3.

i. X2(B2
5 − b2b3) − X2B5(B5 + b3) + a3(B5 + b2) , 0: Under this assumption we can expressa2 from the only

non-c. factor ofΓ404.
⋆ a3 , 0: Under this assumption we can computeB5 from the only non-c. factor ofΓ206. Then we can

computeL3 from the only non-c. factor ofΓ422. We can solve the only non-c. factor ofΓ224 for b2. Now
Γ242 = 0 impliesa3 = −X2b3. Then it can easily be seen, thatΓ062 andΓ026 cannot vanish w.c..

⋆ a3 = 0: NowΓ206 = 0 yields the contradiction.
ii. X2(B2

5 − b2b3) − X2B5(B5 + b3) + a3(B5 + b2) = 0: As for B5 = −b2 this equation cannot vanish w.c., we
can assumeB5 + b2 , 0. Now we can solve this equation fora3. ThenΓ404 = 0 impliesb2 = 0. Finally,
Γ206 = 0 yields the contradiction.
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b. a2 = X3a3/X2: Now HB can only vanish w.c. forx5 = −X3a3/(X2B5). Then we can solve the only non-c. factor
of Γ620 for h5. Now we can computeL2 from the only non-c. factor ofΓ602. Moreover, we can expressa3 from
the sum of the only non-c. factors ofΓ440 andΓ404. Then we compute the differenceD of the only non-c. factors
of Γ260 andΓ062. As for b2 = −B5 the expressionD cannot vanish w.c., we can assumeb2 + B5 , 0. Now we
can solve the only non-c. factor ofD for X3. ThenΓ260 = 0 yields the contradiction.

3.3. For the collinearity of type C

We can solve the only non-c. factor ofΓ620 for B5. Then we can expressL2 from the only non-c. factor ofΓ602.
Moreover, we can computeL3 from the sum of the only non-c. factors ofΓ440 andΓ404.

1. (X2 − X3)(A5 − x5b3) − (X2 + X3)(a2 − a3) , 0: Under this assumption we can expressg4 from the only non-c.
factor ofΓ404. ThenΓ422 = 0 cannot vanish w.c..

2. A5 = (X2 + X3)(a2 − a3)/(X2 − X3) + x5b3: ThenΓ404 can only vanish w.c. for:

a. a2 = b3(X2 − X3) + a3: Then we can computeh5 from the only non-c. factor ofΓ422.

i. x5 , 0: Under this assumption we can solve the only non-c. factor of Γ206 for a3. ThenΓ260 = 0 implies
X3 = 0 andΓ224 = 0 yields the contradiction.

ii. x5 = 0: NowΓ206 = 0 impliesX3 = 0 andΓ224 = 0 yields the contradiction.

b. a2 = b3(X3 − X2) + a3, b3(X2 − X3) − a2 + a3 , 0: Then we can computeh5 from the only non-c. factor ofΓ422.

i. x5 , 0: Under this assumption we can solve the only non-c. factor of Γ206 for a3. ThenΓ260 = 0 implies
X3 = 0 andΓ242 = 0 yields the contradiction.

ii. x5 = 0: NowΓ206 = 0 impliesX3 = 0 andΓ242 = 0 yields the contradiction.

c. PC[12] = 0, (b3(X2 − X3) − a2 + a3)(b3(X3 − X2) − a2 + a3) , 0: We can solvePC[12] = 0 for h5.

i. X3 , x5: Under this assumption we can expressa3 from the only non-c. factor ofΓ260. ThenΓ206 = 0
implies X3 = 0. Then we can computeL1 from the only non-c. factor ofΓ062. Now Γ242 = 0 implies
X2 = x5 andΓ224 = 0 yields the contradiction.

ii. X3 = x5: Now Γ260 can only vanish w.c. for:

⋆ x5 = 0: We computeL1 from the only non-c. factor ofΓ062. ThenΓ242 = 0 impliesa3 = X2b3 and
Γ224 = 0 yields the contradiction.

⋆ a2 = x5b3: Now Γ206 cannot vanish w.c..

3.4. For the collinearity of type D

Γ800 can only vanish w.c. forL1 = g4 or if FD[8] = 0 is fulfilled identically.

3.4.1. FD[8] = 0
We can expressL1 from FD[8] = 0.

1. L1 , g4: Now Γ710 has only one non-c. factor, which can be solved fora3. ThenΓ620 cannot vanish w.c..

2. L1 = g4: We can expressh5 from the only non-c. factor ofΓ602.

a. a3(b2 − b3) + b3(X2b2 − X3b3) , 0: NowΓ530 has only one non-c. factor, which can be solved forL3. Then we
can computeA5 from the only non-c. factor ofΓ422. Now we can expressL2 from the only non-c. factor ofΓ314.
Then we can solve the only non-c. factor ofΓ350 for x5. Finally,Γ206 = 0 yields the contradiction.

b. a3 = b3(X2b2 − X3b3)/(b3 − b2): Then we can computeL3 from the only non-c. factor ofΓ440. Now we can
expressA5 from the only non-c. factor ofΓ260. Then we can solve the only non-c. factor ofΓ422 for L2.

i. x5(b2− b3)+X2b2−X3b3 , 0: Under this assumptionΓ206 has only one non-c. factor, which can be solved
for x5. ThenΓ026 = 0 yields the contradiction.

ii. x5 = (X3b3 − X2b2)/(b2 − b3): Now Γ224 = 0 yields the contradiction.
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3.4.2. FD[8] , 0
Now L1 = g4 has to hold. ThenΓ080 factors intoGD[8]HD[18]2.

1. GD[8] = 0: We can expressL1 from GD[8] = 0. NowΓ170 can only vanish w.c. for:

a. a3 = b3(X3b3 − X2b2)/(b2 − b3): We can solve the only non-c. factor ofΓ620 for h5. Now we can expressA5

from the only non-c. factor ofΓ440.

i. x5(b2 − b3) + X2b2 − X3b3 , 0: Under this assumptionΓ260 has only one non-c. factor, which can be
solved forx5. Then we can computeL3 from the only non-c. factor ofΓ602. Finally, Γ404 = 0 yields the
contradiction.

ii. x5 = (X3b3 − X2b2)/(b2 − b3): Then we can computeL3 from the only non-c. factor ofΓ206. Now we can
expressL2 from the only non-c. factor ofΓ062. Finally,Γ422 = 0 yields the contradiction.

b. VD[18] = 0, a3(b2 − b3) + b3(X2b2 − X3b3) , 0: We can expressh5 from VD[18] = 0.

i. x5 , 0: Under this assumption we can computeA5 from the only non-c. factor ofΓ620. Moreover, we can
solve the only non-c. factor ofΓ602 for L3. Then we can expressL2 from the only non-c. factor ofΓ062.
⋆ a3 − x5b3 , 0: Under this assumptionΓ026 has only one non-c. factor, which can be solved forx5. Then
Γ404 = 0 yields the contradiction.

⋆ a3 = x5b3: AgainΓ404 = 0 yields the contradiction.
ii. x5 = 0: As for X3 = X2b2/b3 the expressionΓ620 cannot vanish w.c., we can assumeX2b2 − X3b3 , 0.

Now we can expressB5 from the only non-c. factor ofΓ620. Then we can computeL3 from the only non-c.
factor ofΓ062. Now we can expressL2 from the only non-c. factor ofΓ602. Moreover, we can solve the only
non-c. factor ofΓ440 for A5. Then we can computea3 from the only non-c. factor ofΓ404. Finally,Γ206 = 0
yields the contradiction.

