
POINT-MODELS FOR THE SET OF ORIENTED LINE-ELEMENTS – A SURVEY

NOTICE: this is the author’s version of a work that was accepted for publication in MECHANISM AND

MACHINE THEORY. Changes resulting from the publishing process, such as peerreview, editing, correc-
tions, structural formatting, and other quality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted for publication. A definitive version
was subsequently published in:

MECHANISM AND MACHINE THEORY 111 118–134 (2017) DOI: 10.1016/j.mechmachtheory.2017.01.008



Point-models for the set of oriented line-elements – a survey

Georg Nawratil

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstrasse 8-10/104, 1040 Vienna, Austria

Abstract

We study point-models for the set
−→L of oriented line-elements by reviewing existing ones and byconstructing them

from different approaches proposed in the literature. We distinguish between point-models resulting from transfor-
mations and those implied by representations, where we alsopursue the strategy to represent oriented line-elements
by oriented line-segments with a constant length. For path planning in robotics (e.g. approximation, interpolation,

optimization, . . . ) it is desirable to have a metric on
−→L, thus we also study geometric meaningful distance measures.

Based on the resulting metric spaces we finally discuss the problem of motion design.
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1. Introduction and Motivation

For a large number of applications in robotics theend-effector has a rotational symmetry; e.g. milling, spot-
welding, laser or water-jet engraving/cutting, spray-based painting, etc. For the determinationof these axial symmetric
tasks the rotation axisa of the tool is of importance as well as the location of thetool tip A, which is also known as
tool center point(see Figure 1). In addition, the orientation of the linea has to be taken into account (see Figure 2),
thus we consider the oriented line−→a .

A

−→a

Figure 1: End-effector with rotational symmetry represented by the oriented axis −→a and the tool tipA. Both pictures by courtesy of Florian Rist
(Vienna University of Technology, Department for 3D Design and Model Making).

The two geometric objectsA and−→a can be combined to a so-called oriented line-element (A,−→a ), which is also
known as an oriented pointed line (e.g. [1]) or point-line (e.g. [2]) in the literature. Up to the author’s knowledge
oriented line-elements were firstly defined by De Saussure [3] in the following way:

Definition 1. Soit D une droite affectée d’une sens indiqué par une flèche et M un point de cette droite; la figure
(MD) est un point dirigé.
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Figure 2: These figures point out the importance of the orientation of the line-element for path-planing between two given poses. The end-poses in
both pictures only differ by their orientation, while the starting poses are identical.

These ”directed points” can also be considered within the theory of flags, which seems to go back to De Saussure [4]
as well. From this point of view an oriented line-element is an oriented partial flag of the Euclidean 3-spaceR

3, which
can be completed by an oriented plane−→α with a ∈ α (see also the contemporary works [1, 5, 6]). This complete flag

(A,−→a ,−→α ) of R3 can be transformed into any other complete flag (B,
−→
b ,
−→
β ) of R3 by an orientation preserving isometry

(= Euclidean displacement). As a consequence the set of oriented complete flags
−→F is isomorphic to the group SE(3)

of Euclidean displacements (cf. [6, Theorem 5.1]). Therefore, an oriented complete flag corresponds with a so-called

”soma” in the notation of Study [7] and the Study quadric can be used as a point-model for
−→F , which can be summed

up in the following theorem (cf. [6, Theorem 5.2]):

Theorem 1. There exists a bijection between
−→F and the real points(q0 : q1 : q2 : q3 : q̂0 : q̂1 : q̂2 : q̂3) of the

7-dimensional projective spaceP7 located on the Study quadric

q0̂q0 + q1̂q1 + q2̂q2 + q3̂q3 = 0, (1)

which is sliced along the3-dimensional space q0 = q1 = q2 = q3 = 0.

Analogously, it can be seen that the set of oriented line-elements ofR2 is isomorphic to the group of planar
Euclidean displacements. Therefore, the kinematic mapping of Blaschke [8] and Gr̈unwald [9] implies the following
point-model:

Theorem 2. There exists a bijection between the set of oriented line-elements ofR2 and the real points(q0 : q1 : q̂2 :
q̂3) of the3-dimensional projective spaceP3, which is sliced along the line q0 = q1 = 0.

As aforementioned, the practical application in robotics rise the question for a point-model of the set
−→L of oriented

line-elements ofR3, which can be used for motion design based on well-known methods for curves (freeform tech-
niques, interpolation, approximation, . . . ). This approach is a standard technique for the design of Euclidean motions,
where inter alia the point-models of Theorems 1 and 2 are used(e.g. [10, 11, 12, 13]).

1.1. Requirements of a point-model

One important property of the point-models of Theorems 1 and2 is that a change of the fixed frame and the
moving frame (which are both linear transformations inR

3) implies a linear transformation1 of the point-model. We

also demand from our point-model
−→L to have this property as in this way linear curve design algorithms (cf. Section

4) remain invariant under the choice of the fixed and moving frame. A trivial example for a point-model, which does
not fulfill this requirement is the following one, where (A0 : A1 : A2 : A3) are the homogenous coordinates ofA and
(a1,a2,a3) denotes the direction vector of−→a :

1In the case of Theorem 1 and 2 it is even a linear automorphism.
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Theorem 3. There is a bijection between
−→L and the real points(A0 : A1 : A2 : A3 : a1 : a2 : a3) of the6-dimensional

projective spaceP6 located on the quadric

(A2
0 + A2

1 + A2
2 + A2

3) − (a2
1 + a2

2 + a2
3) = 0, (2)

which is sliced along the hyperplane A0 = 0.

Remark 1. Alternatively, the points of the non-sliced point-model ofTheorem 3 can be interpreted as the tangents

to the unit-hypersphere ofR4 (cf. [14, Sections 6 and 7]). A similar characterization of
−→L is implied by Selig’s

construction based on stereographic projection (cf. [15, pp. 242–243]). ⋄

In total our point-modelP should have the follow three properties:

P1 The point-modelP is an algebraic variety.

P2 The underlying kinematic mapping
−→L → P is a bijection.

P3 A change of the moving and the fixed frame implies a linear transformation of the point-modelP.

As in our case the moving spaceΣ0 degenerates into an oriented line−→x 0, the moving frameF0(U0) is determined
by one point on this line; namely the originU0. Moreover, we have to define the identity transformation; i.e. how is
the moving frameF0(U0) relatively located with respect to the fixed frameF (U,−→x ,−→y ,−→z ), where the coordinate axes−→x ,−→y ,−→z form a right-handed Cartesian system. Without loss of generality we can assume thatU0 coincides with the
origin U of F and that−→x 0 coincides with−→x (including orientation). The coordinates of the pointA ∈ Σ0 with respect
to the moving frameF0 is given bya0.

