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[1] Singular configurations of SGPs

The geometry of a Stewart Gough Platform

(SGP) is given by the six base anchor points

Mi := (Ai, Bi, Ci)
T in the fixed space Σ0

and by the six platform anchor points

mi := (ai, bi, ci)
T in the moving space Σ.

Theorem Merlet [1992]

A SGP is singular iff the carrier lines Li of
the six legs belong to a linear line complex. Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ
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[1] Analytical condition

Plücker coordinates of Li can be written as (li, l̂i) := (R·mi + t − HMi,Mi×li)

with R := (rij) =




e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 + e0e3) 2(e1e3 − e0e2)
2(e1e2 − e0e3) e2

0 − e2
1 + e2

2 − e2
3 2(e2e3 + e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3



 ,

t := (t1, t2, t3)
T and the homogenizing factor H := e2

0 + e2
1 + e2

2 + e2
3.

Li belong to a linear line complex ⇐⇒ Q := det(Q) = 0 with Q :=




l1 bl1

. . . . . .

l6 bl6





Notation: We denote the coefficients of ti1t
j
2t

k
3 of Q by Qijk.
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[1] Motivation

For designer, it is desirable to have a graphical
representation of the singularity set of SGPs,
because it simplifies the identification of the
singular loci within the given workspace.

But only the visualization of the singularity
surface in 3-dim subspaces make sense.
Usually one fixes the orientational part =⇒
Singularity surface is cubic in t1, t2, t3.

The drawback of cubic surfaces is that they
can have very complicated shapes (see figure).

=⇒ We look for SGPs with a simple singula-
rity surface for any orientation of the platform.
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[2] Review and related work

The best, one can think of, are SGPs with a cylindrical singularity surface:
The manipulators singularity set is for any orientation of the platform a cylindrical
surface with rulings parallel to a given fixed direction p in the space of translations.
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Projection direction is p.
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[2] Review and related work

Unfortunately, the set of SGPs with a cylindrical singularity surface has only a very
limited variety as there are only two such manipulator designs (cf.Nawratil [2009]).

Karger [2006] suggested SGPs with a quadratic
singularity surface. They have following advantages:

• all types of quadrics have well known and rather
simple shapes,

• it is easier to obtain closed form information
about singular positions,

• the computations of singularity free zones for a
fixed orientation reduces to the minimization of a
quadratic function under a quadratic constraint.
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[2] Review and related work

Theorem Nawratil [2010]

A non-architecturally singular SGP possesses a non-cubic (i.e. linear or quadratic)
singularity surface if and only if rk(M) < 5 holds with

M =




1 a1 b1 c1 A1 B1 C1
... ... ... ... ... ... ...
1 a6 b6 c6 A6 B6 C6



 .

This theorem has the following geometric interpretation:

Theorem Nawratil [2010]

A non-architecturally singular SGP possesses a non-cubic singularity surface iff
• there exists a affine correspondence between the platform and the base or
• the SGP has a planar platform and base with rk(M) = 4.
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[3] Planar SG platforms

Theorem
A non-architecturally singular SG platform with planar platform and base possesses
a linear singularity surface if and only if there exists a affinity between corresponding
anchor points.

Karger [2006] demonstrated that SGPs with affine equivalent platform and base
possess this property. The proof that no other exists, splits up into two cases:

Proof: No four anchor points are collinear
W.l.o.g. we can choose coordinate systems such that A1 = B1 = B2 = a1 = b1 =
b2 = 0 and ci = Ci = 0 for i = 1, . . . , 6 hold. Moreover due to Karger [2003]

a2A2B3B4B5(a3 − a4)(b3 − b4)coll(m3,m4,m5) 6= 0

holds, where coll(x, y, z) = 0 denotes the collinearity condition of the points x, y, z.
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[3] Planar SG platforms

We can apply the elementary matrix manipulations of Karger [2003] to Q =⇒

(l6, l̂6) = (v1, v2, v3, 0,−w3, w2) with vi = ri1K1 + ri2K2, wj = rj1K3 + rj2K4,

K1 := |A,B,Ba,Bb,a|

K2 := |A,B,Ba,Bb,b|

K3 := |A,B,Ba,Bb,Aa|

K4 := |A,B,Ba,Bb,Ab|






and X =





X2

X3
...

X6



 , y =





y2

y3
...
y6



 , Xy =





X2y2

X3y3
...

X6y6



 .

Eqs. (12) and (13) of Nawratil [2008] imply K1 = K2 = 0. Then we consider:

Q200 = a2A2r13(r31K3 + r32K4)F [24], Q020 = A2r23(r31K3 + r32K4)G[48].

K3 = K4 = 0: architecture singularity, F = G = 0: SGP is affinely related. �
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[3] Planar SG platforms

Proof: Four anchor points are collinear
W.l.o.g. we can set A1 = B1 = B2 = B3 = B4 = a1 = b1 = b2 = 0. We compute
all non-architecturally singular SGPs with 4 collinear anchor points and rk(M) = 4:

a) b3 = b4 = 0 and b5 = b6B5/B6,

b) A4 = b4(a2A3−a3A2)+a4b3A2
a2b3

and

A5 = a2b3A6B5+A2B6(a5b3−a3b5)−A2B5(a6b3−a3b6)+a2A3(b5B6−b6B5)
a2b3B6

.