2. HD[18] = 0,GD[8] , 0: We distinguish the following three cases.

a. a3(X2b2 − X3b3) , 0: Under this assumption we can computeh5 from HD[18] = 0. Then we can computeB5

from the only non-c. factor ofΓ620. Now we can expressL2 from the only non-c. factor ofΓ602. As fora3 = x5b3

the expressionΓ404 cannot vanish w.c. we can assumea3 − x5b3 , 0. Under this assumptionΓ440 has only one
non-c. factor, which can be solved fora3. Then we can expressA5 from the only non-c. factor ofΓ404. Finally,
Γ206 = 0 yields the contradiction.

b. a3 = 0: Now HD can only vanish w.c. for:

i. x5 = 0: We can computeh5 from the only non-c. factor ofΓ620. Then we can expressL2 from the only
non-c. factor ofΓ602 andA5 from the only non-c. factor ofΓ260. Finally,Γ206 = 0 yields the contradiction.

ii. A5 = 0: We can computeh5 from the only non-c. factor ofΓ620. Then we can expressL2 from the only
non-c. factor ofΓ602. Now we can solve the only non-c. factor ofΓ260 for x5. ThenΓ206 = 0 implies
X3 = X2b2/b3 andΓ062 = 0 yields the contradiction.

c. X3 = X2b2/b3, a3 , 0: Now HD = 0 impliesa3 = −A5b3x5/(X2b2). We can computeh5 from the only non-c.
factor of Γ620. Then we can expressL2 from the only non-c. factor ofΓ602. Now Γ260 can only vanish for
X2 = −B5x5/b2 or A5 = −x5b2. In both casesΓ404 = 0 yields the contradiction.

4. Proving the special caseΩ2000Π3000 = 0 of Theorem 3

We do not discuss the special case for all four types A–D separately (as done for the general case) in order to
shorten the proof. We distinguish between the different types only if this is necessary during the study of cases.
Therefore this discussion is a generalization of the one given in the corresponding technical report of [15].

For the discussion of the special cases we can assumeX2(X2−X3) , 0, because this also holds true for each of the
four types A–D (cf. subsection 2.1–2.4).

If we setei equal to zero for anyi ∈ {0, . . . , 3}, thenΩ andΠ have to be fulfilled identically. It can immediately be
seen, that the conditions implied byΩ = 0 already yield a contradiction. Therefore we can assumee0e1e2e3 , 0 for
this section of the proof.
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4.1. Ω2000= 0,Ω1000Π3000, 0

FromΩ2000 = 0 we can expressL1. Moreover, we can computee0 fromΩ = 0 and plug the resulting expression
into Π, which yields in the numerator a homogeneous polynomialΓ[10058] of degree 7 ine1, e2, e3. Now Γ700 can
only vanish w.c. for:

1. b2 = b3: ThenΓ430 can only vanish for:

a. a2 = a3 + b3(X3 − X2): Now the only non-c. factor ofΓ322 can be solved forg4. Finally, Γ070 = 0 yields the
contradiction.

b. g4 = (L2 − L3 + X2a2 − X3a3)/(X2 − X3), a2 − a3 − b3(X3 − X2) , 0: NowΓ340 = 0 yields the contradiction.

2. g4 = (L2 − L3 + b2 − b3 + X2a2 − X3a3)/(X2 − X3), b2 , b3: ThenΓ610 cannot vanish w.c..

4.2. Ω2000= Π3000= 0,Ω1000Π2000, 0

Again we expressL1 from Ω2000 = 0. It can immediately be seen fromΩ = 0, that all coefficients ofΠ3000 = 0
with respect to the remaining Study parameters have to vanish in order to get no contradiction. Therefore we can
computeg4 andh5 fromΠ3100= 0 andΠ3010= 0, respectively. We solveΩ = 0 for e0 and plug it intoΠ which yields
in the numerator a homogeneous polynomialΓ[1666] of degree 5 ine1, e2, e3. NowΓ500 can only vanish w.c. for:

1. b2 = b3: Then the only non-c. factor ofΓ302 can be solved forL3. NowΓ320 can only vanish w.c. for:

a. a2 = a3 + b3(X3 − X2): Then the only non-c. factor ofΓ050 can be solved forL2. We can expressA5 from the
only non-c. factor ofΓ140. Now Γ230 = 0 impliesB5 = −b3.

i. x5 , 0: Under this assumption we can computea3 from the only non-c. factor ofΓ212. ThenΓ104 = 0
impliesX3 = 0 and fromΓ014 = 0 we getX2 = −x5. Finally,Γ122 = 0 yields the contradiction.

ii. x5 = 0: NowΓ212 = 0 impliesX3 = 0 and fromΓ014 = 0 we geta3 = −X2b3. Again,Γ122 = 0 yields the
contradiction.

b. a2 = a3 + B5(X2 − X3), a2 − a3 − b3(X3 − X2) , 0: We distinguish two cases:

i. a3 + X2B5 , 0: Under this assumption the only non-c. factor ofΓ050 can be solved forL2.

⋆ a3 − X2b3 , 0: Under this assumption the only non-c. factor ofΓ140 can be solved forX3.
(α) x5 , 0: Under this assumption we can expressa3 from the only non-c. factor ofΓ212. ThenΓ104 = 0
impliesA5 = x5b3+X2B5 and fromΓ014 = 0 we getX2 = −x5. Finally,Γ122 = 0 yields the contradiction.
(β) x5 = 0: NowΓ212 = 0 impliesA5 = X2B5 and fromΓ014 = 0 we geta3 = −X2b3. Again,Γ122 = 0
yields the contradiction.

⋆ a3 = X2b3: ThenΓ140 can only vanish w.c. for:
(α) X2 = x5: Now Γ212 = 0 impliesA5 = x5b3 + B5(X3 + x5) and fromΓ104 = 0 we getX3 = 0. Finally,
Γ014 = 0 yields the contradiction.
(β) A5 = X2B5, X2 , x5: NowΓ212 = 0 impliesX3 = −x5b3/B5 and fromΓ104 = 0 we getx5 = 0. Again,
Γ014 = 0 yields the contradiction.

ii. a3 = −X2B5: ThenΓ140 = 0 impliesX3 = X5A5/(X2B5) and fromΓ032 = 0 we getL2 = x5A5 − B5. Then
Γ104 can only vanish w.c. for:

⋆ x5 = 0: NowΓ212 = 0 impliesA5 = X2b3. Finally,Γ230 = 0 yields the contradiction.

⋆ A5 = 0, x5 , 0: NowΓ212 = 0 impliesX2 = −x5. Again,Γ230 = 0 yields the contradiction.

2. L3 = X3(L2+b2)/X2+X3(a2−a3)−b3, b2 , b3: Now the only non-c. factor ofΓ410 can be solved forL2. Moreover,
we can expressA5 from the only non-c. factor ofΓ320.

a. B5 , 0: Under this assumption we can computex5 from the only non-c. factor ofΓ302. Then the difference of
the only non-c. factors ofΓ104 andΓ230 can only vanish w.c. forX2a2b3 − X3a3b2 = 0.

i. b3 , 0: Under this assumption we can expressa2 from this equation.
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⋆ (B5a3 − X2b2
3)(X2B5b3 − a3b2) , 0: Under this assumption we can computeX3 from the only non-c.

factor ofΓ230. ThenΓ014 = 0 yields the contradiction.

⋆ X2 = B5a3/b2
3: Now Γ104 can only vanish w.c. for:

(α) B5 = b3: AgainΓ014 = 0 yields the contradiction.
(β) B5 = −b3: Now Γ212 = 0 yields the contradiction.

⋆ B5 = a3b2/(X2b3): ThenΓ104 = 0 impliesa3 = −X2b3 andΓ212 = 0 yields the contradiction.

ii. b3 = 0: Now the last equation impliesX3 = 0 and fromΓ104 = 0 we geta2 = a3 − X2B5. Finally,Γ014 = 0
yields the contradiction.

b. B5 = 0: NowΓ302 = 0 impliesb3 = 0 and fromΓ104 = 0 we getx5 = −X3. ThenΓ230 = 0 yieldsX3 = 0 and
Γ014 cannot vanish w.c..

