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Abstract

We extend the quaternionic kinematic mapping of Euclidean displacements of Euclidean 4-space E4 to the group of
equiform transformations S(4). As a consequence the equiform motions of basic elements (points, oriented lines,
oriented planes, oriented hyperplanes) of E4 can be written compactly in terms of 2 × 2 quaternionic matrices. This
representation is extended to oriented line-elements of E4 and to instantaneous screws of S(4), for which a classifi-
cation (incl. corresponding normal forms) is given. Based on this preparatory work we study the relation between
instantaneous equiform motions and the geometry of line-elements (path normal-elements, path tangent-elements) in
E4. Finally, we show that the line-elements of projective 3-space can be mapped bijectively on the Segre variety Σ3,2.
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1. Introduction

This paper can be seen as a logical sequel to the author’s work [18], which we will reference a few times in order
to avoid unnecessary replications.

The composition of Euclidean displacements (= orientation preserving congruence transformations) and uniform
scalings with a scale-factor α yields the group S(n) of equiform transformations of n-dimensional Euclidean space En

(cf. [2, §3 of Chapter 12]).
The geometric object of a line combined with a point on it is called a line-element. It is a partial flag and also

known as pointed line in the literature.
The elegance of the quaternion based analytical treatment of kinematics in Euclidean spaces of dimension 2 and

3 was pointed out and used by various authors (e.g. Blaschke [1], Müller [17], Ströher [35]). Recently the author
[18] extended this quaternionic kinematic to E4. Based on these results we give a quaternionic kinematic mapping
for equiform motions in E4 and E3 and study the corresponding point models (cf. Section 2). As a consequence
the equiform transformations of points, oriented lines, oriented planes and oriented hyperplanes of E4 can be written
compactly in terms of 2×2 quaternionic matrices. Moreover we show that the transformation of oriented line-elements
of E4 can also be represented in this way. In Section 3 we proceed with a detailed study of instantaneous equiform
motions of E4, which results in a quaternionic definition of instantaneous screws of S(4) and their classification (incl.
normal forms). Moreover the equiform transformation of these screws can also be embedded into the algebra of
2 × 2 quaternionic matrices. Inspired by the publication of Odehnal et al. [19] we investigate the relation between
equiform kinematics and the geometry of line-elements of E4 in the Sections 4 and 5. In detail we define a linear
complex of line-elements and show that it equals the set of path normal-elements of an instantaneous screw and vice
versa. On this basis we extend some known results on path normal-elements from spatial equiform kinematics to 4
dimensions (see Section 5). Moreover we study the set of path tangent-elements of an instantaneous screw in Section
5.1. Finally in Section 6 the representation of finite lines of E4 via so-called minimal coordinates is used to show that
the line-elements of the projective closure P3 of E3 can be mapped bijectively on the Segre variety Σ3,2.

But before we can plunge in medias res we have to provide a literature review on spatial equiform kinematics, as
no compact survey of this topic, which can be referred to, is known to the author.

1.1. Literature review
Bottema and Roth noted in their book [2] written in 1979 that ”not much attention has been given in the literature

to spatial equiform kinematics” and therefore they reported some basic facts on pages 455–458. Before that time, the
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author’s literature research yields following results:

• To the best knowledge of the author the first explicit result on spatial equiform kinematics was given by Burmester
[3] and reads as follows: All points, which have instantaneously the same velocity under an equiform motion, are
located on an ellipsoid of rotation, whose center is the velocity pole and its symmetry axis equals the instantaneously
fixed line. All other given results of Burmester belong to the more general field of spatial affine kinematics1.

• Seiliger [30] proved that each spatial equiform motion can be composed of a central similarity and a rotation about
an axis through its center. Further results on this topic were obtained by Pascal [21] and Di Noi [5], inter alia that
each line has a point with a velocity vector orthogonal to it [21] and that the tangent complex is a quadratic one [5].

• Moreover the following special equiform motions were studied: Kowalewski [15] investigated point paths generated
by an equiform rolling motion of two cylindro-conical spiral curves2. Wunderlich [36] studied spatial equiform
motions, where a line slides through a fixed point and a second line (skew to the first one) slides along itself.

Since 1979 the following results of spatial equiform kinematics were published to the best knowledge of the author:

• A lot of work was done on equiform motions with only planar/spherical trajectories, which are so-called equiform
Darboux/Bricard motions. All equiform Darboux motions were determined by Karger [14] and Röschel [27]. In
contrast a complete listing of equiform Bricard motions is still missing, but a subclassification was obtained by
Gfrerrer [7], which includes the above mentioned motion of Wunderlich [36]. Moreover equiform bundle motions
with spherical point paths were discussed by Gfrerrer and Lang [8].

• Pottmann [22] studied the envelopes of planes under equiform Schönflies motions. Moreover he discussed global
kinematic properties of spatial equiform motions in [23] and [24]. This work was furthered by Hager [9] to n
dimensions.

• From the application point of view, equiform motions were studied in context of 3D shape recognition and re-
construction (e.g. [11] and [19]). Moreover equiform motions were used by Röschel (e.g. [28, 29]) to construct
overconstrained mechanisms and to define a performance index for Stewart-Gough platforms [16]. In this context
also the article [10] of Hamdoon and Abdel-All on octahedral Stewart-Gough platforms should be noted, where
spatial equiform motions were studied with three points moving on three circles possessing coplanar axes.

No explicit results on S(4) are known to the author, but there are the following on S(n): Somer [33] investigated
closed equiform motion where some points trace one and the same trajectory. Moreover he studied in [32] linear
spaces, which are instantaneous invariant under S(n). A more detailed study of first order properties of S(n) was done
by Spallek [34] by generalizing his approach of glide-glide-kinematics to angle-preserving transformations.

