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Abstract

We study point-models for the s&) of oriented line-elements by reviewing existing ones anddystructing them
from different approaches proposed in the literature. We distihche$ween point-models resulting from transfor-
mations and those implied by representations, where wepaisue the strategy to represent oriented line-elements
by oriented line-segments with a constant length. For pkthning in robotics (e.g. approximation, interpolation,

optimization, ...) it is desirable to have a metric}i)mthus we also study geometric meaningful distance measures
Based on the resulting metric spaces we finally discuss tit@grn of motion design.
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1. Introduction and Motivation

For a large number of applications in robotics #wd-gfector has a rotational symmetry; e.g. milling, spot-
welding, laser or water-jet engravifogitting, spray-based painting, etc. For the determinatfohese axial symmetric
tasks the rotation axis of the tool is of importance as well as the location of tbel tip A, which is also known as
tool center poinfsee Figure 1). In addition, the orientation of the lanbas to be taken into account (see Figure 2),
thus we consider the oriented lie

Figure 1: End-&ector with rotational symmetry represented by the orientési@xand the tool tipA. Both pictures by courtesy of Florian Rist
(Vienna University of Technology, Department for 3D Desigwd &odel Making).

The two geometric objecta anda can be combined to a so-called oriented Iine-elemen?Q, which is also
known as an oriented pointed line (e.g. [1]) or point-linegy(42]) in the literature. Up to the author’s knowledge
oriented line-elements were firstly defined by De Saussyria e following way:

Definition 1. Soit D une droite flectée d’'une sens indiqué par une fleche et M un point de detite; la figure
(MD) est un point dirigé.
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Figure 2: These figures point out the importance of the oriemtaf the line-element for path-planing between two givesgs. The end-poses in
both pictures only dfer by their orientation, while the starting poses are idehti

These "directed points” can also be considered within tkeeiyof flags, which seems to go back to De Saussure [4]
as well. From this point of view an oriented line-elementrio@ented partial flag of the Euclidean 3-sp&e which
can be completed by an oriented pla#avith a € « (see also the contemporary works [1, 5, 6]). This complete fla

(A, A, @) of R3 can be transformed into any other complete fB,g?(,?) of R by an orientation preserving isometry

(= Euclidean displacement). As a consequence the set of ediesmplete fIagg‘) is isomorphic to the group SE(3)
of Euclidean displacements (cf. [6, Theorem 5.1]). Thersfan oriented complete flag corresponds with a so-called

"soma” in the notation of Study [7] and the Study quadric can be used@int-model fo?—‘, which can be summed
up in the following theorem (cf. [6, Theorem 5.2]):

Theorem 1. There exists a bijection betwegﬁ and the real point{qo : g1 : 02 : g3 : To : Q1 : G2 : Gs) of the
7-dimensional projective spad® located on the Study quadric

QoGo + G101 + G202 + G303 = O, (1)
which is sliced along th8-dimensional spacey= g1 = 02 = g3 = 0.

Analogously, it can be seen that the set of oriented lineetds ofR? is isomorphic to the group of planar
Euclidean displacements. Therefore, the kinematic mappiBlaschke [8] and Gmwald [9] implies the following
point-model:

Theorem 2. There exists a bijection between the set of oriented lireehts oR? and the real point§go : ¢ : G :
Ts) of the3-dimensional projective spad®, which is sliced along the lineygs g1 = 0.

As aforementioned, the practical application in robotiss the question for a point-model of theiéof oriented
line-elements ok, which can be used for motion design based on well-known ouistiior curves (freeform tech-
niques, interpolation, approximation, ...). This appfoica standard technique for the design of Euclidean mations
where inter alia the point-models of Theorems 1 and 2 are {(esgd[10, 11, 12, 13]).

1.1. Requirements of a point-model

One important property of the point-models of Theorems 1 2rsl that a change of the fixed frame and the
moving frame (which are both linear transformation®it) implies a linear transformatiorof the point-model. We

also demand from our point—modTﬂ) to have this property as in this way linear curve design dlgams (cf. Section
4) remain invariant under the choice of the fixed and moviage. A trivial example for a point-model, which does
not fulfill this requirement is the following one, wherBq(: A; : Ay : Ag) are the homogenous coordinatespodind
(au, &, ag) denotes the direction vector af:

1In the case of Theorem 1 and 2 it is even a linear automorphism.
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Theorem 3. There is a bijection betweeTj> and the real pointgAy : A1 : Az : Az ap @ @ : ag) of the6-dimensional
projective spacé® located on the quadric

(A5 + AT+ AS+A)) - (f + a5 +a3) =0, 2)
which is sliced along the hyperplang A 0.

Remark 1. Alternatively, the points of the non-sliced point-modelTdfeorem 3 can be interpreted as the tangents

to the unit-hypersphere @&* (cf. [14, Sections 6 and 7]). A similar characterization_bﬁs implied by Selig's
construction based on stereographic projection (cf. [p5282—243)]). o

In total our point-modef should have the follow three properties:

P1 The point-modeP is an algebraic variety.

P2 The underlying kinematic mappi@ — P is a bijection.

P3 A change of the moving and the fixed frame implies a linearsiormation of the point-mod@!.

As in our case the moving spag&g degenerates into an oriented Iﬁ’%, the moving framefy(Up) is determined
by one point on this line; namely the origisy. Moreover, we have to define the identity transformatios; how is
the moving frameFo(Uo) relatively located with respect to the fixed fram@U, X,y, Z), where the coordinate axes
X,y,Z form aright-handed Cartesian system. Without loss of geitgmwe can assume thak coincides with the
origin U of ¥ and thafx, coincides withx (including orientation). The coordinates of the poi =, with respect
to the moving framer is given byay.

1.2. Outline

To the best knowledge of the author there is no detailed stdigyoint-models for the se_f of oriented line-
elements until now. Therefore, we review existing pointdels and construct point-models frontfdirent approaches
proposed in the literature. We distinguish between poiattets resulting from transformations (cf. Section 2) and
those implied by representations (cf. Section 3), wherels@@ursue the strategy to represent oriented line-elesment
by oriented line-segments with a constant length (cf. 8a@i2).