4.3. Ω2000= Π3000= Π2000= 0,Ω1000Π1000, 0

Again we expressL1 fromΩ2000= 0. It can immediately be seen fromΩ = 0, that all coefficients ofΠi000 = 0 (for
i = 2, 3) with respect to the remaining Study parameters have to vanish in order to get no contradiction. Therefore
we computeg4 andh5 fromΠ3100 = 0 andΠ3010 = 0, respectively. Moreover, we can solveΠ2101 = 0 andΠ2011 = 0
for L3 andL2, respectively. We solveΩ = 0 for e0 and plug it intoΠ which yields in the numerator a homogeneous
polynomialΓ[191] of degree 5 ine1, e2, e3. NowΓ410 can only vanish w.c. for:

1. b2 = b3: ThenΓ302 = 0 impliesB5 = b3 and fromΓ320 = 0 we geta2 = a3 + b3(X3 − X2). ThenΓ212 = 0 yields
a3 = b3(2x5 − X2) and fromΓ140 = 0 we getA5 = b3(X2 − X3 − 3x5). NowΓ122 can only vanish w.c. for:

a. X3 = −x5: Then the difference of the only non-c. factors ofΓ050 andΓ014 cannot vanish w.c..

b. X2 = −x5: Now Γ050 = 0 impliesX3 = −4x5 andΓ014 = 0 yields the contradiction.

2. b2 = −B5, b2 , b3: ThenΓ320 = 0 impliesa2 = B5(X2 − x5) − A5 and fromΓ230 = 0 we getA5 = X2B5. Now
Γ302 = 0 impliesa3 = b3(X3 − X2 + x5) and fromΓ104 = 0 we getx5 = −X3. Finally, Γ212 = 0 yields the
contradiction.

4.4. Π3000= 0,Ω2000Π2000, 0

It can immediately be seen fromΩ = 0 that all coefficients ofΠ3000 = 0 with respect to the remaining Study
parameters have to vanish in order to get no contradiction. Therefore we can expressg4 andh5 from Π3100 = 0
andΠ3010 = 0, respectively. Then we compute the resultant ofΩ[40] andΠ[44] with respect toe0 which yields a
homogeneous polynomialΓ[15153] of degree 8 ine1, e2, e3. Γ080 can only vanish w.c. in the following two cases:

1. L2 = L1(X2 − X3)+ L3+ X2a2− X3a3− b2+ b3: Then we can solve the only non-c. factor ofΓ602 for B5. NowΓ170

can only vanish w.c. for:

a. a2 = −x5A5/X2: ThenΓ062 = 0 impliesL1 = 0 andΓ620 can only vanish w.c. for (b2−b3+X3a3+x5A5)F[7] = 0:

i. b2 = b3 − X3a3 − x5A5: Now Γ530 = 0 impliesL3 = b3 − X3a3 andΓ026 can only vanish w.c. for:

⋆ X2 = −x5: ThenΓ422 = 0 yields the contradiction.

⋆ b3 = X3a3 + x5A5 − A5X2, X2 , −x5: Now Γ242 = 0 implies x5 = 1/X2 and fromΓ422 = 0 we get
X3 = 1/X2. ThenΓ206 = 0 yields the contradiction.

ii. F[7] = 0, b2 − b3 + X3a3 + x5A5 , 0: As for b2 = b3 the expressionF cannot vanish w.c., we can assume
b2 , b3. Under this assumption we can expressL3 from F[7] = 0. ThenΓ026 can only vanish w.c. for:

⋆ X2 = −x5: Moreover,Γ440 = 0 impliesA5 = x5b2 and fromΓ422 = 0 we geta3 = −X3b3. ThenΓ242 = 0
impliesX3 = x5 andΓ206 = 0 yields the contradiction.

⋆ A5 = X2b2, X2 , −x5: Now Γ422 = 0 impliesa3 = b3(x5 + X2 − X3). Finally, Γ314 = 0 yields the
contradiction.

b. a2 = a3 − X2b2 + X3b3, X2a2 + x5A5 , 0: ThenΓ260 cannot vanish w.c..
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2. a2 = −x5A5/X2, L1(X2 − X3) − L2 + L3 + X2a2 − X3a3 − b2 + b3 , 0: Then we can solve the only non-c. factor of
Γ260 for b2. NowΓ440 can only vanish w.c. for:

a. X2 = x5: As for B5 = 0, the conditionΓ602 = 0 yieldsL2 = x5(L1 + A5) andΓ206 = 0 the contradiction we can
assumeB5 , 0. Under this assumption we can solveΓ602 = 0 for L3. ThenΓ404 can only vanish w.c. for:

i. a3 = x5B5 + X3b3 − A5: We distinguish further two cases:

⋆ X3B5 + x5b3 , 0: Under this assumption we can expressA5 from the only non-c. factor ofΓ206. Then
we can computeL1 from the only non-c. factor ofΓ062. Now Γ026 = 0 impliesX3 = −x5 and finally
Γ422 = 0 yields the contradiction.

⋆ b3 = −X3B5/x5: Now Γ206 can only vanish w.c. for:
(α) X3 = 0: ThenΓ422 = 0 impliesL1 = 2x5B5 − 2A5 and finallyΓ062 = 0 yields the contradiction.
(β) X3 = −x5, X3 , 0: We can expressL2 from the only non-c. factor ofΓ422. ThenΓ062 = 0 implies
B5 = A5(2x2

5 + 1)/x5 andΓ026 = 0 yields the contradiction.

ii. L2 = x5(L1 + A5)− B5, x5B5+ X3b3 − A5 − a3 , 0: Then we can computea3 from the only non-c. factor of
Γ422. NowΓ314 = 0 impliesL1 = −2A5 − 2x5B5.

⋆ X3B5 + x5b3 , 0: Under this assumption we can expressA5 from the only non-c. factor ofΓ242. Now
Γ206 = 0 impliesX3 = 0 and finallyΓ062 = 0 yields the contradiction.

⋆ b3 = −X3B5/x5: Now Γ242 = 0 impliesX3 = 0. Finally,Γ224 = 0 yields the contradiction.

b. A5 = X2B5, X2 , x5: FromΓ602 = 0 we can expressL3. ThenΓ062 can only vanish w.c. for:

i. L1 = 0: ThenΓ422 = 0 impliesa3 = b3(x5 + X2 − X3) and fromΓ242 = 0 we getX3 = x5. Now Γ314 = 0
impliesX2 = −x5 and fromΓ206 = 0 we getL2 = B5(x

2
5 − 1). Finally,Γ404 = 0 yields the contradiction.

ii. x5 = −X3a3/(X2B5), L1 , 0: Now the only non-c. factor ofΓ044 can be solved forB5. Finally, Γ026 = 0
yields the contradiction.

4.5. Π3000= Π2000= 0,Ω2000Π1000, 0

It can immediately be seen fromΩ = 0 that all coefficients ofΠi000 = 0 (for i = 2, 3) with respect to the remaining
Study parameters have to vanish in order to get no contradiction. Therefore we can expressg4 andh5 fromΠ3100= 0
andΠ3010 = 0, respectively. Moreover, we can computeL2 andL1 fromΠ2101 = 0 andΠ2011 = 0, respectively. Then
we solveΠ = 0 for e0 and plug it intoΩ which yields in the numerator a homogeneous polynomialΓ[2408] of degree
8 in e1, e2, e3. Γ602 = 0 impliesB5 = b2. ThenΓ620 can only vanish for:

1. b2 = 0: NowΓ404 can only vanish w.c. for:

a. A5 = −a2: Now Γ206 = 0 impliesX2 = −x5 and fromΓ260 = 0 we getL3 = b3 + X3(2a2 − a3). ThenΓ080 = 0
implies b3 = X3a3 + x5a2 and fromΓ062 = 0 we geta2 = a3(1 − X3x5)/x2

5. Finally, Γ152 = 0 yields the
contradiction.

b. L3 = b3+X3(a2−a3−A5), A5 , −a2: NowΓ350 = 0 impliesa2 = a3+X3b3 andΓ260 = 0 yields the contradiction.