2. Quaternionic formulation and kinematic mapping of S(4) and S(3)

We write quaternions, which are printed in bold letters, just side by side for multiplication instead of introducing
an extra multiplication sign. q0 is the so-called scalar part of the quaternion Q := q0 +q1i+q2j+q3k and q1i+q2j+q3k
its pure part. By denoting the pure part by the small letter q, the quaternion can also be written as Q := q0 + q. Finally
it should be noted that the conjugated quaternion to Q is given by Q̃ := q0 − q. For more basics on quaternions we
refer to [18, Section 1.1], where the same notation is used.

1Please see [25, page 149] for references to this topic.
2These spatial curves can be generated as trajectories of spiral motions, which are the most general uniform equiform motions in E3.
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2.1. Fundamentals
First of all we want to sharpen the definition of equiform motions given in the second paragraph of Section 1. The

given definition yields for even dimensional spaces a double cover of orientation-preserving similarity transformations
if α ∈ R \ {0} holds3. This choice of α implies for odd dimensions no double cover but we get in addition the set
of orientation-reversing similarity transformations. Note that different conventions/definitions can be found in the
literature; especially in E3 the equiform motion group is often identified with the group of orientation-preserving
similarity transformations (e.g. [19]), which is denoted by S+(3) within our notation.

Assume that (x0, x1, x2, x3)T is the Cartesian coordinate vector of a point X in E4, then its image under an equiform
mapping η can be written in terms of linear algebra as:

η : (x0, x1, x2, x3)T 7→ (x′0, x
′
1, x
′
2, x
′
3)T = αA(x0, x1, x2, x3)T + (a0, a1, a2, a3)T

with the scaling factor α ∈ R \ {0} and the rotation matrix A ∈ SO(4) (cf. [2, §3 of Chapter 12]).
If we embed the point X of E4 into the set of quaternions by the mapping:

ι4 : R4 → H with (x0, x1, x2, x3) 7→ X := x0 + x1i + x2j + x3k

then η ∈ S(4) can be written in terms of quaternions as follows according to [18, Theorem 2.6]:

Theorem 1. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element of S(4) can be written as:

X 7→ X′ with X′ := EXF̃ − 2ET̃ (1)

with the unit-quaternion E and ‖F‖ , 0. Moreover the mapping of Eq. (1) is an element of S(4) for any triplet of
quaternions E,F,T, where E is a unit-quaternions and ‖F‖ , 0.

As both triplets of quaternions ±(E,F,T), where E is a unit-quaternion, correspond to the same equiform motion of
E4 we consider the homogeneous 12-tuple (e0 : . . . : e3 : f0 : . . . : f3 : t0 : . . . : t3), which can be written abstractly
in a quaternionic representation as (E : F : T). These 12 homogeneous motion parameters for E4 can be interpreted
as a point of a projective 11-dimensional space P11. Therefore there is a bijection – the so-called kinematic mapping
– between S(4) and the set S4 of real points of P11, which are not located in one of the two 7-dimensional spaces
e0 = e1 = e2 = e3 = 0 and f0 = f1 = f2 = f3 = 0, respectively. These spaces need to be removed as E cannot be
normalized and ‖F‖ = 0 holds, respectively.

If we identify E3 with the hyperplane x0 = 0, the set S3 of all points of S4 fulfilling

f0 : e0 = f1 : e1 = f2 : e2 = f3 : e3 (2)

and the condition that no translation is done in direction of x0 (⇔ a0 = 0), map the hyperplane x0 = 0 onto itself.
Note that a0 = 0 equals the so-called Study condition

e0t0 + e1t1 + e2t2 + e3t3 = 0. (3)

Therefore there is a bijection – the so-called kinematic mapping – between S(3) and the points of S3, which is studied
in more detail next. The condition given in Eq. (2) can be formulated algebraically by the set of equations:

ei f j − ei f j = 0 for i < j and i, j ∈ {0, 1, 2, 3} .

The Hilbert-polynomial of the ideal I generated by these 6 equations together with the Study equation (3) can be
computed as

p(t) = 1
630 t7 + 11

360 t6 + 11
45 t5 + 19

18 t4 + 479
180 t3 + 1409

360 t2 + 433
140 t + 1.

Therefore S3 is an algebraic variety V(I) of dimension 7 and degree4 8 in P11, which is sliced along the two 7-
dimensional spaces e0 = e1 = e2 = e3 = 0 and f0 = f1 = f2 = f3 = 0. The first space is completely contained in V(I)
in contrast to the second one, which intersects V(I) in a quadric given by Eq. (3).

3The case α = 0 is excluded as it yields a singular transformation.
4For p(t) = cntn + o(tn) the degree of the variety is computed by n!cn according to [31].
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Remark 1. In comparison to S4 the point-model5 S3 for S(3) is much more complicated, but until now no simpler
one is known to the author. In this context it should be noted that another interesting approach for the description of
S(3) was done by Combebiac [4, pages 23–28] based on so-called tri-quaternions. Within this framework Combebiac
also defined a so-called linear element, which can be viewed as an extension of a line-element as it6 ”depends upon a
point, a segment (direction and length), and a coefficient (a mass or tensor)”. Therefore this work [4] seems worth to
be revisited in future studies on this topic. �

As S3 is contained in S4 we can restrict to the discussion of S(4) in the following section.

2.2. Composition and representation of equiform motions
Analogously to [18, Section 2.4] the composition η = η2 ◦ η1 of two equiform motions η1, η2 corresponds to the

multiplication of lower triangular 2 × 2 quaternionic matrices; i.e.:(
E O
T F

)
=

(
E2 O
T2 F2

) (
E1 O
T1 F1

)
.