1.2. Outline

To the best knowledge of the author there is no detailed studyof point-models for the set
−→L of oriented line-

elements until now. Therefore, we review existing point-models and construct point-models from different approaches
proposed in the literature. We distinguish between point-models resulting from transformations (cf. Section 2) and
those implied by representations (cf. Section 3), where we also pursue the strategy to represent oriented line-elements
by oriented line-segments with a constant length (cf. Section 3.2).

For path planning in robotics (e.g. approximation, interpolation, optimization, . . . ) it is desirable to have a metric

on
−→L. Geometric meaningful metrics are investigated in Section4. It turns out that two object dependent metrics are

very suitable as they imply Euclidean metrics in the kinematic image space of a discussed point-model. Some basic
results for their use in (variational) motion design are given in Section 5.1. Moreover, in Section 5.2 we adopt the
famous algorithm of De Casteljau for Bézier curves for the motion design of oriented line-elements.

Before we can plunge in medias res we have to introduce some notations and basic concepts in Section 1.3.

1.3. Basics

A vector ofR3 is denoted byv = (v1, v2, v3)T and the cross-product and Euclidean scalar-product of two vectors
v,w ∈ R3 is denoted byv × w and〈v,w〉, respectively.

Let a be the unit-vector in direction of the oriented line−→a , which is also known as spear, andA the position vector
of A ∈ a. Then, the vector̂a := A × a is the so-called moment vector and the bituple (a, â) of vectors inR3, which
represents the so-called spear coordinates of−→a . Note that spear coordinates fulfill the equations

〈a,a〉 = 1, 〈a, â〉 = 0. (3)

Moreover, we indicate dual numbers by an underline; i.e.d = d + εd̂ with d, d̂ ∈ R and the dual unitε having the
propertyε2 = 0. These numbers constitute the commutative ringD of dual numbers. One can also define the extension
of any real analytic functionf to dual arguments as follows:

f (d) := f (d) + εd̂ f ′(d), (4)
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where f ′ denotes the derivative off . For the sine and cosine function of the dual angleΦ = Φ + εΦ̂ this yields:

cosΦ = cosΦ − εΦ̂ sinΦ ∈ D, sinΦ = sinΦ + εΦ̂ cosΦ ∈ D. (5)

Now we can map the spear coordinates (a, â) to an element ofa ∈ D3 by a := a+ ε̂a. Then,a is a so-called dual
unit-vector as

〈a,a〉 = 〈a,a〉 + 2ε〈a, â〉 = 1 (6)

holds due to Eq. (3). This implies Study’s model of oriented lines (cf. [7, 16]):

Theorem 4. There is a bijection between the set of oriented lines ofR
3 and the points on the dual unit-sphere S2

D
∈

D
3.

We proceed by introducing the notation of quaternions.Q := q0+q1i+q2j+q3kwith q0, . . . ,q3 ∈ R is an element of
the skew field of quaternionsH, wherei, j, k are the quaternion units, which are multiplied according tothe following
rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j, ii = jj = kk = −1.

It can be seen from this first formula that we write quaternions just side by side for multiplication instead of intro-
ducing an extra multiplication sign. This way the notation becomes more compact without yielding confusion as only
quaternions are printed in Gothic. The quaternion conjugate toQ is given byQ̃ := q0 − q1i − q2j − q3k. Moreover, a
quaternion is called unit-quaternion ifQQ̃ = 1 holds.

Now we can also combine two quaternionsQ, Q̂ by the dual unit to a so-called dual quaternionQ := Q + εQ̂.

Obviously one will define the conjugate dual quaternionQ̃ := Q̃ + ε˜̂Q. Then, a dual unit-quaternion is defined as
QQ̃ = 1, which impliesQ to be a unit-quaternion and the so-called Study condition given in Eq. (1).

It is well-known (e.g. [15]) that the set of dual unit-quaternions yields a double cover of SE(3). The dual unit-
sphereS3

D
∈ D4; i.e.

S3
D

:=
{
Q := (q0,q1,q2,q3)T + ε(̂q0, q̂1, q̂2, q̂3)T with 〈Q,Q〉 = 1

}
(7)

serves as a model for this double covering, where antipodal points imply the same spatial displacement. By homog-
enization we can avoid the double covering, which yields theStudy parameters (q0 : q1 : q2 : q3 : q̂0 : q̂1 : q̂2 : q̂3)
already mentioned in Theorem 1. The displacement, which corresponds to a point on the Study quadric, can be written
in matrix notation as (x, y, z)T 7→ M (x, y, z)T + (t1, t2, t3)T with

M = (mi j ) =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q2

0 − q2
1 − q2

2 + q2
3

 , (8)

and

t1 = 2(q0̂q1 − q1̂q0 + q2̂q3 − q3̂q2), t2 = 2(q0̂q2 − q2̂q0 + q3̂q1 − q1̂q3), t3 = 2(q0̂q3 − q3̂q0 + q1̂q2 − q2̂q1),

if the normalizing conditionN = 1 with N := q2
0 + q2

1 + q2
2 + q2

3 is fulfilled.

2. Point-models based on transformations

Three known approaches, which all have in common that they are based on rigid body motions, are studied/reviewed
within the next subsections.
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2.1. Incompletely specified displacements

One possibility for the description of
−→L is to ask for the setD of spatial Euclidean displacements SE(3), which

map one oriented line-element (B,
−→
b ) into another one (A,−→a ). According to the notation of [17, 18] the displacement

is not specified. More precisely,D is 1-dimensional, which can easily be seen as follows: Assumeσ ∈ SE(3) with

σ(B,
−→
b ) = (A,−→a ). Then, clearly alsoσ(ρ(B,

−→
b )) = (A,−→a ) holds, whereρ is an arbitrary rotation about the lineb.

As any element ofD can be interpreted as a finite screw displacement due to Ball’s theorem one can ask for the
locus of the corresponding screw axes. It turned out [17, 18]that they generate the cylindroid, which is well-known
from instantaneous kinematics. This ”finite screw cylindroid” and the underlying set of finite screws (considered as
6-vectors; i.e. screw coordinates) were also studied in [19].