2. G[8] = 0, b2 , 0: We can solveG[8] = 0 for L3. ThenΓ530 = 0 impliesa2 = X3b3−X2b2+a3. FinallyΓ440 cannot
vanish w.c..

4.6. Ω2000= Ω1000= 0

We can expressL1 anda2 fromΩ2000= 0 andΩ1001= 0, respectively. AsΩ0002 cannot vanish w.c. we proceed as
follows:

1. Π0003 , 0: Now we compute the resultant ofΩ andΠ with respect toe3 which yields a homogeneous polynomial
Γ[87839] of degree 8 ine0, e1, e2. In the following we denote the coefficients ofei

1, e
j
2, e

k
0 of Γ by Γi jk . Now Γ080

equals (b2 − b3)[X2(X2b2 − X3b3) + a3(X2 − X3)]H[10].

a. b2 = b3: Then we can expressL2 from the only non-c. factor ofΓ206. Now we can computeL3 from the only
non-c. factor ofΓ710. ThenΓ062 = 0 impliesB5 = −b3 andΓ314 = 0 yields the contradiction.
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b. a3 = −X2(X2b2 − X3b3)/(X2 − X3), b2 , b3: Then we can expressL2 from the only non-c. factor ofΓ206. Now
Γ170 can only vanish w.c. for:

i. g4 = 0: We distinguish two cases:

⋆ x5 , 0: Under this assumption we can expressA5 from the only non-c. factor ofΓ800. ThenΓ404 = 0
impliesh5 = B5 − b3 − L3. Now we can expressL3 from the only non-c. factor ofΓ062. ThenΓ026 can
only vanish w.c. for:
(α) X3 = 0: NowΓ602 = 0 impliesb2 = −x5B5/X2. Finally,Γ224 = 0 yields the contradiction.
(β) b2 = X3b3/X2, X3 , 0: Now Γ602 = 0 implies b3 = −x5B5/X3. Finally, Γ620 = 0 yields the
contradiction.

⋆ x5 = 0: NowΓ800 can only vanish w.c. for:
(α) X3 = 0: Now Γ602 = 0 impliesb2 = A5/X2 and fromΓ062 = 0 we getL3 = h5 − B5 − b3. Finally,
Γ134 = 0 yields the contradiction.
(β) b2 = X3b3/X2, X3 , 0: NowΓ602 = 0 impliesb3 = A5/X3 andΓ224 = 0 yields the contradiction.

ii. b2 = X3b3/X2, g4 , 0: NowΓ800 can only vanish w.c. forA5 = 0 or x5 = 0. In both casesΓ260 = 0 yields
the contradiction.

c. H[10] = 0, (b2−b3)[X2(X2b2−X3b3)+a3(X2−X3)] , 0: We can solveH[10] = 0 for g4. Then we can express
L2 from the only non-c. factor ofΓ206. Moreover, we can computeh5 from the only non-c. factor ofΓ404. Then
Γ602 = 0 impliesa3 = b3X3 + x5B5− A5. Now we can solve the only non-c. factor ofΓ026 for L3. ThenΓ044 = 0
impliesA5 = x5B5. Now the difference of the only non-c. factors ofΓ260 andΓ062 can only vanish w.c. for:

i. bi = 0 for i = 2 or i = 3: In both casesΓ260 = 0 yields the contradiction.

ii. X2 = −X3, b2b3 , 0: NowΓ260 can only vanish w.c. for:

⋆ X3 = x5: Now Γ620 = 0 impliesB5 = b3 andΓ242 = 0 yields the contradiction.

⋆ X3 = −x5: Now Γ620 = 0 cannot vanish w.c..

2. Π0003 = 0,Π0002 , 0: It can immediately be seen fromΩ = 0 that all coefficients ofΠ0003 = 0 with respect to the
remaining Study parameters have to vanish in order to get no contradiction. Therefore we can expressh5 andL2

from Π0103 = 0 andΠ0013 = 0, respectively. Now we compute the resultant ofΩ andΠ with respect toe3 which
yields (X2 − X3)2

Γ[7821], whereΓ is a homogeneous polynomial of degree 8 ine0, e1, e2. In the following we
denote the coefficients ofei

1, e
j
2, e

k
0 of Γ by Γi jk . NowΓ800 can only vanish w.c. for:

a. b2 = b3: Then we can expressa3 from the only non-c. factor ofΓ710. Now Γ602 = 0 impliesg4 = 0 and from
Γ260 = 0 we getB5 = b3. Finally,Γ062 = 0 yields the contradiction.

b. a3 = x5A5/X2−X2b2+X3b3, b2 , b3: Now we can expressb2 from the only non-c. factor ofΓ620. ThenΓ206 = 0
impliesg4 = 0 andΓ602 can only vanish w.c. for:

i. x5 = 0: Now the only non-c. factor ofΓ026 can be solved forL3. ThenΓ062 can only vanish w.c. for:

⋆ X3 = 0: NowΓ404 = 0 impliesA5 = X2B5 andΓ224 = 0 yields the contradiction.

⋆ A5 = X3b3, X3 , 0: Again,Γ224 = 0 yields the contradiction.

ii. A5 = X2B5, x5 , 0: We can expressL3 from the only non-c. factor ofΓ026. Now Γ224 = 0 impliesX2 = x5

and fromΓ062 = 0 we getX3 = −x5. Finally,Γ242 = 0 yields the contradiction.

3. Π0003 = Π0002 = 0, Π0001 , 0: It can immediately be seen fromΩ = 0 that all coefficients ofΠ000i = 0 (for
i = 2, 3) with respect to the remaining Study parameters have to vanish in order to get no contradiction. Therefore
we can expressh5 andL2 fromΠ0103 = 0 andΠ0013 = 0, respectively. Moreover, we can computeg4 andL3 from
Π1102 = 0 andΠ1012 = 0, respectively. Now we compute the resultant ofΩ andΠ with respect toe3 which yields
(X2 − X3)2

Γ[1766], whereΓ is a homogeneous polynomial of degree 8 ine0, e1, e2. In the following we denote the
coefficients ofei

1, e
j
2, e

k
0 of Γ by Γi jk . NowΓ800 can only vanish w.c. for:

a. b2 = b3: Then we can expressa3 from the only non-c. factor ofΓ710. Now Γ260 = 0 impliesB5 = b3. Finally,
Γ062 = 0 yields the contradiction.
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b. a3 = x5A5/X2−X2b2+X3b3, b2 , b3: Now we can expressb2 from the only non-c. factor ofΓ620. ThenΓ440 = 0
impliesA5 = X2B5 andΓ062 = 0 yields the contradiction.

4. Π0003 = Π0002 = Π0001 = 0,Π0300 , 0: It can immediately be seen fromΩ = 0 that all coefficients ofΠ000i = 0
(for i = 1, 2, 3) with respect to the remaining Study parameters have to vanish in order to get no contradiction.
Therefore we can expressh5 and L2 from Π0103 = 0 andΠ0013 = 0, respectively. Moreover, we can compute
g4 and L3 from Π1102 = 0 andΠ1012 = 0, respectively.Π0121 = 0 implies B5 = b2. FromΠ2011 = 0 we get
A5 = a3 + x5b2 − X3b3. NowΠ0211 can only vanish w.c. for:

a. X2 = x5: We distinguish two cases:

i. B5 , b3: Under this assumptionΩ0200 , 0 holds and due to our assumptionΠ0300 , 0 we can compute
the resultant ofΩ andΠ with respect toe1, which yields (X3 − x5)2e2

0Γ[1013], whereΓ is a homogeneous
polynomial of degree 6 ine0, e2, e3. Now the coefficient ofe6

3 of Γ cannot vanish w.c..

ii. B5 = b3: In this caseΩ0100 cannot vanish w.c. and therefore we can again compute the resultant ofΩ and
Π with respect toe1, which yields (X3 − x5)4e0Γ[50], whereΓ is a homogeneous polynomial of degree 6 in
e0, e2, e3. Again the coefficient ofe6

3 of Γ cannot vanish w.c..

b. B5 = 0, X2 , x5: ThenΠ0301= 0 yields the contradiction.