Moreover in [18, Section 4] it was also shown that the displacements of the basic geometric elements in E4 can be
formulated in a unified way using 2 × 2 quaternionic matrices. In the following we extend this representation to S(4).
We embed a point X ∈ E4 and its image X′ ∈ E4 into the set of 2 × 2 quaternionic matrices by

X =

(
−1 X
O 1

)
, X′ =

(
−1 X′
O 1

)
.

As for an equiform motion (E,F,T) the scaling factor α is given by ‖F‖ > 0 we can define the following quaternionic
matrices:

D =
1
√
α

(
E O
T F

)
, D̃

T
=

1
√
α

(
Ẽ T̃
O F̃

)
, D̃

−T
=

1
α
√
α

(
α2E −ET̃F
O F

)
, (4)

where D̃
−T

denotes the (left and right) multiplicative inverse of D̃
T

. Based on this notation we can formulate the
corresponding theorem to [18, Theorem 4.1]:

Theorem 2. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element of S(4) can be written as follows:

X 7→ X′ with X′ := D̃
−T

X D̃
T
.

The proof is just done by a multiplication of the quaternionic matrices. Moreover it can be shown by analogous
considerations as given in [18, Section 4] that also the equiform motion of oriented lines, planes and hyperplanes can
be written in a similar fashion. The corresponding theorems7 given in [18, Section 4] also hold for S(4) with respect
to the matrices given in Eq. (4). In the following we only repeat the results for oriented lines in more detail, as they
are needed for the study of line-elements later on.

Geometrically we characterize an oriented line −→y by its pedal point C (given by the quaternion C) with respect
to the origin and by its direction, which can be written as a unit-quaternion Y. Then we can represent −→y by the pair
(Y, ỸC), which is the 4-dimensional analogue of the spear coordinates (oriented line coordinates) of E3. Therefore
we call the pure quaternion ỸC the moment quaternion m := ỸC. Moreover the expression m can be computed from
any point X ∈ −→y with X = C + ξY as follows:

1
2

(
ỸX − X̃Y

)
= 1

2

(
ỸC + ξ − C̃Y − ξ

)
= ỸC. (5)

Now we introduce the following notation:

Y =

(
O Y
−Ỹ m

)
, Y′ =

(
O Y′

−Ỹ′ m′

)
,

5Bijective mapping between S(3) and points within a projective space.
6The following is cited from [4, page 15].
7For oriented lines see [18, Theorem 4.3], for oriented planes see [18, Theorem 4.4] and for oriented hyperplanes see [18, Theorem 4.2].

4



where Y′ denotes the unit-quaternion in direction of the transformed spear −→y
′

and m′ its moment quaternion. Then
the above mentioned analogous result to [18, Theorem 4.3] reads as:

Theorem 3. The mapping of oriented lines −→y of E4 to oriented lines −→y
′

of E4 induced by any element of S(4) can be
written as follows:

Y 7→ Y′ with Y′ := D Y D̃
T
.

Now we extend the oriented line coordinates (Y,m) of −→y in E4 to those of an oriented line-element (−→y ,X). As
the scalar part of the moment quaternion m is zero we want to insert the information about the point X ∈ −→y at this
position. Analogously to the method of Odehnal et al. [19] we use the distance ξ of X to C in direction of −→y . Under
consideration that ξ = 〈X,Y〉 holds we can define the oriented line-element coordinates by (Y, ξ + m).

Based on the notation:

Z =

(
O O
−2Ỹ ξ + m

)
, Z′ =

(
O O
−2Ỹ′ ξ′ + m′

)
,

with ξ′ = 〈X′,Y′〉 a straightforward computation shows the following result:

Theorem 4. The mapping of oriented line-elements (−→y ,X) of E4 to oriented line-elements (−→y
′
,X′) of E4 induced by

any element of S(4) can be written as follows:

Z 7→ Z′ with Z′ := D Z D̃
T
.

3. Instantaneous equiform motions in Euclidean 4-space

Now X contains the coordinates of X with respect to the moving coordinate frameC and X⊕τ denotes the coordinates
of X with respect to the fixed frame C⊕ in dependency of the time τ of the constrained motion. According to Eq. (1)
the following relation holds:

X⊕τ = EτXF̃τ − 2EτT̃τ, (6)

where Eτ, Fτ and Tτ are functions of the time τ. Eq. (6) can be rewritten in terms of 2 × 2 quaternionic matrices (cf.
Theorem 2) as follows:

X⊕τ = D̃
−T
τ X D̃

T
τ .

Without loss of generality (w.l.o.g.) we can change the fixed frame from the old C⊕ into the new one C⊗ by an
Euclidean motion in a way that at time τ = ∗ the moving frame C and C⊗ coincide. This is achieved by the Euclidean
transformation (cf. [18]):

X⊗τ = C̃
T
∗

X⊕τ C̃
−T
∗

with

C̃
T
∗

=

Ẽ∗ T̃∗
0 1

α∗
F̃∗

 , C̃
−T
∗

=

E∗ − 1
α∗

E∗T̃∗F∗
O 1

α∗
F∗

 .
By introducing the notation B̃

−T
τ = C̃

T
∗

D̃
−T
τ and B̃

T
τ = D̃

T
τ C̃
−T
∗

the constrained motion with respect to the system C⊗ is
written as:

X⊗τ = B̃
−T
τ X B̃

T
τ ⇐⇒ X⊗τ = GτXH̃τ − 2GτŨτ (7)

with
Gτ = Ẽ∗Eτ, Hτ = 1

α∗
F̃∗Fτ, Uτ = 1

α∗

(
F̃∗Tτ − F̃∗T∗Ẽ∗Eτ

)
.