By modifying the definition of the finite screw’s pitch (cf. [20]), the finite screws associated withD form a 2-
system; i.e. any screw of this system can be represented by the linear combination of two basic screws (see also
[21, 22, 23, 24]). This linear behavior also shows up by expressingD in terms of Study parameters as it corresponds
to a line in the Study quadric (cf. [15, Section 11.3]). This observation is the starting point for our first point-model

of
−→L resulting from the Grassmann coordinates of these lines:
For an efficient formulation of our problem in terms of dual quaternions, we use the result (cf. [25, Chapter 3,

paragraph 1, item 3] thatD contains at least one displacementδ, which is a pure rotation or translation. It is well-
known that the corresponding dual quaternionD of δ can be written as

D := D + εD̂ with D := d0 + d1i + d2j + d3k and D̂ := d̂1i + d̂2j + d̂3k. (9)

Under the assumption that the identity transform (corresponding dual unit-quaternion is 1) maps the moving frame to

thex-axis of the fixed frame (including orientation and origin; cf. end of Section 1.1) we get
−→
b = −→x . Therefore, the

corresponding quaternionR of ρ reads asR = r0 + r1i. The composite displacement is obtained by the multiplication
DR, which implies for (r0, r1) = (1,0) the following point on the Study quadric

U := (d0 : d1 : d2 : d3 : 0 : d̂1 : d̂2 : d̂3), (10)

and for (r0, r1) = (0,1) we get
V := (−d1 : d0 : d3 : −d2 : −d̂1 : 0 : d̂3 : −d̂2). (11)

As these two points are always distinct they span the lineg in the Study quadric. Now we compute the 28 homogenous
Grassmann coordinatesgi j := uiv j − u jvi for i < j andi, j ∈ {0,1, . . . ,7}:

g01 = d2
0 + d2

1 g23 = −d2
2 − d2

3 (12)

g45 = d̂2
1 g67 = −d̂2

2 − d̂2
3 (13)

g02 = −g13 = d0d3 + d1d2 g03 = g12 = d1d3 − d0d2 (14)

g04 = g15 = −d0d̂1 g05 = −g14 = d1d̂1 (15)

g06 = −g17 = d0d̂3 + d1d̂2 g07 = g16 = d1d̂3 − d0d̂2 (16)

g24 = −g35 = −d2d̂1 g25 = g34 = −d3d̂1 (17)

g26 = g37 = d2d̂3 − d3d̂2 g27 = −g36 = −d2d̂2 − d3d̂3 (18)

g46 = −g57 = d̂1d̂2 g47 = g56 = d̂1d̂3 (19)

As there are 12 pairs of coordinates, which are identical or only differ by the sign we can project along these
coordinates, thus we end up in the following 15-dimensionalprojective spaceP15:

(g01 : g02 : g03 : g04 : g05 : g06 : g07 : g23 : g24 : g25 : g26 : g27 : g45 : g46 : g47 : g67). (20)

Elimination of the variablesd0,d1,d2,d3, d̂1, d̂2, d̂3 from the equations given in Eqs. (12-19) yields a variety of dimen-
sion 6 and degree2 20. This variety has to be intersected with the hyperplaneg05−g27 = 0. The resulting 5-dimensional

2Based on the equations given in the Appendix, which determinethis variety, the degree can easily be computed from the corresponding
Hilbert-polynomial [26].
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variety of degree 20 has to be sliced along the hyperplaneg01 − g23 = 0 in order to get the final point-model for
−→L in

P
15, which is summed up next:

Theorem 5. There exists a bijection between
−→L and all real points(g01 : g02 : g03 : g04 : g05 : g06 : g07 : g23 : g24 :

g25 : g26 : g27 : g45 : g46 : g47 : g67) of the15-dimensional projective spaceP15 located on the5-dimensional variety
of degree 20, which is given by the set of equations displayedin the Appendix, and is sliced along the hyperplane
g01 − g23 = 0.

Note that the identity transform corresponds to the point (1: 0 : . . . : 0) in the kinematic image space. This
point-model possesses all three properties: P1 and P2 are trivially fulfilled, and P3 is implied by the Study quadric
having this property.

Remark 2. Finally, we want to point out a flaw in [27, Proposition 2], where the following is claimed (translated
to our terminology): ”Every line within the Study quadric, which corresponds to a rigid displacement of an oriented
line-element, has a unique intersection point with the hyperplaneq1 = 0 of Study’s kinematic image space.” This is
not true as ford0 = d1 = 0 the complete line is located within the hyperplaneq1 = 0. Therefore, there is no bijection
between this set of lines and a set of points in the hyperplaneq1 = 0, what violates the demanded property P2. ⋄

2.2. Point-model resulting from linear pentapods

For the study of the direct kinematics of a pentapod, where all platform anchor points are collinear, the following
kinematic mapping has been used in [28]: Based on the Study parameters (cf. Section 1.3) the following nine equations
can be defined:

n0 = d̂2
0 + d̂2

1 + d̂2
2 + d̂2

3, y0 = 4(−d0d̂1 + d1d̂0 + d2d̂3 − d3d̂2) (21)

x0 = 2N, xi = 2mi,1, yi = 2ti for i = 1,2,3. (22)

Then, eliminating the Study parameters from these nine equations together with the Study condition gives the follow-
ing result:

Theorem 6. There exists a bijection between
−→L and all real points(n0 : x0 : . . . : x3 : y0 : . . . : y3) of the8-

dimensional projective spaceP8 located on the5-dimensional octic variety given by

x2
1 + x2

2 + x2
3 − x2

0 = 0, y2
1 + y2

2 + y2
3 − 8x0n0 = 0, x0y0 + x1y1 + x2y2 + x3y3 = 0, (23)

which is sliced along the hyperplane x0 = 0.

For x0 = 1 the Euclidean displacement of (B,
−→
b ) 7→ (A,−→a ) is given by:

B =


b0

0
0

 7→


b0x1 + y1

b0x2 + y2

b0x3 + y3

 = A and b =


1
0
0

 7→


x1

x2

x3

 = a. (24)

Note that the variablesy0 andn0 were only introduced for the special application in robotics, as then the so-called
sphere condition is only linear in the nine homogenous motion parameters (n0 : . . . : y3). As seen in Eq. (24),y0 and
n0 do not play a role in the transformation, thus we can omit these two unknowns. This yields the following simplified
point-model:

Theorem 7. There exists a bijection between
−→L and all real points(x0 : x1 : x2 : x3 : y1 : y2 : y3) of the6-dimensional

projective spaceP6 located on the5-dimensional singular quadric

x2
1 + x2

2 + x2
3 − x2

0 = 0, (25)

which is sliced along the hyperplane x0 = 0.

For both point-models (cf. Theorems 6 and 7) it can be verifiedthat they possess the three properties P1, P2 and
P3. The proof is left to the interested reader.
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Figure 3: Left: Geometric interpretation of the displacementoperator. Middle: Illustration of the oriented distancea. Right: Illustration of the
Projection Theorem.

2.3. Displacement operators of Zhang and Ting

The last approach of this section is based on the following theorem [2, Theorem 1]:

Theorem 8. For any oriented line-element(B,
−→
b ) there exists a bijection between

−→L and the setO of its displacement
operators, which is given by

O :=
{
(1+ εh)(cosΦ, v sinΦ) with 〈b, v〉 = 0 and 〈v, v〉 = 1

}
. (26)

The geometric interpretation of the displacement operators3 is as follows (see Figure 3 (left)):v represents an

oriented line−→v , which intersects
−→
b orthogonally due to the condition〈b, v〉 = 0. Applying the displacement operator

to (B,
−→
b ) yields a translation ofB along

−→
b by the oriented distanceh, then the resulting oriented line-element (Bh,

−→
b )

is rotated about−→v by the oriented angleΦ and translated along−→v by the oriented distancêΦ into its final pose (A,−→a ).
The last two transformations can be seen as a screw displacement about the axis−→v , which is the (oriented) common

perpendicular of−→a and
−→
b , respectively.