5. Π0003 = Π0002 = Π0001 = Π0300 = 0: It can immediately be seen fromΩ = 0 that all coefficients ofΠ000i = 0
(for i = 1, 2, 3) with respect to the remaining Study parameters have to vanish in order to get no contradiction.
Therefore we can expressh5 and L2 from Π0103 = 0 andΠ0013 = 0, respectively. Moreover, we can compute
g4 and L3 from Π1102 = 0 andΠ1012 = 0, respectively.Π0121 = 0 implies B5 = b2. FromΠ2011 = 0 we get
A5 = a3 + x5b2 − X3b3. NowΠ0211 can only vanish w.c. for:

a. X2 = x5: NowΠ0300= 0 impliesa3 = b3X3. We distinguish two cases:

i. B5 , b3: Under this assumptionΩ0200 , 0 holds andΠ0200 can also not vanish w.c.. Therefore we can
compute the resultant ofΩ andΠ with respect toe1, which yields (X3 − x5)2B2

5e
2
0e2

2Γ[87], whereΓ is a
homogeneous polynomial of degree 4 ine0, e2, e3. Now the coefficient ofe4

3 of Γ cannot vanish w.c..

ii. B5 = b3: In this caseΩ0100 andΠ0200 cannot vanish w.c. and therefore we can again compute the resultant
of Ω andΠ with respect toe1, which yields (X3 − x5)3B3

5e0e2Γ[16], whereΓ is a homogeneous polynomial
of degree 4 ine0, e2, e3. Again the coefficient ofe4

3 of Γ cannot vanish w.c..

b. B5 = 0, X2 , x5: ThenΠ0301= 0 yields the contradiction.

4.7. Π3000= Π2000= Π1000= 0

In contrast toΠ1000= 0, it can immediately be seen fromΩ = 0 that all coefficients ofΠi000 = 0 (for i = 2, 3) with
respect to the remaining Study parameters have to vanish in order to get no contradiction. Therefore we can solve
Π3100= 0 for g4, Π3010= 0 for h5,Π2101= 0 for L2 andΠ2011= 0 for L1.

4.7.1. Π1000= 0 does not vanish identically for all e1, e2, e3

If the coefficientZ of e2
3 of Π1000 vanishes, thenΠ1000 = 0 only depends one1, e2 and this already yields together

with Ω = 0 the contradiction. Therefore we can assumeZ , 0. Now we have to distinguish the following cases:

1. Ω0002Π0003, 0: We can compute the resultant ofΠ1000 andΩ resp.Π with respect toe3, which yieldsRΩ andRΠ,
respectively. NowRΩ andRΠ have to vanish independently ofe0, e1, e2, whereRΠ spits up intoe2P[8]Q[38]2:

a. P[8] = 0: Note thatP = 0 is a quadratic homogeneous polynomial in the unknownse1, e2. Now the coefficient
of e2

1 implies b2 = −B5 and from the coefficient of e2
2 we geta2 = −x5A5/X2. Then the coefficient of e1e2

impliesA5 = X2B5. Finally,Π1000= 0 yields a contradiction.

b. Q[38] = 0: Note thatQ = 0 is a quartic homogeneous polynomial ine1, e2. We denote the coefficients ofei
1ej

2
of Q by Qi j . Now Q04 can only vanish w.c. for:

i. b2 = −B5: ThenQ40 can only vanish w.c. for:
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⋆ B5 = 0: As Q is fulfilled identically, we considerRΩ which splits up intoS[91]T[4]2. It can easily be
seen that the coefficients of the homogeneous linear polynomialT[4] = 0 in e1, e2 cannot vanish w.c..
Therefore we setS[91] equal to zero, which is a quartic homogeneous polynomial in e0, e1, e2. The
coefficient ofe4

2 of S already yields the contradiction.

⋆ a2 = B5(x5 − X2) − A5, B5 , 0: Now Q31 cannot vanish w.c..
ii. a2 = X2b2 − x5B5 + A5, b2 , −B5: Now Q40 can only vanish w.c. for:
⋆ b2 = B5: ThenQ13 = 0 yields the contradiction.
⋆ A5 = x5B5, b2 , B5: Now Q31 can only vanish w.c. for:

(α) X2 = x5: As Q is fulfilled identically, we considerRΩ which is a homogeneous polynomial of degree
6 in e0, e1, e2. Now the coefficient ofe6

2 implies an expression forL3. Moreover, the coefficient ofe4
1e2

2

impliesb3 = X3a3/x
2
5 and from the coefficient ofe2

0e4
2 we getX3 = −x5. Finally, the coefficient ofe2

1e4
2

yields the contradiction.
(β) X2 = −x5, X2 , x5: Now Q22 = 0 yields the contradiction.

2. Π0003= 0,Ω0002, 0: We can computeB5 fromΠ0103= 0.

a. X2 , x5: Under this assumption we can expressb2 from fromΠ0013 = 0. Now it can easily be seen thatΠ0002

cannot vanish w.c.. Therefore we can compute the resultant of Π1000 andΠ with respect toe3, which yieldsRΠ.
RΠ splits up and can only vanish w.c. forP[6] = 0 or Q[14]. It can easily be seen that the coefficients of the
quadratic homogeneous polynomialP = 0 in the unknownse1, e2 cannot vanish w.c.. Therefore we setQ = 0
which is also a quadratic polynomial in the unknownse1, e2. We denote the coefficients ofei

1ej
2 of Q by Qi j .

Now Q02 = 0 impliesa2 = −x5A5/X2. ThenQ11 can only vanish w.c. for:

i. x5 = 0: Now Q20 = 0 yields the contradiction.
ii. X2 = −1/x5, x5 , 0: ThenΠ1000= 0 yields the contradiction.

b. X2 = x5: NowΠ0013 can only vanish w.c. for:

i. a2 = A5: ThenΠ1000 is a factor ofΠ. Therefore we can only compute the resultant ofΠ1000 andΩ with
respect toe3, which yields a homogeneous polynomialRΩ[674] of degree 6 ine0, e1, e2. We denote the
coefficients ofei

0ej
1ek

2 of Q by RΩi jk . Now RΩ060 can only vanish w.c. for:

⋆ A5 = x5b2: ThenRΩ402 impliesL3 = −X3a3 − b3 and fromRΩ006 we getb3 = X3a3/x
2
5. Finally, RΩ024 = 0

yields the contradiction.
⋆ L3 = b3− 2b2− X3a3, A5 − x5b2 , 0: NowRΩ402 can only vanish w.c. forb2 = b3 or b2 = −x5A5. In both

casesRΩ006 = 0 yields the contradiction.
ii. x5 = ∓i: Now it can easily be seen thatΠ0002 cannot vanish w.c.. Therefore we can compute the resultant

of Π1000 andΠ with respect toe3, which yieldsRΠ. ThenRΠ can only vanish w.c. fore1(∓a2±A5− 2ib2)+
ie2(a2 + A5) = 0. It can easily be seen that the coefficients of this linear homogeneous polynomial in the
unknownse1, e2 cannot vanish w.c..

3. Ω0002 = 0, Ω0001Π0003 , 0: We can expressL3 from Ω0002 = 0. Moreover, we can compute the resultant of
Π1000 andΩ resp. Π with respect toe3, which yieldsRΩ andRΠ, respectively. NowRΩ andRΠ have to vanish
independently ofe0, e1, e2, whereRΠ spits up intoe2P[8]Q[38]2:

a. P[8] = 0: Note thatP = 0 is a quadratic homogeneous polynomial in the unknownse1, e2. Now the coefficient
of e2

1 implies b2 = −B5 and from the coefficient of e2
2 we geta2 = −x5A5/X2. Then the coefficient of e1e2

impliesA5 = X2B5. Finally,Π1000= 0 yields a contradiction.

b. Q[38] = 0: Note thatQ = 0 is a quartic homogeneous polynomial ine1, e2. We denote the coefficients ofei
1ej

2
of Q by Qi j . Now Q04 can only vanish w.c. for:

i. b2 = −B5: ThenQ40 can only vanish w.c. for:
⋆ B5 = 0: As Q is fulfilled identically, we considerRΩ which splits up intoS[47]T[4]. It can easily be

seen that the coefficients of the homogeneous linear polynomialT[4] = 0 in e1, e2 cannot vanish w.c..
Therefore we setS[47] equal to zero, which is a quartic homogeneous polynomial in e0, e1, e2. The
coefficient ofe4

2 of S already yields the contradiction.
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⋆ a2 = B5(x5 − X2) − A5, B5 , 0: Now Q31 cannot vanish w.c..

ii. a2 = X2b2 − x5B5 + A5, b2 , −B5: Now Q40 can only vanish w.c. for:

⋆ b2 = B5: ThenQ13 = 0 yields the contradiction.