For path planning in robotics (e.g. approximation, intéagion, optimization, ...) it is desirable to have a metric

onz. Geometric meaningful metrics are investigated in Sectioh turns out that two object dependent metrics are
very suitable as they imply Euclidean metrics in the kinémiatage space of a discussed point-model. Some basic
results for their use in (variational) motion design areegiin Section 5.1. Moreover, in Section 5.2 we adopt the
famous algorithm of De Casteljau fo€Bier curves for the motion design of oriented line-element

Before we can plunge in medias res we have to introduce sotaéars and basic concepts in Section 1.3.

1.3. Basics

A vector of R® is denoted by = (v1, Vo, v3)" and the cross-product and Euclidean scalar-product of tetovs
v,w € R%is denoted by x w and({v, w), respectively.

Let a be the unit-vector in direction of the oriented liae which is also known as spear, aAdhe position vector
of A € a. Then, the vectoa := A x ais the so-called moment vector and the bituglga] of vectors inR2, which
represents the so-called spear coordinates.dflote that spear coordinates fulfill the equations

(@ay=1 (@a=0. 3)

Moreover, we indicate dual numbers by an underline; de= d + ed with d,d € R and the dual unit having the
propertys? = 0. These numbers constitute the commutative Firgf dual numbers. One can also define the extension
of any real analytic functiori to dual arguments as follows:

f(d) := f(d) + edf'(d), (4)
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wheref’ denotes the derivative df For the sine and cosine function of the dual anble @ + £® this yields:
cosd = cosd — ebsind €D, sind =sind + sdcosd € D. (5)

Now we can map the spear coordinates] to an element oé € D® by a := a+ sa. Then,ais a so-called dual
unit-vector as

(@ay=(aay+2@a=1 (6)
holds due to Eq. (3). This implies Study’s model of orienieés (cf. [7, 16]):

Theorem 4. There is a bijection between the set of oriented lineRd&nd the points on the dual unit-spher% g
DS,

We proceed by introducing the notation of quaternicRs= go+qpi+0zi+0gst with gp, .. ., gz € R is an element of
the skew field of quaterniorid, wherei, i, t are the quaternion units, which are multiplied accordinth&ofollowing
rules:

fi=—ji=tf jt=-fj=i, H=-if=j i=j=t=-1
It can be seen from this first formula that we write quatersifust side by side for multiplication instead of intro-
ducing an extra multiplication sign. This way the notati@cbmes more compact without yielding confusion as only
quaternions are printed in Gothic. The quaternion congigaQ is given byQ := qo — q1i — 02f — gst. Moreover, a
quaternion is called unit-quaternion@fQ = 1 holds.

Now we can also combine two quaternioﬁsﬁ by the dual unit to a so-called dual quatern@n= Q + £Q.

Obviously one will define the conjugate dual quaternidn= Q + Q. Then, a dual unit-quaternion is defined as
§§ = 1, which impliesQ to be a unit-quaternion and the so-called Study conditivargin Eq. (1).

It is well-known (e.g. [15]) that the set of dual unit-quati®ns yields a double cover of SE(3). The dual unit-
sphereS3 € D% i.e.

SJ = {Q = (do, 1. G, O3) " + £(Go. G T, Ga)'  with  (Q, Q) = 1 (7)

serves as a model for this double covering, where antipaalatpimply the same spatial displacement. By homog-
enization we can avoid the double covering, which yieldsSheldy parameterg{ : g1 : g2 : 0z : Go : T1 : G : G3)
already mentioned in Theorem 1. The displacement, whiatesponds to a point on the Study quadric, can be written
in matrix notation asx,y,2)" = M (x,y,2)" + (t1, t, t3)T with

B+ —-05— 05 2(ht—Gods)  2(Gus + Gotlo)
M= (mj)=| 2(u02+q0s) G5-07+05—05 2(Ge0s — Goc) | (8)
2(0103 — Qo) 2(0203 + 0o01) q% - Q% - QE + q%
and
t1 = 2(0o01 — 1o + 0203 — 03G2),  t2 = 2(CoT2 — 0200 + 0301 — 01Ga),  t3 = 2(0o0s — U300 + C1G2 — 0201),

if the normalizing conditioN = 1 with N := g3 + ¢ + ¢ + ¢ is fulfilled.

2. Point-models based on transformations

Three known approaches, which all have in common that theelgased on rigid body motions, are studiediewed
within the next subsections.



2.1. Incompletely specified displacements
One possibility for the description 5{,{ is to ask for the seD of spatial Euclidean displacements SE(3), which

map one oriented Iine-elemerﬁ,(_b>) into another oneA, &). According to the notation of [17, 18] the displacement
is not specified. More precisely) is 1-dimensional, which can easily be seen as follows: Agsema SE(3) with
a-(B,—b>) = (A,E’). Then, clearly a|S(Dr(p(B,—b>)) = (A,E’) holds, wherep is an arbitrary rotation about the lire
As any element ofD can be interpreted as a finite screw displacement due tosBh#orem one can ask for the
locus of the corresponding screw axes. It turned out [17 tH&]they generate the cylindroid, which is well-known
from instantaneous kinematics. This "finite screw cylindt@nd the underlying set of finite screws (considered as
6-vectors; i.e. screw coordinates) were also studied ih [19

By modifying the definition of the finite screw’s pitch (cf.@B, the finite screws associated with form a 2-
system; i.e. any screw of this system can be representedeblndgar combination of two basic screws (see also
[21, 22, 23, 24]). This linear behavior also shows up by esgirgg?D in terms of Study parameters as it corresponds
to a line in the Study quadric (cf. [15, Section 11.3]). Thiservation is the starting point for our first point-model

ofz resulting from the Grassmann coordinates of these lines:

For an dficient formulation of our problem in terms of dual quatersipwe use the result (cf. [25, Chapter 3,
paragraph 1, item 3] thaD contains at least one displaceméntvhich is a pure rotation or translation. It is well-
known that the corresponding dual quaterniof § can be written as

Di=D+eD With Di=dy+dhi+dhi+0dst and D :=dyi+ dj + dat. (9)

Under the assumption that the identity transform (corredpay dual unit-quaternion is 1) maps the moving frame to

thex-axis of the fixed frame (including orientation and origifi; @nd of Section 1.1) we ge_i) =X. Therefore, the
corresponding quaternidi of p reads ast = ro + r1i. The composite displacement is obtained by the multipbeat
DR, which implies for (o, r1) = (1, 0) the following point on the Study quadric