By expanding the displacement operator given in Theorem 8 with respect toΦ := Φ + εΦ̂ and Eq. (5) yields:

(1+ εh)[(cosΦ, v sinΦ︸          ︷︷          ︸
(e0,e)

) + ε(−Φ̂ sinΦ, v̂ sinΦ + vΦ̂ cosΦ︸                               ︷︷                               ︸
(̂e0,̂e)

)]. (27)

h,Φ, v with 〈b, v〉 = 0 are no suitable parameters for an algebraic description ofO as from Eq. (27) it can be seen that
for sinΦ = 0 the vector̂v can be arbitrary. Moreover, forh,−Φ,−v andh,Φ, v we get the same displacement operator.
This problem can be avoided by considering the parameterse0, ê0,e, ê,h (cf. Eq. (27)) and by replacing the condition
〈b, v〉 = 0 by:

〈e,b〉 = 〈v,b〉 sinΦ = 0 and 〈̂e,b〉 + 〈̂b,e〉 =
(
〈̂v,b〉 + 〈̂b, v〉

)
sinΦ + 〈v,b〉Φ̂ cosΦ = 0. (28)

By assumption that the identity transform (corresponding displacement operator is 1) maps the moving frame to the

x-axis of the fixed frame (including orientation and origin; cf. end of Section 1.1) we get
−→
b = −→x . This simplifies Eq.

(28) toe1 = ê1 = 0, which already shows the following theorem:

3In [2] the displacement operator is given as a dual quaternioninstead of an element ofD4 (cf. Section 1.3), which is chosen for convenience
within the study at hand.
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Theorem 9. There exists a bijection between
−→L and all real points(e0,e2,e3, ê0, ê2, ê3,h) of the7-dimensional space

R
7 located on the5-dimensional quartic variety given by

e0̂e0 + e2̂e2 + e3̂e3 = 0, e2
0 + e2

2 + e2
3 = 1. (29)

Note that the identity transform corresponds to the point (1,0, . . . ,0) in the kinematic image space. This point-model
possesses P1 and P2 but not P3, which can be seen as follows:

The operator, which transforms the oriented line-element (U,−→x ) into (A,−→a ), is given by

(e0,e2,e3, ê0, ê2, ê3,h) := (a1,−a3,a2, â1, −̂a3, â2,hA) (30)

with

hA =
a2̂a3 − a2̂a3

1+ a1
+ a, (31)

wherea denotes the distance from the pedal pointF of a (with respect to the originU of the fixed frame) to the point
A with respect to the orientation ofa; i.e.a is an oriented distance (see Figure 3 (middle)).

Now we change the fixed frame, which is equivalent to moving the line-element (A,−→a ). For showing the non-
linear transform of the point-model of Theorem 9, we can evenrestrict to translations by an arbitrary vector (x, y, z)T .
Then, a straight forward computation yields:

(e′0,e
′
2,e
′
3, ê
′
0, ê
′
2, ê
′
3,h
′) := (e0,e2,e3, ê0 − ye2 − ze3, ê2 − xe3 + ye0, ê3 + xe3 + ze0,h

′
A) (32)

with
h′A =

e3y+ e2z
1+ e0

+ x+ hA. (33)

This shows thath′A cannot be represented as a linear combination of (e0,e2,e3, ê0, ê2, ê3,h). Note that the problem
is only the transform ofh; the remaining coordinates transform linearly also in the general case (not restricted to
translations).

Remark 3. Finally, it should be noted that one can also transform the oriented line-element (U,−→x ) into (A,−→a ) just by
a screw motion (angleΦ and translation̂Φ), where the axis−→w is orthogonal to−→x (and−→a ). One can encode this screw
analogously to Eq. (26), which yields

(cosΦ,w sinΦ) with 〈x,w〉 = 0 and 〈w,w〉 = 1,

thus one gets rid of the parameterh. This implies a similar point-model as in Theorem 9; but it also does not possess
P3, which can be seen in a similar way as above. ⋄

3. Point-models based on representations

3.1. Representations of oriented line-elements
The representations of oriented line-elements can be grouped into three approaches:

3.1.1. Representation of Odehnal, Pottmann, Wallner
In [29] the three authors study unoriented line-elements ofR

3. Their result can be adapted for oriented ones by
adding a normalization condition, which results in the following point-model:

Theorem 10. There exists a bijection between
−→L and all real points(a, â,a) of the7-dimensional spaceR7 located

on the5-dimensional quartic variety given by

〈a,a〉 = 1, 〈a, â〉 = 0. (34)

Remark 4. The point-model can be seen as a cylinder over the Study modelof oriented lines (cf. Theorem 4). ⋄
This point-model resulting from a representation can be interpreted in terms of displacements as follows: The

identity transform is given by (1,0, . . . ,0). Any other point of the point-model describes the relative position of
(U0,
−→x 0) with respect to the fixed frameF .

P1 and P2 are trivially fulfilled. The third property with respect to changes of the fixed frame follows from [29,
Eq. (8)]. Moreover, changes of the moving frame only imply a translation of the point on the oriented line; i.e.a
transforms linearly toa+ t with t ∈ R.
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3.1.2. Representation of Selig and Odehnal
Based on Clifford algebras (cf. [1, 15, 30]), oriented line-elements are just represented by combining grade 2

elements (oriented lines) with grade 4 elements (points) under the side condition that the point is located on the
oriented line. This is similar to the approach of Odehnal [31] taken for characterizing unoriented line-elements ofP

3.

Therefore, these two approaches imply the same point-modelfor
−→L:

Theorem 11. There exists a bijection between
−→L and all real points(a, â,A) of the9-dimensional spaceR9 located

on the5-dimensional variety of degree10given by

〈a,a〉 = 1, 〈a, â〉 = 0, 〈A, â〉 = 0, A × a = â. (35)

The degree of 10 follows from [31, Theorem 3.1] under consideration of the additional constraint〈a,a〉 = 1.
The interpretation of this point-model in terms of displacements can be done as in Section 3.1.1. Again P1 and

P2 are trivially fulfilled. The third property with respect to changes of the fixed frame follows from [31, Eq. (12)].
Moreover, changes of the moving frame imply again a translation of the point on the line; i.e.A transforms linearly
to A + Ra.

3.1.3. The trivial representation and those of Zhang and Ting, Combebiac
The most intuitive approach for representing an oriented line-element is just to combine the point coordinatesA

and the unit-direction-vectora of −→a . This yields the following theorem:

Theorem 12. There exists a bijection between
−→L and all real points(a,A) of the6-dimensional spaceR6 located on

the singular quadric
〈a,a〉 = 1. (36)

Note that this point-model can be seen as the non-homogenousversion of the one given in Theorem 7.
Zhang and Ting [2] represented oriented line-elements by the 6-tuple

(a, â+ aa), (37)

wherea denotes the oriented distance illustrated in Figure 3 (middle).
A similar description is used by Combebiac [32]:

(a, â+ A). (38)

For both representations it can easily be seen that their implied point-model is given by the same singular quadric of
Theorem 12. But it should be mentioned that the transform between these three point-models (in all three cases) is a
non-linear one.