⋆ A5 = x5B5, b2 , B5: Now Q31 can only vanish w.c. for:
(α) X2 = x5: As Q is fulfilled identically, we considerRΩ which is a homogeneous polynomial of degree
5 in e0, e1, e2. Now the coefficient ofe5

2 yields the contradiction.
(β) X2 = −x5, X2 , x5: Now Q22 = 0 yields the contradiction.

4. Ω0002 = Ω0001 = 0, Π0003 , 0: We can expressL3 from Ω0002 = 0 anda2 from Ω1001 = 0. Then we compute
the resultant ofΠ1000 andΠ with respect toe3, which yieldsRΠ. Now RΠ splits up and can only vanish w.c. for
P[11] = 0 or Q[49] = 0.

a. P[11] = 0: Now the coefficients of this equation can only vanish w.c. forb2 = −B5, A5 = X2B5 anda3 =

B5(X2 − x5) + X3b3. But thenΠ1000= 0 yields the contradiction.

b. Q[49] = 0: This is a quartic polynomial in the unknownse1, e2. We denote the coefficients ofei
1ej

2 of Q by Qi j .
ThenQ04 can only vanish w.c. for:

i. b2 = −B5: Now Q40 can only vanish w.c. for:

⋆ B5 = 0: ThenQ is fulfilled identically. As now the coefficient of the highest exponent ofe2 in Π1000 and
Ω = 0 cannot vanish w.c., we can compute the resultant ofΠ1000 = 0 andΩ with respect toe2, which
yieldsRΩ. Moreover,RΩ = 0 factors intoS[34]T[59] = 0. As the coefficient ofe4

3 of S already yields a
contradiction, we setT equal to zero. The coefficient ofe2

0 of T impliesa3 = X3b3 − x5A5/X2. Finally,
the coefficient ofe2

1 of T yields the contradiction.

⋆ a3 = X3b3 + x5B5 − A5, B5 , 0: ThenQ31 = 0 yields the contradiction.

ii. a3 = X3b3 − x5B5 + A5, b2 + B5 , 0: Now Q40 can only vanish w.c. for:

⋆ b2 = B5: ThenQ13 = 0 yields the contradiction.

⋆ A5 = x5B5, b2 − B5 , 0: Now Q13 can only vanish w.c. forX2 = ±x5. As for X2 = −x5 the equation
Q22 = 0 yields the contradiction, we setX2 = x5. ThenQ is fulfilled identically.
(α) b2 , b3: Under this assumption the highest exponent ofe2 in Ω andΠ1000 cannot vanish w.c..
Therefore we can compute the resultant ofΩ and the only non-c. factor ofΠ1000 with respect toe2,
which yieldsRΩ[87]. Then the coefficient ofe4

3 of RΩ yields the contradiction.
(β) b2 = b3: Now Ω0020 is fulfilled identically butΩ0010 and the highest exponent ofe2 in Π1000 = 0
cannot vanish w.c.. Therefore we can compute the resultant of Ω and the only non-c. factor ofΠ1000with
respect toe2, which yieldsRΩ[26]. Then the coefficient ofe4

1 of RΩ impliesX3 = −x5 − 2/x5. Finally,
the coefficient ofe4

0 of RΩ yields the contradiction.

5. Ω0002= Π0003= 0,Ω0001, 0: We can expressL3 fromΩ0002= 0 andΠ0103= 0 impliesb2 = x5A5 + B5 − X2a2.

a. X2 , x5: Under this assumption we can expressB5 from Π0013 = 0. As Π0002 cannot vanish w.c. we can
compute the resultant ofΠ1000 andΠ with respect toe3, which yieldsRΠ. NowRΠ splits up and can only vanish
w.c. for P[6] = 0 or Q[14] = 0. As it can easily be seen, that the coefficients ofP[6] = 0 cannot vanish w.c., we
setQ[14] equal to zero, which is a quadratic polynomial in the unknownse1, e2. We denote the coefficients of
ei

1ej
2 of Q by Qi j . ThenQ02 = 0 impliesa2 = −x5A5/X2. Now Q11 = 0 can only vanish w.c. for:

i. X2 = −x5: ThenQ20 can only vanish forx5 = ±1. In both casesΠ1000= 0 yields the contradiction.

ii. x5 = −1/X2, X2 + x5 , 0: Again,Π1000= 0 yields the contradiction.

b. X2 = x5: NowΠ0013 can only vanish w.c. for:

i. a2 = A5: NowΠ1000 is a factor ofΠ. Therefore we compute the resultant ofΠ1000 andΩ with respect toe3,
which yieldsRΩ[244]. Moreover,RΩ = 0 is a homogeneous equation of degree 5 ine0, e1, e2. We denote
the coefficients ofei

0ej
1ek

2 of RΩ by RΩi jk . ThenRΩ005 can only vanish w.c. for:
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⋆ B5 = b3: ThenRΩ400 = 0 impliesA5 = X3a3/x5. Now RΩ032 can only vanish w.c. for:
(α) a3 = x5b3: ThenRΩ203 = 0 impliesX3 = 0 andRΩ212 = 0 yields the contradiction.
(β) b3 = X3a3/x

2
5, B5 , b3: Now RΩ212 = 0 yields the contradiction.

⋆ B5 = −x5A5, B5 , b3: ThenRΩ400 = 0 impliesb3 = −X3a3 andRΩ014 = 0 yields the contradiction.

ii. x5 = ±i, a2 , A5: In this case we can compute the resultant ofΩ and the only non-c. factor ofΠ1000 with
respect toe3, which yieldsRΩ[207]. Moreover,RΩ = 0 is a homogeneous equation of degree 4 ine0, e1, e2.
We denote the coefficients ofei

0ej
1ek

2 of RΩ by RΩi jk . ThenRΩ004 = 0 imply a2 = A5 ± b3i ∓ B5i and from

RΩ040 = 0 we getA5 = (±B5 ∓ b3 ∓ X3a3)i. Finally,RΩ022 = 0 yields the contradiction.

6. Ω0002 = Ω0001 = Π0003 = 0: We can expressL3 from Ω0002 = 0 andΠ0001 = 0 impliesa2 = a3 + X2b2 − X3b3.
Moreover we geta3 = A5X3b3 − x5B5 fromΠ0013= 0.

a. X2 , x5: Under this assumption we can expressA5 from Π0103 = 0. As Π0002 cannot vanish w.c. we can
compute the resultant ofΠ1000 andΠ with respect toe3, which yieldsRΠ. NowRΠ splits up and can only vanish
w.c. for P[6] = 0 or Q[14] = 0. As it can easily be seen, that the coefficients ofP[6] = 0 cannot vanish w.c., we
setQ[14] equal to zero, which is a quadratic polynomial in the unknownse1, e2. We denote the coefficients of
ei

1ej
2 of Q by Qi j . ThenQ20 = 0 impliesB5 = −b2. Now Q02 = 0 can only vanish w.c. for:

i. X2 = −x5: ThenQ11 = 0 yields the contradiction.

ii. x5 = −1/X2, X2 + x5 , 0: NowΠ1000= 0 yields the contradiction.

b. X2 = x5: NowΠ0103 can only vanish w.c. for:

i. b2 = B5: NowΠ1000 is a factor ofΠ. The coefficient ofe3
2 of Π1000 resp.Ω0020 equalsX2A5 resp. (b3 − B5):

⋆ A5(b3− B5) , 0: Under this assumption we can compute the resultant ofΠ1000 andΩ with respect toe2,
which yieldsRΩ[792]. The coefficient ofe6

0 of RΩ cannot vanish w.c..