U:=(do:d1:d2:d3:0:a\1:a\2:a\3), (10)
and for o, r1) = (0, 1) we get _ L
Vi=(-d;:dp:d3:—dy:—d;:0:d3:—dy). (1))
As these two points are always distinct they span thediimethe Study quadric. Now we compute the 28 homogenous
Grassmann coordinatgs := ujvj — u;v; fori < jandi, j € {0,1,...,7):

Qo1 = d + df Gz = —dj — df 12)
Qus = 2 Ge7 = —02 — 02 (13)
Goz2 = —0Q13 = dods + d10 Jo3 = Q12 = thdz — dod (14)
Qo4 = 15 = —dothy Gos = —G14 = ti (15)
Qo6 = —G17 = Aot + d10y Go7 = Q16 = thds — dod (16)
U2 = —Gas = —Oath U25 = Qas = —0a0 a7
6 = Qa7 = Ot — dad G27 = —Ga = —Coly — O (18)
Qa6 = —0Os7 = dAla; 047 = 056 = ala; (19)

As there are 12 pairs of coordinates, which are identicalndy differ by the sign we can project along these
coordinates, thus we end up in the following 15-dimensigmajective spac&*®:

(9o1: 902903 - o4 o5 Jos - Jo7 - U23 - U24 - U25 - U26 - U27 - Uas : Uae : a7 : U67)- (20)

Elimination of the variablesy, di, dy, ds, dy, da, ds from the equations given in Egs. (12-19) yields a varietyiofeh-
sion 6 and degrée0. This variety has to be intersected with the hyperptageg, = 0. The resulting 5-dimensional

2Based on the equations given in the Appendix, which deterifiisevariety, the degree can easily be computed from the sporeling
Hilbert-polynomial [26].



variety of degree 20 has to be sliced along the hyperpgne g.3 = 0 in order to get the final point-model fE% in
P15, which is summed up next:

Theorem 5. There exists a bijection betwe%and all real points(goz1 : Jo2 : Jo3 : Jo4 : Jos : Joe : Uo7 : U23 : U24 :

Oos : O26 - Oo7 - Uas - Oas - Ua7 - Js7) Of the15-dimensional projective spad® located on theé-dimensional variety
of degree 20, which is given by the set of equations display#te Appendix, and is sliced along the hyperplane
go1 — 923 = 0.

Note that the identity transform corresponds to the point (L: ... : 0) in the kinematic image space. This
point-model possesses all three properties: P1 and P2igediyrfulfilled, and P3 is implied by the Study quadric
having this property.

Remark 2. Finally, we want to point out a flaw in [27, Proposition 2], waehe following is claimed (translated
to our terminology): "Every line within the Study quadrichigh corresponds to a rigid displacement of an oriented
line-element, has a unique intersection point with the hyle@eq; = 0 of Study’s kinematic image space.” This is
not true as fody, = d; = 0 the complete line is located within the hyperplape= 0. Therefore, there is no bijection
between this set of lines and a set of points in the hyperpgiare0, what violates the demanded property P2. o

2.2. Point-model resulting from linear pentapods

For the study of the direct kinematics of a pentapod, whengatform anchor points are collinear, the following
kinematic mapping has been used in [28]: Based on the Studyngders (cf. Section 1.3) the following nine equations
can be defined: _ _ _ _

no=C2+d2+d2+0d2 yo=4(-dody + didy + dods — dady) (21)

Xo=2N, X=2m,, yi=24 for i=123. (22)

Then, eliminating the Study parameters from these ninetemsatogether with the Study condition gives the follow-
ing result:

Theorem 6. There exists a bijection betweez_ﬁ) and all real points(hg : X0 : ... I X3 : Yo : ... : y3) of the8-
dimensional projective spad@ located on thé-dimensional octic variety given by

X+ X +X5-X=0, Yo+Y5+Y3-8XnNo=0, XoYo+Xiy1+ Xoy2 + Xays = O, (23)

which is sliced along the hyperplang x O.

For xg = 1 the Euclidean displacement (E,(_b>) — (A,E)) is given by:

bo box1 + Y1 1 X1
B=|{0|—|bpxo+y2|=A and b=|0||x|=a (24)
0 b0x3+y3 0 X3

Note that the variableg andng were only introduced for the special application in robstigs then the so-called
sphere condition is only linear in the nine homogenous mabiarametersng : ... : y3). As seen in Eq. (24) and
no do not play a role in the transformation, thus we can omitéhe® unknowns. This yields the following simplified
point-model:

Theorem 7. There exists a bijection betwe@wand all real pointXp : X1 : X2 : X3 : Y1 : Y2 : Yy3) of the6-dimensional
projective spacé® located on thé-dimensional singular quadric

X5+ X5+ x5 - %3 =0, (25)
which is sliced along the hyperplang % O.

For both point-models (cf. Theorems 6 and 7) it can be vertfiadl they possess the three properties P1, P2 and
P3. The proof is left to the interested reader.



Figure 3: Left: Geometric interpretation of the displacemmmerator. Middle: lllustration of the oriented distareeRight: Illustration of the
Projection Theorem.

2.3. Displacement operators of Zhang and Ting
The last approach of this section is based on the followiegrém [2, Theorem 1]:

Theorem 8. For any oriented Iine-elemelﬁB,_b)) there exists a bijection betwe%and the seO of its displacement
operators, which is given by

0= {(1 + ¢h)(cos®,vsin®) with (b,v)=0 and (v,v) = 1}. (26)

The geometric interpretation of the displacement opesisras follows (see Figure 3 (left)k represents an
oriented linev, which intersectd orthogonally due to the conditiof, v) = 0. Applying the displacement operator

to (B,—b)) yields a translation o8 anng—b) by the oriented distandg then the resulting oriented Iine-elemeBt],(—b>)
is rotated about by the oriented anglé and translated along by the oriented distancg into its final poseA, ).
The last two transformations can be seen as a screw dispéateout the axis’, which is the (oriented) common

perpendicular o& and_b>, respectively. .
By expanding the displacement operator given in Theorenti®nspect tab := ® + e® and Eg. (5) yields:

(1 + eh)[(cosD, vSin®) + &(—D Sin®, Vsind + v cosd)]. (27)
(€0.6) (&.9

h, @, v with (b, v) = 0 are no suitable parameters for an algebraic descriptichasf from Eq. (27) it can be seen that
for sin® = 0 the vectoW can be arbitrary. Moreover, fox —®, —v andh, ®, v we get the same displacement operator.
This problem can be avoided by considering the paramegees, e, €, h (cf. Eq. (27)) and by replacing the condition
(b,v) =0 by:

(eby=(v.b)sin®@ =0 and (@b)+(b,e) = ((V,b) + (b, v)) sin® + (v, b)® cos®d = 0. (28)

By assumption that the identity transform (correspondiisgldcement operator is 1) maps the moving frame to the

x-axis of the fixed frame (including orientation and origifi;@nd of Section 1.1) we geTf =X. This simplifies Eq.
(28) toe; =€, = 0, which already shows the following theorem:

3In [2] the displacement operator is given as a dual quaterinigtead of an element @ (cf. Section 1.3), which is chosen for convenience
within the study at hand.



Theorem 9. There exists a bijection betweEt)wand all real points(ey, &, €3, 6, €, €3, h) of the7-dimensional space
R located on thé-dimensional quartic variety given by

€6 + 656 + 6363 = 0, e§+%+%=1. (29)
Note that the identity transform corresponds to the poird,(1 ., 0) in the kinematic image space. This point-model

possesses P1 and P2 but not P3, which can be seen as follows:
The operator, which transforms the oriented Iine-elemen?() into (A,E’), is given by

(&)9 92, e3,/e\09/e\2”e\3’ h) = (a-l, _a-Sa az’/a-\]n _/a\39/a-\2a hA) (30)
with — —
dpagz — aApag
hy= =—> =2 31
A 1+a; *a ( )

wherea denotes the distance from the pedal p&imf a (with respect to the origitv of the fixed frame) to the point
A with respect to the orientation af i.e. ais an oriented distance (see Figure 3 (middle)).

Now we change the fixed frame, which is equivalent to movirq;li]he-element/{\,ﬁ). For showing the non-
linear transform of the point-model of Theorem 9, we can eestrict to translations by an arbitrary vectary, 2)".
Then, a straight forward computation yields:

(€), 6, €,,€,,6,6,N) = (0, 6,63, 6 — Y& — 26,6 — X& + Y&, €3 + X€3 + Z&, ) (32)
with ey + ez
h;: m + X+ hA. (33)

This shows thaty, cannot be represented as a linear combinatiorefgf, es, €, €, €3, h). Note that the problem
is only the transform oh; the remaining coordinates transform linearly also in teeeagal case (not restricted to
translations).

Remark 3. Finally, it should be noted that one can also transform trented Iine-elemenih(fx’) into (A,E\)) just by
a screw motion (angl® and translatiom), where the axisv is orthogonal tox (and?i). One can encode this screw
analogously to Eq. (26), which yields

(cos®,wsin®) with (x,w)=0 and (w,w) =1,

thus one gets rid of the parameterThis implies a similar point-model as in Theorem 9; but sicatloes not possess
P3, which can be seen in a similar way as above. o

3. Point-models based on representations

3.1. Representations of oriented line-elements
The representations of oriented line-elements can be gobunpo three approaches:

3.1.1. Representation of Odehnal, Pottmann, Wallner

In [29] the three authors study unoriented line-element&%fTheir result can be adapted for oriented ones by
adding a normalization condition, which results in thedaling point-model:

Theorem 10. There exists a bijection betwea[‘)land all real points(a, &, a) of the 7-dimensional spac®’ located
on the5-dimensional quartic variety given by

(@ay=1 (@a=0. (34)
Remark 4. The point-model can be seen as a cylinder over the Study nobodelented lines (cf. Theorem 4).

This point-model resulting from a representation can berpreted in terms of displacements as follows: The
identity transform is given by (D,...,0). Any other point of the point-model describes the reatposition of
(Uo,_x>0) with respect to the fixed franig.

P1 and P2 are trivially fulfilled. The third property with pext to changes of the fixed frame follows from [29,
Eqg. (8)]. Moreover, changes of the moving frame only implyanslation of the point on the oriented line; ice.
transforms linearly t@ + t with t € R.



3.1.2. Representation of Selig and Odehnal

Based on Cliford algebras (cf. [1, 15, 30]), oriented line-elements ast jepresented by combining grade 2
elements (oriented lines) with grade 4 elements (pointsleutthe side condition that the point is located on the
oriented line. This is similar to the approach of Odehna] faken for characterizing unoriented line-element®bf

Therefore, these two approaches imply the same point—nﬁoda:

Theorem 11. There exists a bijection betwe&)land all real points(a, @, A) of the9-dimensional spac®&® located
on the5-dimensional variety of degreld given by

(aay=1 (@ay=0, (AA@=0, Axa=a (35)
The degree of 10 follows from [31, Theorem 3.1] under corsitien of the additional constrai, a) = 1.
The interpretation of this point-model in terms of displa@nts can be done as in Section 3.1.1. Again P1 and
P2 are trivially fulfilled. The third property with respeat thanges of the fixed frame follows from [31, Eq. (12)].

Moreover, changes of the moving frame imply again a traiwsiaif the point on the line; i.éA transforms linearly
to A + Ra.

3.1.3. The trivial representation and those of Zhang andj,T@ombebiac
The most intuitive approach for representing an orientee-&lement is just to combine the point coordinates
and the unit-direction-vecta of a. This yields the following theorem:

Theorem 12. There exists a bijection betwe&)]and all real points(a, A) of the6-dimensional spac®® located on
the singular quadric
(a,a) =1 (36)

Note that this point-model can be seen as the non-homogerasisn of the one given in Theorem 7.
Zhang and Ting [2] represented oriented line-elements éttuple

(a,a+ aa), (37)

wherea denotes the oriented distance illustrated in Figure 3 (fe)dd
A similar description is used by Combebiac [32]:

(@a+A). (38)

For both representations it can easily be seen that thelirdchpoint-model is given by the same singular quadric of
Theorem 12. But it should be mentioned that the transforiwden these three point-models (in all three cases) is a
non-linear one.