The advantage of this coordinate transformation is that the geometric properties can be studied in a more compact
way.
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3.1. Velocity quaternion and instantaneous screw

According to the calculation rules for the differentiation of quaternions, the time derivative of the normalizing
condition GτG̃τ = 1 with respect to τ yields ĠτG̃τ + Gτ

˙̃Gτ = 0, where the superior dot denotes the time derivative.
Evaluation of this formula at τ = ∗ implies ġ0(∗) = 0; i.e. Ġ∗ = ġ∗. Moreover by differentiation of Eq. (7) we get:

Ẋ⊗τ =
˙̃B
−T

τ X B̃
T
τ + B̃

−T
τ X ˙̃B

T

τ ⇐⇒ Ẋ⊗τ = ĠτXH̃τ + GτX
˙̃Hτ − 2ĠτŨτ − 2Gτ

˙̃Uτ.

Its evaluation at time τ = ∗ yields:
Ẋ⊗∗ = α∗ġ∗X + X ˙̃H∗ − 2 ˙̃U∗, (8)

which we call the velocity quaternion of X implied by the equiform motion at time τ = ∗ with respect to the fixed
coordinate system C⊗. Its norm gives the corresponding velocity.

The matrix representation of Ẋ⊗
∗

reads as:
ḣ0 −αġ1 + ḣ1 −αġ2 + ḣ2 −αġ3 + ḣ3

αġ1 − ḣ1 ḣ0 −αġ3 − ḣ3 αġ2 + ḣ2

αġ2 − ḣ2 αġ3 + ḣ3 ḣ0 −αġ1 − ḣ1

αġ3 − ḣ3 −αġ2 − ḣ2 αġ1 + ḣ1 ḣ0


∗


x0
x1
x2
x3

 + 2


−u̇0

u̇1
u̇2
u̇3


∗

. (9)

This affine mapping is singular over R if and only if ḣ0(∗) = 0 and α2
∗ġ∗ġ∗ − ḣ∗ḣ∗ = 0 hold, which can easily be seen

on closer inspection of the determinant of the above given 4 × 4 matrix. Note that ḣ0(∗) = 0 implies an instantaneous
Euclidean motion, as the differentiation of HτH̃τ = α2

τ with respect to τ and its evaluation at time τ = ∗ yields
α∗ḣ0(∗) = α̇∗.

Definition 1. The triplet (α∗ġ∗, Ḣ∗, U̇∗) is called the instantaneous screw $⊗∗ of the equiform motion (Gτ,Hτ,Uτ) in
E4 with ‖Hτ‖ = ατ at time τ = ∗ with respect to the fixed coordinate system C⊗. $⊗∗ is called singular if ḣ0(∗) = 0 and
α2
∗ġ∗ġ∗ − ḣ∗ḣ∗ = 0 holds; otherwise regular.

It can be shown by analogous considerations as given in [18, Section 5] that equiform transformation of instanta-
neous screws can also be embedded into the algebra of 2 × 2 quaternionic matrices, as [18, Theorem 5.4] also holds
for S(4) with respect to the matrices given in Eq. (4).

Remark 2. Note that the linear space of instantaneous screws is nothing but the Lie algebra of the group of similarity
transformations. �

3.2. Classification of instantaneous equiform motions in Euclidean 4-space

For ḣ0(∗) = 0 we are in the Euclidean case thus we can refer to [18, Theorem 5.7] (see also Table 1). For ḣ0(∗) , 0
there exists always a unique velocity pole P (= point with zero velocity) due to Section 3.1. W.l.o.g. we can assume
that the origin of the moving frame equals P (⇒ U̇∗ = O). Then the velocity quaternion simplifies to:

Ẋ⊗∗ = α∗ġ∗X + X ˙̃H∗ =
(
α∗ġ∗X − Xḣ∗

)
+ Xḣ0(∗). (10)

The second term is implied by an instantaneous scaling with center P and scaling velocity ḣ0(∗) and the first term by
an instantaneous spherical motion with center P. According to [18] the latter can be an instantaneous

(a) rotation about two total-orthogonal planes (⇔ ġ∗ , o , ḣ∗ and α2
∗ġ∗ġ∗ − ḣ∗ḣ∗ , 0),

(b) rotation about one plane (⇔ ġ∗ , o , ḣ∗ and α2
∗ġ∗ġ∗ − ḣ∗ḣ∗ = 0),

(c) isoclinic left resp. right rotation (⇔ ġ∗ , o = ḣ∗ resp. ġ∗ = o , ḣ∗),

(d) standstill (⇔ ġ∗ = o = ḣ∗).
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For the computation of the rotation planes and corresponding angular velocities we refer to [18, Section 5.2]8. We
denote the resulting infinitesimal equiform motions an instantaneous (a) 2-plane spiraling, (b) 1-plane spiraling, (c)
isoclinic left resp. right spiraling and (d) central scaling, respectively.

Based on equiform transformations of instantaneous screws it can easily be verified that they have the ”normal
forms” given in Table 1. For a complete listing of instantaneous equiform motions in Euclidean 3-space see [19,
Theorem 2].

Instantaneous EquiformMotion α∗ġ∗ Ḣ∗ U̇∗ with
2-plane spiraling (rotation for s = 0) wi s + (1 − w)i O w ∈ (0, 1)

isoclinic left spiraling (rotation for s = 0) i s O
isoclinic right spiraling (rotation for s = 0) o s + i O

1-plane spiraling (rotation for s = 0) 1
2 i s + 1

2 i O
central scaling o 1 O

translation o O − 1
2

1-plane rotation + translation 1
2 i 1

2 i −
p
2 p , 0

parallel to rotation plane

Table 1: Table of normal forms of instantaneous equiform motions (α∗ġ∗, Ḣ∗, U̇∗) in E4.

4. Relation between instantaneous equiform motions and line-elements in Euclidean 4-space

In Section 2.2 we introduced coordinates of oriented line-elements based on the oriented line coordinates (Y,m).
In the next section we discuss a further representation of lines in E4, namely the Grassmann coordinates.