⋆ A5 = 0, b3 , B5: Now the coefficient ofe2
2 of Π1000 cannot vanish w.c., and therefore we can compute

the resultant ofΠ1000 andΩ with respect toe2, which yieldsRΩ[80]. Then the coefficient ofe4
0 of RΩ

yields the contradiction.

⋆ b3 = B5, A5 , 0: NowΩ0010 cannot vanish w.c., and therefore we can compute the resultant of Π1000

andΩ with respect toe2, which yieldsRΩ[167]. The coefficient ofe6
0 of RΩ cannot vanish w.c..

⋆ A5 = 0, b3 = B5: Now the coefficient ofe2
2 of Π1000 andΩ0010 cannot vanish w.c.. Therefore we can

compute the resultant ofΠ1000 andΩ with respect toe2, which yieldsRΩ[22]. Then the coefficient ofe4
0

of RΩ yields the contradiction.

ii. X2 = ±i, b2 , B5: We distinguish two cases:

⋆ 2A5 ± b2i ∓ B5i , 0: Under this assumption the highest exponent ofe2 in Π andΠ1000 cannot vanish
w.c.. Therefore we can compute the resultant of the only non-c. factors ofΠ1000 andΠ with respect to
e2, which yieldsRΠ. It can immediately be seen, thatRΠ cannot vanish w.c..

⋆ A5 = (±B5i∓b2i)/2: NowΠ1000 can only vanish w.c. fore1 = ∓e2
3i/e2. Then it can immediately be seen,

thatΠ = 0 yields the contradiction.

4.7.2. Π1000= 0 vanishes identically for all e1, e2, e3

NowΠ1210 = 0 impliesb2 = −B5 and fromΠ1012 = 0 we geta2 = −A5x5/X2. ThenΠ1120 = 0 andΠ1102 = 0 can
only vanish w.c. forX2 = x5. Now we distinguish the following cases:

1. Ω0200, 0: We distinguish two cases:

a. b2 , 0: Due to this assumptionΠ0300 , 0 holds and we can compute the resultant ofΩ andΠ with respect to
e1 which yieldse2

3Γ[3200], whereΓ is a homogeneous polynomial of degree 6 ine0, e2, e3. In the following we

denote the coefficients ofei
0, e

j
2, e

k
3 of Γ by Γi jk . We can solve the only non-c. factor ofΓ600 for L3 andΓ303 = 0

impliesa3 = X3b3 + B5x5 − A5.

i. X3B5 + x5b3 , 0: Under this assumption we can computeA5 from the only non-c. factor ofΓ006.
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⋆ X3 − 2X
2
3x5 − x5 , 0: Now we can solve the only non-c. factor ofΓ024 = 0 for b3. ThenΓ042 = 0 yields

the contradiction.

⋆ x5 = X3 − 2X
2
3x5: Now Γ024 = 0 yields the contradiction.

ii. A5 = −X
2
3b2/x5: ThenΓ006 can only vanish w.c. for:

⋆ X3 = 0: NowΓ024 = 0 impliesb2 = −b3 andΓ042 = 0 yields the contradiction.

⋆ X3 = −x5, X3 , 0: ThenΓ024 = 0 cannot vanish w.c..

b. b2 = 0: NowΠ0300 andΠ0200 vanish butΠ0100 cannot vanish w.c.. Therefore we can compute the resultant of Ω
andΠ with respect toe1 which yieldse2

3Γ[62], whereΓ is a homogeneous polynomial of degree 6 ine0, e2, e3.
In the following we denote the coefficients ofei

0, e
j
2, e

k
3 of Γ by Γi jk . We can solve the only non-c. factor ofΓ006

for L3. ThenΓ024 = 0 imply a3 = x5b3 and fromΓ204 = 0 we getA5 = −b3(X3x5 + 1)/x5. Now Γ105 = 0 yields
the contradiction.

2. Ω0200= 0,Ω0100, 0: We can expressL3 fromΩ0200= 0.

a. b2 , 0: Due to this assumptionΠ0300 , 0 holds and we can compute the resultant ofΩ andΠ with respect
to e1 which yieldse3Γ[621], whereΓ is a homogeneous polynomial of degree 6 ine0, e2, e3. In the following
we denote the coefficients ofei

0, e
j
2, e

k
3 of Γ by Γi jk . ThenΓ600 = 0 impliesb2 = b3 and fromΓ006 = 0 we get

A5 = −X3a3/x5. Finally,Γ303 = 0 yields the contradiction.

b. b2 = 0: NowΠ0300 andΠ0200 vanish butΠ0100 cannot vanish w.c.. Therefore we can compute the resultant of Ω
andΠ with respect toe1 which yieldse3Γ[22], whereΓ is a homogeneous polynomial of degree 4 ine0, e2, e3.
Then the coefficient ofe2

0e2
3 of Γ cannot vanish w.c..

3. Ω0200 = Ω0100 = 0, Π0030 , 0: We can expressL3 from Ω0200 = 0 anda3 from Ω0110 = 0. Now it can easily be
seen thatΩ0020 cannot vanish w.c.. Due to this fact an the assumptionΠ0020 , 0 we can compute the resultant of
Ω andΠ with respect toe2 which yieldse2

3Γ[838], whereΓ is a homogeneous polynomial of degree 6 ine0, e1, e3.
The coefficient ofe6

0 of Γ impliesb2 = b3 and from the coefficient ofe3
0e3

3 we get the contradiction.

4. Ω0200 = Ω0100 = Π0030 = 0: We can expressL3 fromΩ0200 = 0 anda3 from Ω0110 = 0. NowΠ0030 = 0 implies
A5 = B5x5. Then it can easily be seen thatΩ0020as well asΠ0020 cannot vanish w.c.. Therefore we can compute the
resultant ofΩ andΠ with respect toe2, which yieldse2

1e2
3Γ[100], whereΓ is a homogeneous polynomial of degree

4 in e0, e1, e3. The coefficient ofe4
0 of Γ impliesb2 = b3 and the coefficient ofe4

3 of Γ yields the contradiction.

Due to the structure4 of Ω it can easily be seen, thatΩ andΠ can only have a common factor, which does not depend
one0 (cf. footnote 2) ifΩ = 0 has this property too. As this case was already treated in subsection 4.6 we remain with
the discussion of those cases excluded by the assumptione0e2 − e1e3 , 0 (cf. footnote 1). This discussion is done in
the next section.

5. Proving the special casee0e2 − e1e3 , 0 of Theorem 3

We split up the proof of this section into the following threecases:

1. As e0 = e1 = e2 = e3 = 0 does not correspond with an Euclidean motion, we start the case study by considering
the following four cases:

e0 = e1 = e2 = 0, e0 = e1 = e3 = 0, e0 = e2 = e3 = 0, e1 = e2 = e3 = 0.

We only discuss the casee0 = e1 = e2 = 0 in more detail because the other three cases can be done analogously.
NowΨ = 0 implies f3 = 0. ThenΩ1 = 0 yields an expression forf2 andΩ2 = 0 implies an expression forf1. This
cannot yield a two-parametric self-motion as only the homogeneous parameterse3 and f0 are free.