For all three point-models it can be verified that they pos#es three properties P1, P2 and P3. The proof is left
to the reader, where the interpretation of these point-fsddeerms of displacements can be done as in Section 3.1.1
as well.

3.2. Representations of oriented line-segments with atanhkength
The idea is to represent an oriented line-segment by anexddsir &_, A,) of pointsA_ andA,. If we addi-
tionally demand that the distance between these two pointale a constant value > 0 we can come up with the

ﬁ
following bijection between the set of oriented line-elersewith constant lengtd and £. The oriented axis is

given byA_A. and the poinf is given byA_ + 1A_A, for a fixeda € R.
From the applicational point of view two possibilities aeasonable:

1. If the rotational end4gector has a second remarkable point beside the todl,tthen these two points can be
regarded as, andA_, respectively (witht = 0). One might think of the following examples:

e If the tool axis contains the wrist of &6robot, then this special point can be choseAas
¢ |f the end-éfector is a miller, then the second endpoint can be considgerad (see Figure 4 (left)).

2. Another geometric meaningful choice is to selectandA, in a way ona thatA is their midpoint & A = %).
In this case we still have the free choicetbfsee Figure 4 (right)).

9



Figure 4: Two reasonable possibilities for representingrénted line-element by an oriented line-segment.

3.2.1. Representations of Wang, Ge and Ravani

In [33, 34] the authors propose the following representetio

1. In[33] an "augmented unit line vector” is introduced b flollowing definition:

(@aa,a;) with (@A )=a and (aA,)=a,. (39)

As the entriesa, a, are ordered, we can even homogenize this 8-tuple, whichiesiphe following point-
model:

Theorem 13. There exists a bijection betwee—fl and all real points(a : @ : a_ : a,) of the 7-dimensional
projective spac®’ located on thé-dimensional quartic given by

@@ =0 (a-a)’ =dXaa), (40)

which is sliced along thé-dimensional plane = a, = az = 0.

This point-model can be regarded as the homogenized veo$ithre one given in Theorem 10, and therefore
the holding of the three properties P1, P2 and P3 can be redsaalogously.

. As the orientation of the line-segment is given&A,, one can assume thats oriented in a way that, > a_
holds (cf. [34, Section 1.2]). Then, we get the following neation:

d=a,-a, a=(a+a)/2 (42)

Thus, we can rewrite Eq. (39) by the 8-tuped, a,d). Asd is a constant, we can omit it and end up with
exactly the same point-model given in Theorem 10.

. Moreover, Ravani and Ge [34, Section 1.3] suggested tdheseepresentatiord(+ sa)a. For* d = 1 this is
equivalent with the already discussed representatiomgive&q. (37).

. Finally, they proposed in [34, Section 1.4] to represdinteasegment by a finite screw as pointsgl € D* (cf.
Eq. (7)): _
(cos¥,sinYa) with ¥ =VY +¢&¥. (42)

Based on the used definition for the pitch we end up with tHewehg two models:

“We can rescale the Euclidean 3-space in a way that the distidnetweenA_ andA, equals one. Note that this can be done without loss of
generality as it is just a matter of defining the unit length.

10



(a) Using the standard definition of the pitch yie@s—_ aand¥ = arctard. By settingd = 1 (cf. footnote 4)
the expression of Eq. (42) simplifies to:

g[(l,wa_/) +e(—a,a+aq)l. (43)

This implies the following point-model:

Theorem 14. There exists a bijection betweEf)\and all real points(e,€,€) of the 7-dimensional space
R’ located on thé-dimensional quartic given by

(ee)=1 (ee)+€=0. (44)

The coordinates of this point-model can be regarded as firesentation of Zhang and Ting given in Eq.
(37) augmented by the coordina&e= —a. Therefore, it is clear that also this point-model possesdle
three properties.

(b) Using the pitch definition of Parkin [20] witlf = a and¥ = 2arctan%‘, we get the following result for
Eq. (42) under consideration df= 2 (cf. footnote 4):

(0,8) + &(-a,3). (45)
The same procedure as in (i) yields the point-model of Thadk® (up to the sign o).

3.2.2. Representation of Chen and Pottmann
In [35] a line-segment is represented by their endpoirgsfA_, A,). This implies the following point-model:

Theorem 15. There exists a bijection betwe%and all real point(A_, A,) of the6-dimensional spac&® located
on the singular hyperquadric
Q: <A_-A, A_-A,)=0d% (46)

This point-model can be obtained by a linear transformatibthe one given in Theorem 12. Therefore, it also
possesses the three properties P1, P2 and P3.

4. Metric aspects

As already mentioned in Section 1.2 it is desirable for péhping in robotics (e.g. approximation, interpolation,
optimization, ...) to have a metribonz; i.e. the point-model together withform a metric space.

One can come up with the idea to use geometric meaningfubmq@rameters of the transforra,(_b>) - (A,E))
for the definition of a metric. For the displacement operafaZzhang and Ting (cf. Section 2.3) a distance between

two oriented line-elements can be defined based on a Riearanmétric on SE(3) by\/cld)2 + Co(®2 + h2), where
C1, C; are some positive scalars (cf. [36]). For the transform ineet in Remark 3 analogous considerations yield

e P2 + c,®2. Note that these metrics are only invariant with respechéochange of the fixed frame (but not with
respect to the moving frame).

These distance metrics on SE(3) are quite problematic gsitgend on the choice of length and angle scales as
already pointed out by Park [37]. He also mentioned an atarmm to this approach by changing the point of view as
follows: Instead of a distance metric on SE(3) one can censfte distance between two configurations of the same
rigid body, which yields so-called object dependent metficstly studied by Kazerounian and Rastegar [38]. This
interpretation suggests to consider an oriented line-eftms an oriented line-segment with a constant ledgth

The following geometric meaningful object dependent nestdccur already in the literature:

11



4.1. Metric of Kazerounian and Rastegar
Their metric proposed in [38, Section 3.1] reads as followslifred for the problem under consideration

1
3 | KOIX = SOAI7, (47)
XeB_B.
whereé denotes the displaceme® (B,) — (A_, A.) and«(X) is a weight function, which can be used to consider
the mass distribution within the object. Direct computashows that under the assumption of a unit mass distribution
k(X) = 1 the distance measure of Eq. (47) equals the metric suggegtehen and Pottmann [35], which is giverrby

fi(AB)° 1= §[(A- ~B_)* + (A, ~B.)* + (A_ ~B)(A. - B,)] (48)

with A := (A_,A;) andB := (B_,B,). Moreover, it is advantageous to combine this metric wli point-model
of Theorem 15 as it implies a Euclidean metric in the kinematiage spac®® induced by the positive-definite
quadratic form

(C.C)1=3[(C_,C_) +(C4,Cy) +(C,C,)] (49)

with C .= A - B.