4.1. Grassmann coordinates
In 3-space the Grassmann coordinates (also known as Plücker coordinates) of a finite line are just the homogenized

spear coordinates, but in 4-space the situation is different. The Grassmann coordinates of a line in E4 can be written
in an abstract quaternionic representation as (y : ŷ : Y) with:

y := 1
2

(
YC̃ + C̃Y

)
and ŷ := 1

2

(
YC̃ − C̃Y

)
. (11)

This can be proven by introducing projective point coordinates for C and Y; i.e.

(ĉ0 : ĉ1 : ĉ2 : ĉ3 : ĉ4) := (c0 : c1 : c2 : c3 : 1),
(ŷ0 : ŷ1 : ŷ2 : ŷ3 : ŷ4) := (y0 : y1 : y2 : y3 : 0).

Then the Grassmann coordinates of lines are defined by li j := ĉiŷ j − ĉ jŷi (e.g. [26, Section 2.2] or [13, Section 12]).
Now computation shows that following holds:

Y = l40 + l41i + l42j + l43k,

C̃Y + YC̃ = 2 (l01i + l02j + l03k) ,

C̃Y − YC̃ = 2 (l23i + l31j + l12k) .

Therefore the triplet (y : ŷ : Y) contains all 10 Grassmann coordinates. By the usage of these homogeneous co-
ordinates one loses the information on the line’s orientation. This can be avoided by using normalized Grassmann
coordinates, where the normalization is done with respect to the direction vector of the line, which is represented by
the quaternion Y. As Y already denotes a unit-quaternion the normalized Grassmann coordinates of Eq. (11) can be
written as (y, ŷ,Y). Instead of this triplet we can use the following one:

8Alternatively the rotation planes can be computed by the approach of Somer [32].

7



Definition 2. The modified Grassmann coordinates of an oriented line −→y in E3, which are called oriented mG line
coordinates for short, are defined as (y+, y−,Y) with

y+ := y + ŷ = YC̃, y− := y − ŷ = C̃Y. (12)

If the orientation of the line y is not of importance one can also use homogeneous mG line coordinates (y+ : y− : Y).

Remark 3. Now the question arises, which homogeneous 10-tuples (z+ : z− : Z) , (o, o,O) represent mG line
coordinates. According to [26, Theorem 2.2.4] and [13, Corollary 12.22], respectively, five conditions have to hold,
which read as follows in the quaternionic formulation:

〈z+, z+〉 − 〈z−, z−〉 = 0, z+Z − Zz− = O. (13)

By computing the Hilbert-polynomial of these 5 equations it can easily be seen (cf. footnote 4) that the set of lines
is a 6-dimensional variety of degree 5 within the projective 9-dimensional space P9. If we slice the variety along the
5-dimensional space Z = O we get the set L, which corresponds to lines of E4. �

Now we can clarify the relation between the oriented mG coordinates (y+, y−,Y) of lines in E4 and the 4-
dimensional analogue of the spear coordinates (Y,m) given in Section 2.2. The latter are just obtained by the following
projection:

(y+, y−,Y) 7→ (Y,m) := (Y, ỹ−) (14)

due to Eq. (12). These projected coordinates have only the trivial side condition ‖Y‖ = 1 in contrast to the oriented
mG line coordinates, which have those of Eq. (13) in addition. This gives rise to the following nomenclature:

Definition 3. The minimal coordinates of an oriented line −→y ∈ E4 are given by (Y,m) and (Y : m) are the homoge-
neous minimal coordinates of an unoriented line y ∈ E4, respectively.

Consequently this implies the following notation:

Definition 4. The minimal coordinates of an oriented line-element (−→y ,X) ∈ E4 are defined as (Y, ξ + m) and (Y :
ξ + m) are the homogeneous minimal coordinates of an unoriented line-element (y,X) ∈ E4.

As y+ and y− of the oriented mG line coordinates are pure quaternions, we have now two possibilities to insert the
information ξ = 〈X,Y〉 of the point X ∈ −→y . The connection given in Eq. (14) implies the following definition:

Definition 5. The oriented mG line-element coordinates of an oriented line-element (−→y ,X) ∈ E4 are defined as
(y+, ξ + y−,Y). Consequently (y+ : ξ + y− : Y) are the homogeneous mG line-element coordinates of an unoriented
line-element (y,X) ∈ E4.

Remark 4. Any homogeneous 11-tuple (z+ : ζ + z− : Z) , (o,O,O) defines a line-element of E4 if and only if Eq.
(13) and Z , O hold. Therefore the set of line-elements of E4 corresponds to a 7-dimensional variety E of degree 5,
which is sliced along the 6-dimensional space Z = O, within the projective 10-dimensional space P10. �

4.2. Linear complexes of lines and line-elements in Euclidean 4-space
Let us start this section with the following three definitions:

Definition 6. A linear complex of lines of E4 is the intersection of L (cf. Remark 3) with a hyperplane.

This definition is in accordance with the definition of a linear line complex given in [6, Section 10.2]. Now we
can extend this definition to line-elements of E4 as follows:

Definition 7. A linear complex of line-elements of E4 is the intersection of E (cf. Remark 4) with a hyperplane.

This definition is in accordance with [19, Definition 3]. For the formulation of the next theorem, a further definition
is needed.
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Definition 8. A path normal-element (y,X) of an instantaneous screw consists of a point X ∈ E4 and a path normal y
of this point with respect to the instantaneous screw.

Theorem 5. The set of path normal-elements of an instantaneous screw $⊗∗ = (α∗ġ∗, Ḣ∗, U̇∗) , (o,O,O) of E4 is a
linear complex of line-elements of E4 and vice versa.