For all three point-models it can be verified that they possess the three properties P1, P2 and P3. The proof is left
to the reader, where the interpretation of these point-models in terms of displacements can be done as in Section 3.1.1
as well.

3.2. Representations of oriented line-segments with a constant length
The idea is to represent an oriented line-segment by an ordered pair (A−,A+) of pointsA− andA+. If we addi-

tionally demand that the distance between these two points equals a constant valued > 0 we can come up with the

following bijection between the set of oriented line-elements with constant lengthd and
−→L. The oriented axis−→a is

given by
−−−−→
A−A+ and the pointA is given byA− + λ

−−−−→
A−A+ for a fixedλ ∈ R.

From the applicational point of view two possibilities are reasonable:

1. If the rotational end-effector has a second remarkable point beside the tool tipA, then these two points can be
regarded asA+ andA−, respectively (withλ = 0). One might think of the following examples:

• If the tool axis contains the wrist of a 6R-robot, then this special point can be chosen asA+.

• If the end-effector is a miller, then the second endpoint can be consideredasA+ (see Figure 4 (left)).

2. Another geometric meaningful choice is to selectA− andA+ in a way on−→a thatA is their midpoint (⇒ λ = 1
2).

In this case we still have the free choice ofd (see Figure 4 (right)).

9



A−

A+

−→a

A+

A−

−→a

Figure 4: Two reasonable possibilities for representing anoriented line-element by an oriented line-segment.

3.2.1. Representations of Wang, Ge and Ravani
In [33, 34] the authors propose the following representations:

1. In [33] an ”augmented unit line vector” is introduced by the following definition:

(a, â,a−,a+) with 〈a,A−〉 = a− and 〈a,A+〉 = a+. (39)

As the entriesa−,a+ are ordered, we can even homogenize this 8-tuple, which implies the following point-
model:

Theorem 13. There exists a bijection between
−→L and all real points(a : â : a− : a+) of the7-dimensional

projective spaceP7 located on the5-dimensional quartic given by

〈a, â〉 = 0, (a− − a+)
2 = d2〈a,a〉, (40)

which is sliced along the4-dimensional plane a1 = a2 = a3 = 0.

This point-model can be regarded as the homogenized versionof the one given in Theorem 10, and therefore
the holding of the three properties P1, P2 and P3 can be reasoned analogously.

2. As the orientation of the line-segment is given by
−−−−→
A−A+, one can assume thata is oriented in a way thata+ > a−

holds (cf. [34, Section 1.2]). Then, we get the following connection:

d = a+ − a−, a = (a− + a+)/2. (41)

Thus, we can rewrite Eq. (39) by the 8-tuple (a, â,a,d). As d is a constant, we can omit it and end up with
exactly the same point-model given in Theorem 10.

3. Moreover, Ravani and Ge [34, Section 1.3] suggested to usethe representation (d + εa)a. For4 d = 1 this is
equivalent with the already discussed representation given in Eq. (37).

4. Finally, they proposed in [34, Section 1.4] to represent aline-segment by a finite screw as point onS3
D
∈ D4 (cf.

Eq. (7)):
(cosΨ, sinΨa) with Ψ = Ψ + εΨ̂. (42)

Based on the used definition for the pitch we end up with the following two models:

4We can rescale the Euclidean 3-space in a way that the distance d betweenA− andA+ equals one. Note that this can be done without loss of
generality as it is just a matter of defining the unit length.
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(a) Using the standard definition of the pitch yieldsΨ̂ = a andΨ = arctand. By settingd = 1 (cf. footnote 4)
the expression of Eq. (42) simplifies to:

√
2

2 [(1, a︸︷︷︸
e

) + ε( − a︸︷︷︸
ê

, â+ aa︸ ︷︷ ︸
ê

)]. (43)

This implies the following point-model:

Theorem 14. There exists a bijection between
−→L and all real points(e, ê, ê) of the7-dimensional space

R
7 located on the5-dimensional quartic given by

〈e,e〉 = 1, 〈e, ê〉 + ê= 0. (44)

The coordinates of this point-model can be regarded as the representation of Zhang and Ting given in Eq.
(37) augmented by the coordinateê = −a. Therefore, it is clear that also this point-model possesses all
three properties.

(b) Using the pitch definition of Parkin [20] witĥΨ = a andΨ = 2 arctand
2 , we get the following result for

Eq. (42) under consideration ofd = 2 (cf. footnote 4):

(0,a) + ε(−a, â). (45)

The same procedure as in (i) yields the point-model of Theorem 10 (up to the sign ofa).

3.2.2. Representation of Chen and Pottmann
In [35] a line-segment is represented by their endpoints; i.e. (A−,A+). This implies the following point-model:

Theorem 15. There exists a bijection between
−→L and all real points(A−,A+) of the6-dimensional spaceR6 located

on the singular hyperquadric
Ω : < A− − A+,A− − A+〉 = d2. (46)

This point-model can be obtained by a linear transformationof the one given in Theorem 12. Therefore, it also
possesses the three properties P1, P2 and P3.

4. Metric aspects

As already mentioned in Section 1.2 it is desirable for path planning in robotics (e.g. approximation, interpolation,

optimization, . . . ) to have a metricf on
−→L; i.e. the point-model together withf form a metric space.

One can come up with the idea to use geometric meaningful motion-parameters of the transform (B,
−→
b ) 7→ (A,−→a )

for the definition of a metric. For the displacement operatorof Zhang and Ting (cf. Section 2.3) a distance between

two oriented line-elements can be defined based on a Riemannian metric on SE(3) by
√

c1Φ
2 + c2(Φ̂2 + h2), where

c1, c2 are some positive scalars (cf. [36]). For the transform mentioned in Remark 3 analogous considerations yield√
c1Φ

2 + c2Φ̂
2. Note that these metrics are only invariant with respect to the change of the fixed frame (but not with

respect to the moving frame).
These distance metrics on SE(3) are quite problematic as they depend on the choice of length and angle scales as

already pointed out by Park [37]. He also mentioned an alternative to this approach by changing the point of view as
follows: Instead of a distance metric on SE(3) one can consider the distance between two configurations of the same
rigid body, which yields so-called object dependent metrics firstly studied by Kazerounian and Rastegar [38]. This
interpretation suggests to consider an oriented line-element as an oriented line-segment with a constant lengthd.