Remark 5. Note that the metric of Kazerounian and Rastegar is orilyirigfined only for points o2 of Eq. (46),

but due to the equivalence with the metric proposed by ChdrPaittmann [35] it can be extended to the complete
kinematic image spad®. Finally, it should be mentioned that this metric has beeulus [39] for optimizing 5-axis
machining, where it has been erroneously interpreted aard@eof the surface patch (hyperbolic paraboloid or plane)
spanned byA andB. o

4.2. Metric of Pottmann, Hofer and Ravani

The idea of the following metric given in [40] is based on tleecslled registration problem with known cor-
respondences. One samples a numbef points X, ..., X, from the surface of the moving object (e.g. by laser
scanning) and defines the squared distance between two mides by the sum of the squared distances ohthe
corresponding point pairs.

Remark 6. As this distance strongly depends on the numibef points we suggest to divide the sum bythis
corresponds to the mean of the squared distances offgbat pairs. S

As in our case the rigid body is only 1-dimensional, its baanyds just given by the two end poings. andA,,
respectively. Consequently, the distance functiphetween two line-segments (under consideration of Renaek 6
given by

fo( A, B)? = 3[(A- -B)*+ (A, - B,)?|. (50)
This metric also makes sense between line-segmentsfefatit lengths. Therefore, we can extend it fr@nto the

ambient spac®® of the point-model given in Theorem 15. Cleal®y equipped withf, is again a Euclidean space
and the corresponding positive-definite quadratic formvismgby

(C.C)2=3[(C_,C_)+(C,,C))]. (51)

Remark 7. The geometric interpretation df(A, B8)? is as follows: f;(A, B)? is the mean of the squared distances of
corresponding points over the entire line-segment (¢a@seesp. of the boundary of the line-segment (cége For

line-segments of the same lengthhe diterencef,(A, B)? - f1(A, B)? is given byid*(1 - cos<i(5’,_b))). Thus, for
<I(5),_b>) = 0 both distance metrics are identical anditﬁﬁ’,—ﬁ) = n they have the greatest possible deviatioédﬁ.

Clearly one can also think of combining these two metric, te= ;1 f; + uo f2, whereu; andus have to be chosen
in a way that the corresponding quadratic form is positieérute. o

5In [35] it is originally defined without the facto%, but this was just done for convenience.
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5. Motion design

The most relevant problem in motion design is the so-calletion interpolation problem, which can be stated as

follows: Given a numbek of interpolate posesA(,E") fori =1,...,kof the oriented Iine-elemenA(E’), compute
an interpolating motion through the ordered sequence efpotate poses. For all outlined point-models, which are
guadrics in the kinematic image space, one can use the faljomvo known methods:

e rational interpolation of points on hyperquadrics [41],

e interpolation with rational quadratic spline curves (biaonstruction) [42].

Note that their application to the Study quadric was alreddge in [12, 13]. Further interpolation methods for
oriented line-elements, which are known to the author, sesidllows:

e In [27] one identifies the first pose\J(,Efl) (= reference pose) with the identity transform and the otheepo

(A‘,_a") fori = 2,...,kwith the dual quaternion®; according to Remark 2 (assumed they are uniquely defined).
Then, these points, D,, ..., D, are interpolated by a NURBS curve. Note that the resultingrpolant depends
on the selection of the reference pose.

e Based on the representation given in Theorem 15, which kasbalen used in the patent [43], the computation of
a NURBS interpolant (within the machining tolerance) islioed in [44].

e In [45] the positioning of the tool tip and the orientationtb€ tool axis are separated. Therefore, they computed
near arc-length parametrized quintic polynomial splines aear arc-length parametrized quintic sphericz¢iBr
curves, respectively. In order to synchronize the positind orientation splines at the control poses they used a
so-called reparametrization spline.

Remark 8. If we pick up the idea in separating the computation of od&ah and positioning, one can also use
other methods for the orientation interpolation as e.g, #6 48] and then compute the interpolating translational
motion in a way that the composite motion contains all cdioses. o

5.1. Variational motion design

In the following we want to focus on the (variational) motidasign algorithm proposed in [40], which can be
adapted to the path planing of oriented line-elements,dasehe object depended metrics in the kinematic image
space of Chen and Pottmann (cf. Section 3.2.2). This algorgtan be summarized as follows:

Step 1 Interpolate the given poses by a linear curve desigpritim in R8, which yields the interpolating curve
c e RS,

Step 2 Project orthogonally ontd (projectionw), which already yields an interpolating motiax{c).

Step 3 In addition, one can use this interpolating motigo) as a starting point for the computation of an energy-
minimizing motion. For this we have to discretiaéc) into a poly-line with vertex s€P, ..., Px} containing
the control poses. Then, we run the following iterative altton:

(&) Move eachP;, which is no control pose, within the tangent spac&tin a way that the discretized
energy-functional gets minimal. For a geodesic motion wesla minimize

K-1
Eg= ) (Pi1 = P Prias - P (52)
i=1
and for a motion with a minimal bending energy the followingdtion
K-2
Ep = Z((Pnz = Pis1) = (Pis1 = Pi), Pis2 = Pir1) — Pisa — Pi))j (53)

i=1
wherej = 1, 2 refers to the underlying metric.
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(b) Project the obtained points (minimizer) back oty w.

Steps (a) and (b) are done iteratively under considerafi@nctever step-size selection as long as the sum of
the squared distances of corresponding vertices of twoeonitise poly-lines drops below a certain threshold
value. The choice of the scalar-product does not play a miehie outcome of this algorithm as also the
minimizer of step 3(a) is for both scalar-products (or arsl@eproduct., .), associated with, of Remark 7)

the same, which can easily be seen. Clearly one can also iméacombination oEy andEy,.