Proof: We prove this by showing that the mG line-element coordinates (y+, ξ + y−,Y) fulfill the linear equation:

α∗〈y+, ġ∗〉 + 〈ξ + y−,
˙̃H∗〉 − 2〈Y, ˙̃U∗〉 = 0. (15)

Therefore we investigate the condition that a unit-quaternion Y is orthogonal to the velocity quaternion Ẋ⊗∗ of Eq. (8).
The corresponding condition 〈Y, Ẋ⊗∗ 〉 = 0 can be rewritten as follows:

α∗〈YX̃, ġ∗〉 − 〈X̃Y, ḣ∗〉 + ξḣ0(∗) − 2〈Y, ˙̃U∗〉 = 0, (16)

under consideration of Ḣ∗ = ḣ0(∗) + ḣ∗ and ˙̃H∗ = ḣ0(∗) − ḣ∗. Due to Eq. (5) the expressions of y+ and y− given in Eq.
(12) can be computed as:

y+ = 1
2

(
YX̃ − XỸ

)
, y− = 1

2

(
X̃Y − ỸX

)
. (17)

These relations already imply the validity of the following equalities:

〈YX̃, ġ∗〉 = 〈YC̃, ġ∗〉 = 〈y+, ġ∗〉, 〈X̃Y, ḣ∗〉 = 〈C̃Y, ḣ∗〉 = 〈y−, ḣ∗〉, (18)

thus summed up we get our required result given in Eq. (15).
The converse statement is also true as the homogeneous coordinates of any linear line-element complex of E4 can

be identified with an instantaneous screw $⊗∗ up to a real multiple different from zero. �

By setting ḣ0(∗) = 0 we get for the Euclidean case the following result:

Corollary 1. The set of path normals of an instantaneous Euclidean motion $⊗∗ = (α∗ġ∗, ḣ∗, U̇∗) , (o, o,O) of E4 is a
linear complex of lines of E4 and vice versa.

5. Extending known results to 4 dimensions

The 4-dimensional version of [19, Theorem 3] reads as follows:

Theorem 6. The elements of a linear complex K of line-elements in E4, which are contained in a hyperplane are the
path normal-elements of an instantaneous spatial equiform motion.

Proof: W.l.o.g. we can consider the hyperplane given by x0 = 0. As a consequence the mG coordinates of line-
elements within this hyperplane are given by (̂y, 〈x, y〉 − ŷ, y). Plugging these coordinates into Eq. (15) yields:

〈̂y, α∗ġ∗ + ḣ∗〉 + ḣ0(∗)〈x, y〉 − 2〈y, ˙̃U∗〉 = 0. (19)

Form Eq. (9) it can easily be seen that the velocity vectors are also contained in the hyperplane x0 = 0 if and only if
the instantaneous screw is of the form (v̇∗, v̇0(∗) + v̇∗, ẇ∗). By setting v̇∗ = 1

2

(
α∗ġ∗ + ḣ∗

)
, v̇0(∗) = ḣ0(∗) and ẇ∗ = u̇∗

we get the instantaneous spatial equiform motion, where the line-elements of K in x0 = 0 are path normal-elements
as

2〈̂y, v̇∗〉 + v̇0(∗)〈x, y〉 + 2〈y, ẇ∗〉 = 0

holds due to Eq. (19). �

As a consequence of Theorem 6 and [19, Theorem 3] we get:
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Corollary 2. The elements of a linear complex K of line-elements in E4, which are contained in a plane are the path
normal-elements of an instantaneous planar equiform motion.

The 4-dimensional version of the result of Pascal [21] (see also [19, Lemma 4.1]), which was cited in the intro-
duction, reads as follows:

Theorem 7. Under an instantaneous equiform motion $⊗∗ = (α∗ġ∗, Ḣ∗, U̇∗) of E4 with ḣ0(∗) , 0 each line y ∈ E4

has a unique point X ∈ E4 with a velocity vector orthogonal to it. Thus the line-element (y,X) ∈ E4 is in the path
normal-element complex of $⊗∗ .

Under an instantaneous Euclidean motion $⊗∗ = (α∗ġ∗, ḣ∗, U̇∗) , (o, o,O) of E4 the path normal-element complex
of $⊗∗ equals the set of line-elements in E4, where the lines belong to the path normal complex of $⊗∗ .

Proof: If ḣ0(∗) , 0 holds then Eq. (16) can uniquely be solved for ξ = 〈X,Y〉. For the case ḣ0(∗) = 0 this equation
(16) is fulfilled for any point of a path normal (cf. Corollary 1). �

As a consequence of Theorem 6, Corollary 2 and Theorem 7 we get:

Corollary 3. The path normals of an instantaneous Euclidean motion $⊗∗ = (α∗ġ∗, ḣ∗, U̇∗) , (o, o,O) of E4, which
are contained in a hyperplane/plane are the path normals of an instantaneous spatial/planar Euclidean motion.

We proceed by extending the results [19, Lemma 4.2 and Theorem 4] to 4 dimensions. For their formulation we
need the following definition of a line-element bundle according to [20, Section 4.6]:

Definition 9. The 4-dimensional set B of all line-elements, those lines belong to a bundle of lines in E4, constitute a
line-element bundle. If the bundle vertex B is an ideal point it is called parallel line-element bundle.

Theorem 8. We consider a bundle B of line-elements in E4 with vertex B. The set of points X such that (y,X) ∈ B is
a path normal-element of the instantaneous screw $⊗∗ = (α∗ġ∗, Ḣ∗, U̇∗) of E4 with ḣ0(∗) , 0 is a

1. hyperplane if B is an ideal point,

2. hypersphere if B is a finite point. Its diameter is given by BB with B according to Eq. (20).