In both cases the Qijk’s with i + j + k = 2 cannot vanish w.c. (cf. paper). �

Remark 1. In this case we only end up with contradictions as the legs through the
4 collinear anchor points always belong to a regulus if the SGP is affinely related. ⋄
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[4] Non-planar SG platforms

Lemma 1.
A non-planar SGP with a linear singularity surface has to have 3 collinear points.

Proof: Karger [2003] proved in Theorem 1 that a non-planar architecturally
singular SGP has to have 3 collinear points. He only used coefficients of Qijk with
i + j + k > 1 for the proof of this theorem and therefore Lemma 1 is valid. �

Lemma 2.
A non-planar SGP with a linear singularity surface has to have 4 collinear points.

Proof: Karger [2003] proved in Theorem 2 that a non-planar architecturally
singular SGP has to have 4 collinear points. In his proof he only used in one case
the coefficients of Q100 = 0 otherwise coefficients of Qijk with i + j + k > 1.
In the presented paper it is shown that also in this exceptional case the contradiction
can be concluded from coefficients of Qijk with i + j + k > 1. �
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[4] Non-planar SG platforms

Theorem
There do not exist non-planar SGPs with a linear singularity surface.

W.l.o.g. can choose coordinate systems in the platform and base such that

A1 = B1 = B2 = a1 = b1 = b2 = C1 = C2 = C3 = c1 = c2 = c3 = 0 hold.

W.l.o.g. we can assume that M1, M2, M3,M4 are not coplanar, i.e. A2B3C4 6= 0.
Moreover we know that there exists a affinity κ between corresponding anchor
points. κ is given by Mi 7→ mi for i = 1, . . . , 4.

Due to Lemma 2 there also exist 4 collinear anchor points. If these 4 points are
base anchor points then SGP is architecturally singular (cf. remark 1).

Therefore κ has to be a singular affinity with 4 collinear platform anchor points.
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[4] Non-planar SG platforms

W.l.o.g. we can assume that the planar platform lies in the xy-plane; i.e. c4 = 0.
Moreover we can assume that 3 anchor points from m1, . . . , m4 are not collinear.
W.l.o.g. we can assume that these anchor points are m1, m2, m4, i.e. a2b4 6= 0.

Now we are left with the following 3 possibilities:

a. mi, mj, m5, m6 collinear

b. mi, mj,m3,mk collinear

c. mi,m3,m5,m6 collinear





with i, j ∈ {1, 2, 4}, i 6= j and k ∈ {5, 6}.

A detailed case study (see presented paper) shows that these 3 cases only yield
contradictions. Therefore the theorem is proven. �

19th IEEE International Workshop on Robotics in Alpe-Adria-Danube Region, Budapest June 23-25 2010, Hungery 13



[5] Main theorem

Main theorem on SGPs with a linear singularity surface
A SGP has a linear singularity surface iff the platform and base are planar and affine
equivalent and neither the base nor platform anchor points lie on a conic section.

Proof: There exists a regular affinity κ between corresponding anchor points.

W.l.o.g. we can choose coordinate systems in the platform and the base such that
A1 = B1 = B2 = a1 = b1 = b2 = 0 and ci = Ci = 0 for i = 1, . . . , 6 hold.
Moreover we can assume that the anchor points M1,M2, M3 are not collinear.

Therefore κ is determined by Mi 7→ mi for i = 1, 2, 3 =⇒ Q = a2b3HW1W2W3:

• W1[48]= 0 ⇐⇒ Six base points lie on a conic (architecture singularity).

• W2[12] is independent of ti and cannot vanish for all poses of the platform.

• W3[32] is linear in ti and cannot vanish for all poses of the platform. �
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[5] Remarks

Remark 2.
Karger [2002] showed that planar SGPs with
affinely equivalent platform and base have self-
motions only if they are architecturally singular.
Such SGPs only have translatory self-motions
(cf. figures from Karger [2001]). ⋄

Remark 3.
The radius of the largest singularity free sphere
in the space of translations (for a fixed orien-
tation) can be given explicitly (via the Hessian
normal form of the plane W3 = 0) for all SGPs
with a linear singularity surface. ⋄
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[6] Conclusion

Based on the set of SGPs with a non-cubic singularity surface (cf. Nawratil [2010])
we determined all SGPs with a linear singularity surface.

Main theorem on SGPs with a linear singularity surface
A SGP has a linear singularity surface iff the platform and base are planar and affine
equivalent and neither the base nor platform anchor points lie on a conic section.

As a side product of this main theorem and the results of Nawratil [2010] we can
also characterize all SGPs with a quadratic singularity surface:

Corollary
A non-architecturally singular SGP has a quadratic singularity surface if and only if
the manipulator is planar and rk(M) = 4 holds or if the manipulator is non-planar
and there is a (regular or singular) affinity between corresponding anchor points.
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