A very detailed description of this algorithm, which cancetee modified in order to avoid obstacles, is given by Hofer
[49], but it is also briefly outlined in [50].

Remark 9. If one wants to have a rational representation, one canpoli@ig¢approximate the final poly-line of the
above algorithm by B-spline curves as done in [44] or by a éiglimensional version of the method proposed in
[51]. For the latter approach one needs a parametrizatioy) which for example can be given as follows:

2py 2p2 pi+p3-1
1+p2+pa 1+ p2+p2 1+ p2+ p

(A_,A_+da) with a:=( (54)

with the five parameters\(_, p1, p2) € R®. o

In order to perform the above outlined algorithm the onlysimg ingredients are the orthogonal projectioand the
knowledge of the instantaneous motions of a line-segmetht ezinstant length, which form the tangent spac@to
These two little gaps are closed next:

Theorem 16. Given is a pointA = (A_,A,) e R®\ Qwith A_ # A,. Then, the closest poi#t = (B_, B,) € Q with
respect to both distance measurgsAt 8)2 for i = 1,2 is given by:
A_+A, d A_+A, d A —A_

9a) with a= =2
2 R A, Al

(55)

This point is also denoted ky(A).

Proor: The property that the barycenters of the line-segmehtsA,) and B_, B, ) coincide can be proved analo-
gously to [49, Lemma 2]. Therefore, we can restrict to thertational component. Without loss of generality we
can assume a fixed system in a way that= F(A;,0,0) withd # A; > 0 andBz = F(By, By, B3) holds under the
side-conditionB? + B3 + B = d2. Then, computation yields:

fi(A, B)? = 1(A? + 2A1By + BZ + BS + B3) = 1(AZ + 2A1B, + d?), (56)
fo(A, B)? = Af + 2A1By + BZ + BS + B = AT + 2A1By + d?,

which is in both cases minimal fd; = —d (and maximal forB; = d). Therefore, we geB;: = ¥(d, 0, 0), which
closes the proof. 0

Note that if A € R® \ Q is located within the 3-dimensional spate = A, of R®, then the closest point ai is not
uniquely defined. Everg € Q with barycentelA_ = A, is a solution. Therefore, one has to make sure ¢rdes
not intersect this medial axis 6f in step 1 of the algorithm.

Theorem 17. The tangential hyperplane 1@ at point(A_,A,) € Q is given by
(A +V_, A +V,) with (V,-V_ A, —A_)=0}. (57)

Proor: We consider points of a lineunder a rigid body motion. It is well-known (e.g. [52, page2l)%hat the
projection of their velocity vectors orthogonally onltds the same for all points oh This so-called "Projection
Theorem”, which is illustrated in Figure 3 (right) alreadyglies Theorem 17. O

Based on the last two theorems we implemented the outligeditim and computed the example illustrated in Figure
5.
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Figure 5: Four interpolate poses of an oriented line-segarerdisplayed in yelloyblue (indicating the orientation). Moreover, a cube issthated

in order to improve the spatial sense of these poses. Left:céhesponding points of the four given poseRfhare interpolated by three line-
segments. Their projection ondis illustrated in red. The geodesic motion is displayed iregrdn both cases the barycenter of the line-segment
moves along a straight line between two consecutive intatpgloses. Right: The minimizer &, + 0.05Eg is illustrated in green and the
interpolant with minimal bending energy is displayed in redr fhe latter one the barycenter moves along a cGBispline (cf. [35, 50]), which

is illustrated as magenta-colored curve.

5.2. Motion design based on De Casteljau’s algorithm
In this section we explain how the famous algorithm of De €lgs for Bezier curves can be adopted for the

motion design of oriented line-elements. Given is a nunkiarcontrol poses/(‘,?') fori =1,...,kof an oriented
Iine-elementA,_a’). Some possible strategies for applying the De Castelgarithm are as follows:

5.2.1. Projection algorithms
Assumed we have the point-mod@llocated in the ambient spad'. Then, the control poses are points®n
which are represented by thedimensional vectarA'. Based on the control-polyganR" we can compute thie— 1

points A ,3'1) of the first step according to:
(1) = A + (A -A) for te[0,1] and i=1,....k-1 58
1

This recursive procedure has to be done in tital times, until we end up with the single poiﬂi_l(t), which traces
the Bezier curvec in R" by varyingt € [0, 1]. Finally, c has to be projected back orfo

1. Clearly this can be done in the ambient sg&gef the point-model given in Theorem 15 and the back-pragecti
is done byw (see Figure 6 (left)).

2. Another possibility, which is illustrated in Figure 6ghi), is the following: Points of the ambient spaé of
the point-model given in Theorem 10 can be projected ontgtfaetic of Eq. (34) similarly to [53, Eq. (4)] by:

(aE a a a@aad i)
"(a’a’a)H(nau’uau EERETA

(59)

Remark 10. By skipping the 7th coordinate this mappinig a projection onto the dual unit-sphéif% (Study
model of oriented lines). The analog of this projection aifie dual unit-spherS% (cf. Eq. (7)) is implied by
the fibers of the extended inverse kinematic map (cf. [54]). o

Both projection algorithms can be modified by projectingmbmtsﬂf (), which are obtained after each iteration
step, back ont@®. The resulting points are used for the next recursion.
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Figure 6: The same four poses of an oriented line-segment agurefs are now used as control poses. The motions resultnglfoth projection
algorithms are displayed, where the trajectory of the oeiérine-element’s point (midpoint of the line-segment) issthated as curve. Left:
Projection algorithm of item 1. Right: Projection algorittof item 2.

5.2.2. Geodesic algorithms

The basic idea is to replace the straight line of the contobygon in the ambient space by their analog on the
point-modelP, which are geodesics. In this way De Casteljau’s algoritiwiaygs stays o thus no back-projection
onto® is required. For this purpose the geodesic motion of Se&ibns not practical (computationally ifiecient),
as it is the results of an optimization problem. Therefore,are interested in geodesics between points of the point-
model representing the oriented Iine-elemeBl;sTf) and @, 3), those parametrization is known. Depending on the
underlying metric (which itself is not of interest in thisntext), the following geodesics, which are illustrated in
Figure 7 (upper left), can be deduced from the perspectivigioFbody motions:

1. According to Park [37] the geodesic motion can be compbgealtranslation with constant velocity aloﬁ
and a simultaneous rotation with constant angular veldmihyging—b> into @. As the rigid-body motion is
incompletely defined (cf. Section 2.1) we choose the ratatia way that the angle of rotation is minirhg
shortest geodesic). Therefore, the axis of rotation isogdinal toa andb.