The following geometric meaningful object dependent metrics occur already in the literature:
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4.1. Metric of Kazerounian and Rastegar

Their metric proposed in [38, Section 3.1] reads as follows modified for the problem under consideration

1
d

∫

X∈B−B+

κ(X)‖X − δ(X)‖2, (47)

whereδ denotes the displacement (B−,B+) 7→ (A−,A+) andκ(X) is a weight function, which can be used to consider
the mass distribution within the object. Direct computation shows that under the assumption of a unit mass distribution
κ(X) = 1 the distance measure of Eq. (47) equals the metric suggested by Chen and Pottmann [35], which is given by5

f1(A,B)2 := 1
3

[
(A− − B−)2 + (A+ − B+)2 + (A− − B−)(A+ − B+)

]
(48)

with A := (A−,A+) andB := (B−,B+). Moreover, it is advantageous to combine this metric with the point-model
of Theorem 15 as it implies a Euclidean metric in the kinematic image spaceR6 induced by the positive-definite
quadratic form

〈C,C〉1 = 1
3 [〈C−,C−〉 + 〈C+,C+〉 + 〈C−,C+〉] (49)

with C := A− B.

Remark 5. Note that the metric of Kazerounian and Rastegar is originally defined only for points onΩ of Eq. (46),
but due to the equivalence with the metric proposed by Chen and Pottmann [35] it can be extended to the complete
kinematic image spaceR6. Finally, it should be mentioned that this metric has been used in [39] for optimizing 5-axis
machining, where it has been erroneously interpreted as thearea of the surface patch (hyperbolic paraboloid or plane)
spanned byA andB. ⋄

4.2. Metric of Pottmann, Hofer and Ravani

The idea of the following metric given in [40] is based on the so-called registration problem with known cor-
respondences. One samples a numbern of pointsX1, . . . ,Xn from the surface of the moving object (e.g. by laser
scanning) and defines the squared distance between two of itsposes by the sum of the squared distances of then
corresponding point pairs.

Remark 6. As this distance strongly depends on the numbern of points we suggest to divide the sum byn; this
corresponds to the mean of the squared distances of then point pairs. ⋄

As in our case the rigid body is only 1-dimensional, its boundary is just given by the two end pointsA− andA+,
respectively. Consequently, the distance functionf2 between two line-segments (under consideration of Remark 6) is
given by

f2(A,B)2 := 1
2

[
(A− − B−)2 + (A+ − B+)2

]
. (50)

This metric also makes sense between line-segments of different lengths. Therefore, we can extend it fromΩ to the
ambient spaceR6 of the point-model given in Theorem 15. ClearlyR6 equipped withf2 is again a Euclidean space
and the corresponding positive-definite quadratic form is given by

〈C,C〉2 = 1
2 [〈C−,C−〉 + 〈C+,C+〉] . (51)

Remark 7. The geometric interpretation offi(A,B)2 is as follows: fi(A,B)2 is the mean of the squared distances of
corresponding points over the entire line-segment (casef1) resp. of the boundary of the line-segment (casef2). For

line-segments of the same lengthd the differencef2(A,B)2 − f1(A,B)2 is given by1
3d2(1− cos∢(−→a ,−→b )). Thus, for

∢(−→a ,−→b ) = 0 both distance metrics are identical and for∢(−→a ,−→b ) = π they have the greatest possible deviation of2
3d2.

Clearly one can also think of combining these two metrics tofµ := µ1 f1+µ2 f2, whereµ1 andµ2 have to be chosen
in a way that the corresponding quadratic form is positive-definite. ⋄

5In [35] it is originally defined without the factor13 , but this was just done for convenience.
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5. Motion design

The most relevant problem in motion design is the so-called motion interpolation problem, which can be stated as

follows: Given a numberk of interpolate poses (Ai ,
−→a i

) for i = 1, . . . , k of the oriented line-element (A,−→a ), compute
an interpolating motion through the ordered sequence of interpolate poses. For all outlined point-models, which are
quadrics in the kinematic image space, one can use the following two known methods:

• rational interpolation of points on hyperquadrics [41],

• interpolation with rational quadratic spline curves (biarc construction) [42].

Note that their application to the Study quadric was alreadydone in [12, 13]. Further interpolation methods for
oriented line-elements, which are known to the author, readas follows:

• In [27] one identifies the first pose (A1,
−→a 1

) (= reference pose) with the identity transform and the other poses

(Ai ,
−→a i

) for i = 2, . . . , k with the dual quaternionsDi according to Remark 2 (assumed they are uniquely defined).
Then, these points 1,D2, . . . ,Dk are interpolated by a NURBS curve. Note that the resulting interpolant depends
on the selection of the reference pose.

• Based on the representation given in Theorem 15, which has also been used in the patent [43], the computation of
a NURBS interpolant (within the machining tolerance) is outlined in [44].

• In [45] the positioning of the tool tip and the orientation ofthe tool axis are separated. Therefore, they computed
near arc-length parametrized quintic polynomial splines and near arc-length parametrized quintic spherical Bézier
curves, respectively. In order to synchronize the positionand orientation splines at the control poses they used a
so-called reparametrization spline.

Remark 8. If we pick up the idea in separating the computation of orientation and positioning, one can also use
other methods for the orientation interpolation as e.g. [46, 47, 48] and then compute the interpolating translational
motion in a way that the composite motion contains all control poses. ⋄

5.1. Variational motion design
In the following we want to focus on the (variational) motiondesign algorithm proposed in [40], which can be

adapted to the path planing of oriented line-elements, based on the object depended metrics in the kinematic image
space of Chen and Pottmann (cf. Section 3.2.2). This algorithm can be summarized as follows:

Step 1 Interpolate the given poses by a linear curve design algorithm in R
6, which yields the interpolating curve

c ∈ R6.

Step 2 Projectc orthogonally ontoΩ (projectionω), which already yields an interpolating motionω(c).

Step 3 In addition, one can use this interpolating motionω(c) as a starting point for the computation of an energy-
minimizing motion. For this we have to discretizeω(c) into a poly-line with vertex set{P1, . . . ,PK} containing
the control poses. Then, we run the following iterative algorithm:

(a) Move eachPi , which is no control pose, within the tangent space toΩ in a way that the discretized
energy-functional gets minimal. For a geodesic motion we have to minimize

Eg =

K−1∑

i=1

〈Pi+1 − Pi ,Pi+1 − Pi〉 j (52)

and for a motion with a minimal bending energy the following function

Eb =

K−2∑

i=1

〈(Pi+2 − Pi+1) − (Pi+1 − Pi), (Pi+2 − Pi+1) − (Pi+1 − Pi)〉 j (53)

where j = 1,2 refers to the underlying metric.
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(b) Project the obtained points (minimizer) back ontoΩ byω.

Steps (a) and (b) are done iteratively under consideration of a clever step-size selection as long as the sum of
the squared distances of corresponding vertices of two consecutive poly-lines drops below a certain threshold
value. The choice of the scalar-product does not play a role for the outcome of this algorithm as also the
minimizer of step 3(a) is for both scalar-products (or any scalar-product〈., .〉µ associated withfµ of Remark 7)
the same, which can easily be seen. Clearly one can also minimize a combination ofEg andEb.