Proof: We have to distinguish two cases:

1. B is an ideal point: W.l.o.g. we can assume that B is in direction of the identity quaternion 1. Then the line-
element (y,X) of B has mG line-element coordinates (−x, X̃, 1) according to Eq. (17). Now Eq. (15) of the path
normal-element complex simplifies to

〈x, α∗ġ∗ − ḣ∗〉 − x0ḣ0(∗) + 2u̇0(∗) = 0.

As ḣ0(∗) , 0 holds this linear equation depends on x0 for sure.

2. B is a finite point: W.l.o.g. we can assume that B is the origin of our reference frame; i.e. B = O. Then the
line-element (y,X) of B has mG line-element coordinates (o, ‖X‖,Y), where Y is any unit-quaternion. Now Eq.
(15) implies:

‖X‖ = 2
ḣ0(∗)
〈Y, U̇∗〉.

Therefore X is the pedal point on y of the point B with

B := B − 1
ḣ0(∗)

Ḃ⊗∗ , (20)

where Ḃ⊗∗ is the velocity quaternion of the point B with respect to $⊗∗ . �
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5.1. The set of path tangent-elements
Within this section we extend Di Noi’s result [5], which is listed in the introduction (cf. Section 1.1), with respect

to line-elements and the 4th dimension. Therefore we need the following definition:

Definition 10. A path tangent-element (y,X) of an instantaneous screw consists of a point X ∈ E4, which has a
velocity different from zero with respect to the instantaneous screw, and the resulting path tangent y.

Theorem 9. The 4-dimensional set of path tangent-elements of a regular instantaneous screw $⊗∗ = (α∗ġ∗, Ḣ∗, U̇∗) of
E4 has a quadratic rational parametrization in terms of minimal coordinates of line-elements of E4.

Proof: Due to the regularity assumption there exists a unique velocity pole P. W.l.o.g. we can assume that P is
located in the origin, thus we have U̇∗ = O. Therefore the moment quaternion m of a tangent in direction of the
velocity quaternion Ẋ⊗∗ can be computed according to Eq. (5) as

m = ‖X‖2ḣ∗ − α∗X̃ġ∗X.

Moreover we can solve Eq. (10) with respect to X in a quaternionic way according to [12, Section ”General solution
to linear problems in quaternion variables”]. Plugging the obtained expression for X, which is linear in Ẋ⊗∗ , into
〈X, Ẋ⊗∗ 〉 + m shows that we have obtained a quadratic rational parametrization of the set of path tangent-elements in
terms of the first 4 entries of the homogeneous 8-tuple of minimal coordinates of line-elements of E4. �

Remark 5. Note that in the case of an instantaneous central scaling the path tangent-elements form a line-element
bundle, where the velocity pole P is its vertex. �

The cases excluded from Theorem 9 are treated next:

Theorem 10. The set of path tangent-elements of an instantaneous rotation about one plane in E4 has a quadratic
rational parametrization in terms of minimal coordinates of line-elements of E4. If this instantaneous motion is ad-
ditionally composed with an instantaneous translation parallel to the rotation plane, then the corresponding rational
parametrization is cubic. In the case of a pure instantaneous translation the set of path tangent-elements form a
parallel line-element bundle, which is a 4-dimensional linear subspace of the projective space of minimal coordinates
of line-elements in E4.

Proof: We can restrict the proof to the corresponding normal forms given in Table 1.

1. (α∗ġ∗, Ḣ∗, U̇∗) =
(

1
2 i, 1

2 i,− p
2

)
: In this case the velocity quaternion equals p+0i− x3j+ x2k, the resulting moment

quaternion m = m1i + m2j + m3k reads as:

(px1 + x2
2 + x2

3)i + (x0x3 − x1x2 + px2)j + (px3 − x0x2 − x1x3)k

and ξ equals px0. Now we distinguish two cases:

(a) p , 0: In this case we can set:
x0 =

ξ
p , x1 =

m1−x2
2+x2

3
p .

Then the following two equations in the minimal coordinates (p : 0 : −x3 : x2 : ξ : m1 : m2 : m3) of
line-elements of E4 remain:

x3
2 + x2x2

3 − x2m1 + x3ξ + p2x2 − m2 p = 0,

p2x3 + x3x2
2 + x3

3 − x3m1 − x2ξ − m3 p = 0.

Solving these two equations with respect to m2 and m3 yields a rational cubic parametrization in m1, x2, x3, ξ
for a given parameter p.

(b) p = 0: In this case the minimal coordinates (0 : 0 : −x3 : x2 : 0 : m1 : m2 : m3) of line-elements of
E4 have to fulfill the quadratic equation x2

2 + x2
3 − m1 = 0. Thus we have the following rational quadratic

parametrization (0 : 0 : −x3 : x2 : 0 : x2
2 + x2

3 : m2 : m3) in x2, x3,m2,m3.
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2. (α∗ġ∗, Ḣ∗, U̇∗) =
(
o,O,− 1

2

)
: In the case of the instantaneous translation, the resulting minimal coordinates of

line-elements of E4 read as (1 : 0 : 0 : 0 : x0 : x1 : x2 : x3). �

Remark 6. Note that based on the given parametrization of the set of path normal-elements the degree of the cor-
responding variety in the space of mG or minimal coordinates of line-elements of E4 can e.g. be determined via the
Hilbert-polynomial (cf. footnote 4), where one can restrict to the normal forms given in Table 1. This straightforward
computation is left to the interested reader. �

6. Point-models for line-elements in projective 3-space

We start this section with a review of the known two models for line-elements of the projective 3-space P3, which
were both given by Odehnal [20]:

(i) Odehnal’s point-model equals the intersection of the Segre variety Σ3,5, which is a 7-dimensional variety in a
23-dimensional projective space P23, and four hyperplanes (cf. [20, Section 2.2]).