2. Another approach taken by Ge and Ravani [55] is based arefitesentation of SE(3) by the dual unit-sphere
S%. They showed that dual great circles (geodesics) on thisreptorrespond to helical motions. Due to the
incompleteness of our displacement we call again for a ndhangle of rotation (cf. footnote 6), which yields
the screw motion given in Remark 3.

3. The last discussed geodesic is implied by the point-lispldcement by Zhang and Ting (cf. Section 2.3),
which is a composition of a screw motion about the common aboha andb and a translation d& along

the lineb . If both is done simultaneously with constant speed we gettiiresponding geodesic within the set
of point-line displacements.

Remark 11. Under this motion the oriented line generates a so-calldiddi&’, which corresponds to the
geodesic (dual great circles) on the Study mt%lof oriented lines (cf. [56]). Therefore, the geodesics of
item 3 correspond to straight lines on the planar developmiethe cylinder over the corresponding dual great
circle (cf. Remark 4). o

6with exception of the case thatandb are anti-parallel the geodesic motion is uniquely definechiz/demand.
"This is the only ruled minimal surface. It is generated durifgkcal motion by a line intersecting the axis orthogonally.
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The resulting three "geodesic De Casteljau algorithms”displayed in Figure 7 on the base of the same input
data used for Figure 6. As these geodesic algorithms are watigmally much more expensive than the projection
algorithms, we recommend the latter ones for the task ofast&ve motion design. Under the assumption that the
midpoint of the oriented line-segment is the point of theeotéd line-element (cf. beginning of Section 3.2), the
algorithm given in item 1 of Section 5.2.1 is very well suites its trajectory is the &ier curve determined by the
corresponding points of the control poses. This propersyahso the geodesic algorithm based on the geodesic motion
of Park outlined in item 1 of Section 5.2.2(the magenta curves of Figure 6 (left) and Figure 7 (uppertyigie
identical).

Finally, it should be noted that the procedures of Secti@wabe not restricted to the algorithm of De Casteljau,
but can easily be adapted for subdivision schemes like tlagk@¥s algorithm or the interpolatory four-point scheme
(cf. [57]).

"l‘-\\i\\;‘ A

|

=
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\\\\\\\\\\\u,,
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Figure 7: Upper left: The geodesic motions between two pofas oriented line-element (black) are illustrated with exggo item 1 (red), item
2 (green) and item 3 (yellow), respectively. The trajectaiithe corresponding point is displayed as curve. The yellextical line is the common
normal of the given two poses of the oriented line-element hadyteen vertical line is the axis of the helical motion merg@imn item 2. The
result of the geodesic algorithm based on the geodesicrafitg/3 is illustrated in the upper righower lefflower right corner.

6. Conclusion

Within this work it turned out that there is a large number @fsonable point-models for the set of oriented
line-elements. Their degrees range between 2 and 20 anccttéimensions between 1 and 10 (cf. Sections 2 and
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3). The suitability of a point-model depends on the applicahaving in mind; e.g. for the study of pentapods the
point-model of Theorem 6 is very useful as shown in [28]. lati® 4 we showed that for path planning the point-
model (hyperquadri€ in R®) of Theorem 15 is in favor due to its compatibility with twoageetric motivated metrics
(the kinematic image spad®® is in both cases Euclidean). In addition, we pointed out ictie 5.1 that for these
metric spaces well-known algorithms [49, 50] can be modifitedvariational) motion design. Finally, we discussed
in Section 5.2 dferent ways for adapting the famous algorithm of De Castdtathe motion design of oriented
line-elements.

Appendix

The ideal defining the variety described in Theorem 5 camsisix cubic equations

001924925 + 2002925027 + J02003945 — 926027923 — J039a6023 + Yo2047923 = O,
901935 + 2903025027 + 953045 — 037023 + Uo10asTas = O,

2902907927 — 901926027 — Y02003967 — GosJo7923 = O,

2003907927 + 901957 - 9(%3967 - 937923 — 001067923 = O,

001924927 + 29029%7 - 933946 + 002003947 — 906927923 = 0,

001925027 + 29039%7 + 002003946 + 9(2;3947 — 007927923 + 01947023 = O,

36 quadratic equations

52+ oz + Q1023 = O, 902904 — Jo1925 — GosGz7 = O, Jo3Jos + Go1924 + Go2927 = O,
54 + 957 — Go1as = O, 902006 + Gosgo7 + Jo1927 = O, 903906 — Y2907 + Go1926 = O,
36 + 957 + Go1e7 = O, 904906 — Go7927 + Jo19a7 = O, 804907 + Go6927 — Y1946 = O,
054+ U35+ Uasoz = 0, 002024 + Go3Gzs — Y27923 = O, 003024 — Q02025 — JoaG23 = O,
b6 + 057 — 67023 = O, Q07024 + 926027 + Joadas = O, 004924 + U25027 + Qozas = O,

O3 + U3, + Uass7 = O, 004925 — G24027 — Q02045 = O, OoeJ25 — J26027 + Jo2047 = O,
007025 — G57 — Jo2046 = O, 003926 + Jo2027 — Josd23 = O, 002026 — J03027 + Jo7023 = 0,
006024 — G57 — Joaa7 = O, 006926 + J07927 — Jo39e7 = O, Q07926 — Q06927 + Jo2067 = O,

024926 — G25027 — Ga7023 = O, 025026 + 024027 + Q46023 = O, 007945 — QoaG4e — G27947 = O,

004926 — 37 — 02046 — Joala7 = O, 027945 — G2404a6 — 925047 = O, Oo6J46 + Jo7047 + 927067 = O,
004927 + U26927 + Goz0a6 — Go204a7 = O, 026046 + 927947 + J25067 = O, 027046 — 926047 + J24967 = O,
006945 + G049a7 — 026947 + G24967 = O, 026045 — U25046 + 24047 = O, 07946 — Jo69a7 + Qoads7 = O,

and the linear equatiogys — g7 = O.
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