A very detailed description of this algorithm, which can also be modified in order to avoid obstacles, is given by Hofer
[49], but it is also briefly outlined in [50].

Remark 9. If one wants to have a rational representation, one can interpolate/approximate the final poly-line of the
above algorithm by B-spline curves as done in [44] or by a higher dimensional version of the method proposed in
[51]. For the latter approach one needs a parametrization ofΩ, which for example can be given as follows:

(A−,A− + da) with a :=


2p1

1+ p2
1 + p2

2

,
2p2

1+ p2
1 + p2

2

,
p2

1 + p2
2 − 1

1+ p2
1 + p2

2

 (54)

with the five parameters (A−, p1, p2) ∈ R5. ⋄

In order to perform the above outlined algorithm the only missing ingredients are the orthogonal projectionω and the
knowledge of the instantaneous motions of a line-segment with constant length, which form the tangent space toΩ.
These two little gaps are closed next:

Theorem 16. Given is a pointA = (A−,A+) ∈ R6 \ Ω with A− , A+. Then, the closest pointB = (B−,B+) ∈ Ω with
respect to both distance measures fi(A,B)2 for i = 1,2 is given by:

(
A− + A+

2
− d

2
a,

A− + A+
2

+
d
2

a
)

with a =
A+ − A−
‖A+ − A−‖

. (55)

This point is also denoted byω(A).

Proof: The property that the barycenters of the line-segments (A−,A+) and (B−,B+) coincide can be proved analo-
gously to [49, Lemma 2]. Therefore, we can restrict to the orientational component. Without loss of generality we
can assume a fixed system in a way thatA∓ = ∓(A1,0,0) with d , A1 > 0 andB∓ = ∓(B1, B2, B3) holds under the
side-conditionB2

1 + B2
2 + B2

3 = d2. Then, computation yields:

f1(A,B)2 = 1
3(A2

1 + 2A1B1 + B2
1 + B2

2 + B2
3) = 1

3(A2
1 + 2A1B1 + d2),

f2(A,B)2 = A2
1 + 2A1B1 + B2

1 + B2
2 + B2

3 = A2
1 + 2A1B1 + d2,

(56)

which is in both cases minimal forB1 = −d (and maximal forB1 = d). Therefore, we getB∓ = ∓(d,0,0), which
closes the proof. �

Note that ifA ∈ R6 \ Ω is located within the 3-dimensional spaceA− = A+ of R6, then the closest point onΩ is not
uniquely defined. EveryB ∈ Ω with barycenterA− = A+ is a solution. Therefore, one has to make sure thatc does
not intersect this medial axis ofΩ in step 1 of the algorithm.

Theorem 17. The tangential hyperplane toΩ at point(A−,A+) ∈ Ω is given by

{(A− + V−,A+ + V+) with 〈V+ − V−,A+ − A−〉 = 0} . (57)

Proof: We consider points of a linel under a rigid body motion. It is well-known (e.g. [52, page 192]) that the
projection of their velocity vectors orthogonally ontol is the same for all points onl. This so-called ”Projection
Theorem”, which is illustrated in Figure 3 (right) already implies Theorem 17. �

Based on the last two theorems we implemented the outlined algorithm and computed the example illustrated in Figure
5.
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Figure 5: Four interpolate poses of an oriented line-segmentare displayed in yellow/blue (indicating the orientation). Moreover, a cube is illustrated
in order to improve the spatial sense of these poses. Left: Thecorresponding points of the four given poses inR

6 are interpolated by three line-
segments. Their projection ontoΩ is illustrated in red. The geodesic motion is displayed in green. In both cases the barycenter of the line-segment
moves along a straight line between two consecutive interpolate poses. Right: The minimizer ofEb + 0.05Eg is illustrated in green and the
interpolant with minimal bending energy is displayed in red. For the latter one the barycenter moves along a cubicC2 spline (cf. [35, 50]), which
is illustrated as magenta-colored curve.

5.2. Motion design based on De Casteljau’s algorithm

In this section we explain how the famous algorithm of De Casteljau for B́ezier curves can be adopted for the

motion design of oriented line-elements. Given is a numberk of control poses (Ai ,
−→a i

) for i = 1, . . . , k of an oriented
line-element (A,−→a ). Some possible strategies for applying the De Casteljau algorithm are as follows:

5.2.1. Projection algorithms
Assumed we have the point-modelP located in the ambient spaceRn. Then, the control poses are points onP,

which are represented by then-dimensional vectorAi . Based on the control-polygon∈ Rn we can compute thek− 1

points (Ai
1,
−→a i

1) of the first step according to:

Ai
1(t) := Ai + t(Ai+1 −Ai) for t ∈ [0,1] and i = 1, . . . , k− 1. (58)

This recursive procedure has to be done in totalk−1 times, until we end up with the single pointA1
k−1(t), which traces

the B́ezier curvec in R
n by varyingt ∈ [0,1]. Finally, c has to be projected back ontoP.

1. Clearly this can be done in the ambient spaceR
6 of the point-model given in Theorem 15 and the back-projection

is done byω (see Figure 6 (left)).

2. Another possibility, which is illustrated in Figure 6 (right), is the following: Points of the ambient spaceR
7 of

the point-model given in Theorem 10 can be projected onto thequartic of Eq. (34) similarly to [53, Eq. (4)] by:

ι : (a, â,a) 7→
(

a
‖a‖ ,

â
‖a‖ −

a〈a, â〉
‖a‖3 ,

a
‖a‖

)
. (59)

Remark 10. By skipping the 7th coordinate this mappingι is a projection onto the dual unit-sphereS2
D

(Study
model of oriented lines). The analog of this projection ontothe dual unit-sphereS3

D
(cf. Eq. (7)) is implied by

the fibers of the extended inverse kinematic map (cf. [54]). ⋄

Both projection algorithms can be modified by projecting thepointsA j
i (t), which are obtained after each iteration

step, back ontoP. The resulting points are used for the next recursion.
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Figure 6: The same four poses of an oriented line-segment as in Figure 5 are now used as control poses. The motions resulting from both projection
algorithms are displayed, where the trajectory of the oriented line-element’s point (midpoint of the line-segment) is illustrated as curve. Left:
Projection algorithm of item 1. Right: Projection algorithm of item 2.