(ii) Odehnal’s second model is based on the idea to combine the homogeneous Plücker coordinates (l01 : l02 : l03 :
l23 : l31 : l12) of the line ∈ P3, which fulfill the Plücker condition

l01l23 + l02l31 + l03l12 = 0, (21)

and the homogeneous point coordinates (l0 : l1 : l2 : l3) to the 10-tuple

(l01 : l02 : l03 : l23 : l31 : l12 : l0 : l1 : l2 : l3).

In this case any line-element is mapped to a 1-parametric set of 10-tuples

(µl01 : µl02 : µl03 : µl23 : µl31 : µl12 : λl0 : λl1 : λl2 : λl3) (22)

with λ, µ ∈ R \ {0}, which corresponds to a line9 in the projective 9-dimensional space P9, where the two
points (λ : µ) = (1 : 0) and (λ : µ) = (0, 1) are removed. Therefore all points of this P9, which correspond
to a line-element of P3, form a 6-dimensional10 variety V of degree 5, which is sliced along the two spaces
l01 = l02 = . . . = l12 = 0 and l0 = . . . = l3 = 0. The 3-dimensional space is completely contained in V in contrast
to the 5-dimensional space, which intersects V in the quadric given by Eq. (21).

Odehnal noted in [20, Section 6] that a point-model of line-elements is of interest for the (differential) geometric
study of so-called ruled surface strips, which are ruled surfaces together with a curve on it. In the following such an
improved point-model is presented.

6.1. Improved point-model
If we rewrite Odehnal’s 10-tuple in the abstract quaternionic representation (l : l̂ : L) with

l := l01i + l02j + l03k, l̂ := l23i + l31j + l12k, L := l0 + l1i + l2j + l3k,

then it can easily be seen that these are the Grassmann coordinates of a line in E4, as the five conditions given in Eq.
(13) are equal to those given in [20, Eqs. (2) and (7)]. Therefore we can also use the minimal coordinates (L : m) of
a line in E4.

Due to the free parameter in Eq. (22) we can claim additionally that the pedal point C of the line in E4 with respect
to the origin has distance 1; i.e. the line is tangent to the unit-hypersphere. Under consideration that m = L̃C holds
we can compute C as Lm‖L‖−2. Then the tangential condition C̃C = 1 to the unit-hypersphere simplifies to

Φ : ‖L‖2 − ‖m‖2 = 0. (23)

9Therefore it is somehow misleading to speak in this context of a point-model as done in [20, Section 3].
10And not a 5-dimensional variety as outlined in [20, Section 3].
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All real points (L : m) in the projective 6-dimensional space P6 of minimal coordinates of lines in E4, which are
located on the quadric Φ of Eq. (23), correspond to a line-element of P3. This is the case as only points with Y = O or
m = o do not correspond with line-elements of P3, but these two linear spaces have with the quadric Φ no real points
in common.

The disadvantage of this point-model is that with (L : m) ∈ Φ also (L : −m) ∈ Φ holds, thus we get a double
cover of the set of line-elements of P3. We can get rid of this double cover by considering the Grassmann variety of
lines spanned by (L : m) ∈ Φ and (L : −m) ∈ Φ. This is trivially isomorphic to the Segre variety Σ3,2 defined by the
Segre embedding σ: P3 × P2 → P11 with

(l0 : l1 : l2 : l3) × (m1 : m2 : m3) 7→ (l0m1 : l0m2 : l0m3 : l1m1 : . . . : l3m3).

It is well known that the Segre variety Σm,n has degree (m+n)!
m!n! . As a consequence Σ3,2 is of degree 10 in contrast to the

above noted point-model (i) based on Σ3,5, which is of degree 56.
We can even give a rational parametrization of the Segre variety Σ3,2 by parametrizing the tangents to the unit-

hypersphere of E4, which can be done as follows. By stereographic projection we obtain the set of pedal points in
dependency of the variables u, v,w as:

C =
u2 + v2 + w2 − 1 + 2ui + 2vj + 2wk

D
with D := u2 + v2 + w2 + 1.

As 〈 ∂C
∂i ,

∂C
∂ j 〉 = 0 holds for i , j ∈ {u, v,w} and ‖ ∂C

∂u ‖ = ‖ ∂C
∂v ‖ = ‖ ∂C

∂w ‖ = 2D we can parametrize the directions of the
tangents e.g. by:

L = 1
2D

(
sin δ1 cos δ2

∂C
∂u

+ sin δ1 sin δ2
∂C
∂v

+ cos δ1
∂C
∂w

)
,

where the sin and cos functions can be replaced by the half-angle substitution.

Remark 7. In order to catch also the center of the stereographic projection, which is the point (1, 0, 0, 0) of the
hyper-sphere, we can use the following homogenized parametrization:

C =
u2 + v2 + w2 − h2 + 2uhi + 2vhj + 2whk

D
with D := u2 + v2 + w2 + h2,

where h is the homogenizing variable. Then for h = 0 the point C = 1 is obtained. Moreover for a complete covering
of Σ3,2 we also have to replace the half-angle substitution by its homogenized version. �

7. Conclusion and outlook

In Section 1 we provided a detailed literature review on equiform kinematics in Euclidean spaces of dimension 3
and higher. In Section 2 a quaternion based kinematic mapping for equiform transformations of Euclidean spaces of
dimension 3 and 4 was introduced. Based on this mapping and a study on instantaneous equiform motions of E4 in
Section 3, we discussed the set of path normal-elements and path tangent-elements in the Sections 4 and 5. Moreover
in Section 6 we presented an improved point-model for unoriented line-elements of the projective 3-space.

Point-models for the set of oriented line-elements of E3 are of practical interest for the motion representation of
robots with an axial symmetric end-tool (e.g. a milling cutter). Therefore a forthcoming publication of the author is
devoted to the study and comparison of such models; e.g. the quadric Φ of Eq. (23) sliced along the hyperplane l0 = 0
represents one possible point-model.
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