4
Ω :
∑3

i=0 cie2
i + c4e0e3 + c5e1e2 wherec0, . . . , c5 only depend on the geometry of the SG platform.
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2. In this part we discuss the following four special cases:

a. e0 = e1 = 0: Due to item 1 we can assumee2e3 , 0. We can computef2 from Ψ = 0. ThenΩ1 implies
f3 = −L1e2/2. ThenΠ4 can only vanish w.c. forg4 = −L1. Moreover, we can expressf1 fromΠ5. Finally the
coefficients ofe2 f0 of Ω2 andΩ3 cannot vanish w.c..

b. e2 = e3 = 0: This case can be done analogously to the last one.

c. e0 = e3 = 0: Due to item 1 we can assumee1e2 , 0. We can computef1 fromΨ = 0. Then we can expressf0
fromΠ4 = 0. Moreover, we can computef3 fromΠ5 = 0. NowΩ1,Ω2 andΩ3 have to vanish independently of
the choice of the unknownse1, e2, f2.
The coefficient ofe4

1 of Ω2 implies an expression forh5. Then we getL2 from the coefficient ofe1
1e3

2 of Ω2 and
L3 from the coefficient ofe4

1 of Ω3. Then the coefficients ofe4
1 ande4

2 of Ω1 imply L1 = g4 = 0. Now we can
computea2 from the coefficient ofe1

1e3
2 of Ω1. Moreover, the coefficient ofe3

1e1
2 of Ω1 implies B5 = x5A5 and

from the coefficient ofe1
1e3

2 of Ω3 we geta3 = A5(1+ x2
5) − X3b3. Then the coefficient ofe2

1e2
2 of Ω1 can only

vanish w.c. forx5 = ∓i. Then the coefficient ofe4
2 of Ω2 implies X2 = ±i. Finally, the coefficient ofe4

2 of Ω3

yields the contradiction.

d. e1 = e2 = 0: This case can be done analogously to the last one.

3. Due to the discussion of the special cases in item 1 and item2, we can assumee0e1e2e3 , 0. Therefore we can
solvee0e2 − e1e3 = 0 for e2. Moreover, we can solveΨ,Ω1,Π4,Π5 for f0, f1, f2, f3.

Now Ω2 andΩ3 have to vanish independently of the choice of the unknownse0, e1, e3. Therefore the coefficient
of e6

0 of Ω2 implies L1 = g4. Then the coefficient of e5
0e3 of Ω2 yields an expression forL2. Now we getg4 =

2a2 − 2X2b2 from the coefficient ofe4
0e2

3 of Ω2. Moreover, we geta2 = X2b2 from the coefficient ofe2
1e4

3 of Ω2.
Finally the coefficient ofe0e2

1e3
3 of Ω2 cannot vanish w.c.. This finishes the proof of Theorem 3. �

6. Geometric interpretation of the necessary conditions

As noted in [15], the equations Eq. (2) and Eq. (3) arise from the condition thatΩ of subsection 2.5 does not depend
on e0 ande3 or e1 ande2, respectively. By computingΩ2000+ Ω0002, Ω2000− Ω0002 andΩ1001 it can immediately be
seen that the conditions of Eq. (2) can also be written as:

L1(X2 − X3) − L2 + L3 = 0, X2a2 − X3a3 + b2 − b3 = 0, X2b2 − X3b3 − a2 + a3 = 0. (4)

By computingΩ0200+ Ω0020, Ω0200−Ω0020 andΩ0110 it can immediately be seen that Eq. (3) can be rewritten as:

L1(X2 − X3) − L2 + L3 = 0, X2a2 − X3a3 − b2 + b3 = 0, X2b2 − X3b3 + a2 − a3 = 0. (5)

In the following we give the geometric interpretation of Eq.(4), which is sketched in Figure 1(a):

I. L1(X2 − X3) − L2 + L3 = 0 expresses that the three linesti ∈ Σ0 (i = 1, 2, 3) with homogeneous line coordinates
[Li : Xi : Yi ] have a common pointT (⇒ the three Darboux planes belong to a pencil of planes).

II. X2b2 − X3b3 − a2 + a3 = 0 expresses that the three linessi := [ui ,Ui ] (i = 1, 2, 3) with Ui = (0 : Xi : Yi) have a
common pointS.

III. X2a2− X3a3+ b2− b3 = 0 expresses that the three liness⊥i := [ui ,U
⊥

i ] (i = 1, 2, 3) with U
⊥

i = (0 : −Yi : Xi) have
a common pointS⊥.

Note that the items II and III only hold if the coordinate systems of the platform and base are chosen according to
Lemma 1 and if these two coordinate systems coincide.

The geometric interpretation of Eq. (5) is equivalent with the one given above, if one rotates the platform about
the x-axis with angleπ. Therefore the two triples of necessary conditions are connected by this rotation, which is
represented in the Euler parameter space by the transformation (cf. [10]): (e0, e1, e2, e3) 7→ (−e1, e0,−e3, e2).

Remark 1. It is interesting to note, that the given necessary conditions only arise from the three Darboux constraints.
A purely geometric proof of the necessity of these conditions for a type II DM self-motion of a general planar SG
platform seems to be a complicated task. ⋄

20



a) b) c)

u1

u2

u3

S

S⊥

T

s1

s2

s3

s⊥1

s⊥2

s⊥3

t1

t3

t2

1a1b

l

2a

2b

3a

3b

Taaa

1a
1b

l

2a

2b

3a

3b

Taaa

Tbbb

Tabb

TbaaTaab

Tbba

Taba Tbab

Figure 1: a) Sketch of the geometric interpretation of the necessary conditions.
b,c) Line-symmetric Bricard octahedron:1a = (1, 0, 0), 2a = (5, 3,−6), 3a = (−2,−7,−9) and the line of symmetry is the z-axis.

6.1. Line-symmetric Bricard octahedra

We denote the vertices of the line-symmetric Bricard octahedron [3] by 1a, 1b, 2a, 2b, 3a, 3b, whereva andvb

are symmetric with respect to the linel for v ∈ {1, 2, 3}. Moreover,εi jk denotes the face spanned by1i , 2 j , 3k with
i, j, k ∈ {a, b}. Under consideration of this notation we can formulate the following theorem, which is illustrated in
Fig. 1b,c:

Theorem 4. Every line-symmetric Bricard octahedron has the property that the following three planes, orthogonal
to εi jk , have a common lineTi jk :

⋆ plane orthogonal to[1i , 2 j ] though3k′ where k, k′ ∈ {a, b},

⋆ plane orthogonal to[2 j , 3k] though1i′ where i, i′ ∈ {a, b},

⋆ plane orthogonal to[3k, 1i ] though2 j′ where j, j′ ∈ {a, b}.

Proof: It was already proven by the author in Corollary 1 of [16] thatthe continuous flexion of a line-symmetric
Bricard octahedron is a type II DM self-motion. Then the theorem follows immediately by item I. �

7. Conclusion

In this article we have proven the necessity of three conditions for obtaining a type II DM self-motion of a general
planar SG platform (cf. Theorem 3). Moreover, we also gave a geometric interpretation of these conditions cf. section
6), which identified a property of line-symmetric Bricard octahedra, which was not known until now, to the best
knowledge of the author (cf. Theorem 4).

Finally, it should be noted that Theorem 3 is the key for the determination of all planar SG platforms with a type
II DM self-motion, which was already done in [17].
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[11] Ma, O., Angeles, J.:Architecture Singularities of Parallel Manipulators, Int. J. of Robotics and Automation7 (1) 23-29 (1992).
[12] Mielczarek, S., Husty, M.L., Hiller, M.:Designing a redundant Stewart-Gough platform with a maximal forward kinematics solution set, In

Proc. of the International Symposion of Multibody Simulation and Mechatronics (MUSME), Mexico City, Mexico, September 2002.
[13] Nawratil, G.:On the degenerated cases of architecturally singular planar parallel manipulators, J. Geom. Graphics12 (2) 141–149 (2008).
[14] Nawratil, G.: A new approach to the classification of architecturally singular parallel manipulators, Computational Kinematics (A.

Kecskemethy, A. Müller eds.), 349–358, Springer (2009).
[15] Nawratil, G.:Basic result on type II DM self-motions of planar Stewart Gough platforms, Mechanisms, Transmissions, Applications (E.Chr.

Lovasz, B. Corves eds.), 235–244, Springer (2011).
[16] Nawratil, G.:Types of self-motions of planar Stewart Gough platforms, under review.
[17] Nawratil, G.: Planar Stewart Gough platforms with a type II DM self-motion, Technical Report No. 220, Geometry Preprint Series, TU

Vienna (2011).
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