5.2.2. Geodesic algorithms
The basic idea is to replace the straight line of the control polygon in the ambient space by their analog on the

point-modelP, which are geodesics. In this way De Casteljau’s algorithm always stays onP thus no back-projection
ontoP is required. For this purpose the geodesic motion of Section5.1 is not practical (computationally inefficient),
as it is the results of an optimization problem. Therefore, we are interested in geodesics between points of the point-

model representing the oriented line-elements (B,
−→
b ) and (A,−→a ), those parametrization is known. Depending on the

underlying metric (which itself is not of interest in this context), the following geodesics, which are illustrated in
Figure 7 (upper left), can be deduced from the perspective ofrigid-body motions:

1. According to Park [37] the geodesic motion can be composedby a translation with constant velocity along
−−→
BA

and a simultaneous rotation with constant angular velocitybringing
−→
b into −→a . As the rigid-body motion is

incompletely defined (cf. Section 2.1) we choose the rotation in a way that the angle of rotation is minimal6 (⇒
shortest geodesic). Therefore, the axis of rotation is orthogonal to−→a and

−→
b .

2. Another approach taken by Ge and Ravani [55] is based on therepresentation of SE(3) by the dual unit-sphere
S3
D
. They showed that dual great circles (geodesics) on this sphere correspond to helical motions. Due to the

incompleteness of our displacement we call again for a minimal angle of rotation (cf. footnote 6), which yields
the screw motion given in Remark 3.

3. The last discussed geodesic is implied by the point-line displacement by Zhang and Ting (cf. Section 2.3),

which is a composition of a screw motion about the common normal of −→a and
−→
b and a translation ofB along

the line
−→
b . If both is done simultaneously with constant speed we get the corresponding geodesic within the set

of point-line displacements.

Remark 11. Under this motion the oriented line generates a so-called helicoid7, which corresponds to the
geodesic (dual great circles) on the Study modelS2

D
of oriented lines (cf. [56]). Therefore, the geodesics of

item 3 correspond to straight lines on the planar development of the cylinder over the corresponding dual great
circle (cf. Remark 4). ⋄

6With exception of the case that−→a and
−→
b are anti-parallel the geodesic motion is uniquely defined by this demand.

7This is the only ruled minimal surface. It is generated during ahelical motion by a line intersecting the axis orthogonally.
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The resulting three ”geodesic De Casteljau algorithms” aredisplayed in Figure 7 on the base of the same input
data used for Figure 6. As these geodesic algorithms are computationally much more expensive than the projection
algorithms, we recommend the latter ones for the task of interactive motion design. Under the assumption that the
midpoint of the oriented line-segment is the point of the oriented line-element (cf. beginning of Section 3.2), the
algorithm given in item 1 of Section 5.2.1 is very well suited, as its trajectory is the B́ezier curve determined by the
corresponding points of the control poses. This property has also the geodesic algorithm based on the geodesic motion
of Park outlined in item 1 of Section 5.2.2 (⇒ the magenta curves of Figure 6 (left) and Figure 7 (upper right) are
identical).

Finally, it should be noted that the procedures of Section 5.2 are not restricted to the algorithm of De Casteljau,
but can easily be adapted for subdivision schemes like the Chaikin’s algorithm or the interpolatory four-point scheme
(cf. [57]).

A

−→a

B −→
b

Figure 7: Upper left: The geodesic motions between two poses of an oriented line-element (black) are illustrated with respect to item 1 (red), item
2 (green) and item 3 (yellow), respectively. The trajectoryof the corresponding point is displayed as curve. The yellowvertical line is the common
normal of the given two poses of the oriented line-element and the green vertical line is the axis of the helical motion mentioned in item 2. The
result of the geodesic algorithm based on the geodesic of item 1/2/3 is illustrated in the upper right/lower left/lower right corner.

6. Conclusion

Within this work it turned out that there is a large number of reasonable point-models for the set of oriented
line-elements. Their degrees range between 2 and 20 and their codimensions between 1 and 10 (cf. Sections 2 and

17



3). The suitability of a point-model depends on the application having in mind; e.g. for the study of pentapods the
point-model of Theorem 6 is very useful as shown in [28]. In Section 4 we showed that for path planning the point-
model (hyperquadricΩ in R

6) of Theorem 15 is in favor due to its compatibility with two geometric motivated metrics
(the kinematic image spaceR6 is in both cases Euclidean). In addition, we pointed out in Section 5.1 that for these
metric spaces well-known algorithms [49, 50] can be modifiedfor (variational) motion design. Finally, we discussed
in Section 5.2 different ways for adapting the famous algorithm of De Casteljaufor the motion design of oriented
line-elements.

Appendix

The ideal defining the variety described in Theorem 5 consists of six cubic equations

g01g24g25 + 2g02g25g27 + g02g03g45 − g26g27g23 − g03g46g23 + g02g47g23 = 0,

g01g
2
25 + 2g03g25g27 + g2

03g45 − g2
27g23 + g01g45g23 = 0,

2g02g07g27 − g01g26g27 − g02g03g67 − g06g07g23 = 0,

2g03g07g27 + g01g
2
27 − g2

03g67 − g2
07g23 − g01g67g23 = 0,

g01g24g27 + 2g02g
2
27 − g2

03g46 + g02g03g47 − g06g27g23 = 0,

g01g25g27 + 2g03g
2
27 + g02g03g46 + g2

03g47 − g07g27g23 + g01g47g23 = 0,

36 quadratic equations

g2
02 + g2

03 + g01g23 = 0, g02g04 − g01g25 − g03g27 = 0, g03g04 + g01g24 + g02g27 = 0,

g2
04 + g2

27 − g01g45 = 0, g02g06 + g03g07 + g01g27 = 0, g03g06 − g02g07 + g01g26 = 0,

g2
06 + g2

07 + g01g67 = 0, g04g06 − g07g27 + g01g47 = 0, g04g07 + g06g27 − g01g46 = 0,

g2
24 + g2

25 + g45g23 = 0, g02g24 + g03g25 − g27g23 = 0, g03g24 − g02g25 − g04g23 = 0,

g2
26 + g2

27 − g67g23 = 0, g07g24 + g26g27 + g03g46 = 0, g04g24 + g25g27 + g03g45 = 0,

g2
46 + g2

47 + g45g67 = 0, g04g25 − g24g27 − g02g45 = 0, g06g25 − g26g27 + g02g47 = 0,

g07g25 − g2
27 − g02g46 = 0, g03g26 + g02g27 − g06g23 = 0, g02g26 − g03g27 + g07g23 = 0,

g06g24 − g2
27 − g03g47 = 0, g06g26 + g07g27 − g03g67 = 0, g07g26 − g06g27 + g02g67 = 0,

g24g26 − g25g27 − g47g23 = 0, g25g26 + g24g27 + g46g23 = 0, g07g45 − g04g46 − g27g47 = 0,

g04g26 − g2
27 − g02g46 − g03g47 = 0, g27g45 − g24g46 − g25g47 = 0, g06g46 + g07g47 + g27g67 = 0,

g04g27 + g26g27 + g03g46 − g02g47 = 0, g26g46 + g27g47 + g25g67 = 0, g27g46 − g26g47 + g24g67 = 0,

g06g45 + g04g47 − g26g47 + g24g67 = 0, g26g45 − g25g46 + g24g47 = 0, g07g46 − g06g47 + g04g67 = 0,

and the linear equationg05 − g27 = 0.
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