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Abstract. In Section 1, we give a review on Stewart Gough (SG) platforms with self-motions and 
the related Borel Bricard problem. Moreover, in Section 2, we report about recent results achieved 
by the author on this topic (SG platforms with type II DM self-motions). In context of these results, 
we also present two new theorems in Section 3, which open the way for addressed future work. In 
Section 4, we give some final remarks on planar SG platforms with type I DM self-motions and 
formulate a central conjecture.  

1 Introduction 

A Stewart Gough (SG) platform is a parallel manipulator consisting of a moving platform, which is 
connected via six sphercial-prismatic-universal legs with the base, where the spherical and universal 
joints are passive and the prismatic joints are active. Therefore, the geometry of a SG platform is 
given by the six base anchor points iM  and by the six platform anchor points im  for 6,...,1=i . A 

SG platform 61,...,Mm  is called planar if 61,...,mm  as well as 61,...,MM  are coplanar.  

If the geometry of the SG platform and the six leg lengths are given, then the manipulator is in 
general rigid in one of its 40 possible assembly modes. But, under particular conditions the 
manipulator can have 0>n  degrees of freedom. The resulting n -parametric motion is called self-
motion. Clearly, in each pose of a self-motion the SG platform is singular; i.e. the carrier lines of 
the prismatic legs belong at least to a linear line complex (cf. [1]).  
 
1.1 Historical background. All self-motions of SG manipulators are solutions to the still unsolved 
problem posed by the French Academy of Science for the Prix Vaillant of the year 1904, which 
reads as follows:”Determine and study all displacements of a rigid body in which distinct points of 

the body move on spherical paths.”  
The papers of Borel [2] and Bricard [3] were awarded prizes, but both authors only presented partial 
solutions as they assumed that there are linear relations between the direction cosines of the motion 
(for more details see [4,5]).  Therefore this problem is also known as Borel Bricard (BB) problem. 
Moreover, displacements where distinct points have spherical paths are also called BB motions.  
But, it should be noted that some results on BB motions were already known before the year 1904: 
 

(a) Chasles [6] recognized within a static context, that if the points of two conic sections are in a 
projective correspondence, then there exists a spatial motion, which keeps the corresponding 
points at fixed distance.  

(b) The only non-trivial motion, where all points of the moving system have spherical paths, was 
presented1 by Bricard [7] in 1896.  

(c) Moreover, in 1897 Bricard [8] proved the existence of three types of flexible octahedra in the 
Euclidean 3-space.  

(d) In 1898, Duporcq [9] stated his famous theorem (for more details see [10]).  

                                                           
1 The uniqueness of this motion was later proven by Bricard in [3].  



 

(e) The motions where all points of a straight line have spherical trajectories where studied by 
Duporcq [11], Mannheim [12] and by Darboux in his note to the book of Kœnigs [13].  

 
It was not until 1937 that a further important contribution to the solution of the BB problem was 
given by Krames study [14,15] of line-symmetric motions (cf. [16]). All later investigations of BB 
motions were done in the context of self-motions of SG platforms, which are reviewed next. 
 
1.2 Stewart Gough platforms with self-motions. It is well known, that manipulators, which are 
singular in every possible configuration, possess self-motions in each pose because they are 
redundant. These SG platforms are called architecturally singular [17] and their designs are 
characterized in [18,19,20,21] for the planar case and in [22,23] for the non-planar one.2 Therefore, 
we are only interested in non-architecturally singular SG platforms with self-motions. Until now 
only few examples of this type are known, as their computation is a very complicated task:  
The first paper mentioning self-motions, was written by Husty and Zsombor-Murray [28], where 
SG platforms with Schönflies self-motion of item (b)3 were reported. Beside these manipulators, 
further SG platforms with a line-symmetric self-motion (which was already known to Borel [2], 
Bricard [3] and Krames [15]) was given in Zsombor-Murray et al. [30].  
Moreover, Husty and Karger [31] proved that the list of Schönflies Borel Bricard motions given by 
Borel [2] is complete.  
Karger studied also planar parallel manipulators of SG type with affinely equivalent platform and 
base [32] (for the special cases of equiform and congruent platforms see [33] and [34], respectively) 
with respect to their self-motions.  
The self-motions of TSSM designs (and 6-3 SG platforms, respectively) with intersecting rotary 
axes correspond to Bricard’s flexible octahedra [8]. Recently, a complete list of self-motions of 
TSSM designs (and 6-3 SG platforms, respectively) was given by the author in [35,36] as by-
product of the determination of all flexible octahedra in the projective extension of the Euclidean 3-
space [37]. Moreover, the author presented in Theorem 8 of [38] a result on the self-motional 
behaviour of a remarkable set of planar Schönflies-singular SG platforms.  
The classification of all self-motions of the original SG platform was done by Karger and Husty 
[39]. Based on this study, Karger [40,41] presented a method for designing planar SG platforms 
with self-motions of the type 00 =e , where 0e  denotes an Euler parameter.  

Further SG platforms, where the self-motions have a planar spherical image, can be computed with 
a pure algebraic method presented by Geiß and Schreyer [42]. This publication also shows the 
limitation of the proposed method and that geometric-kinematic considerations are essential for the 
solution of the BB problem.  

 

Figure 1. Octahedral manipulator: (a) Cubic C of base anchor points. (b) Cubic c of platform 
anchor points. Moreover, iu  and iU  ( 6,...,1=i ) are displayed as well as some additional legs of Λ. 

                                                           
2 Nevertheless, architecturally singular designs are well studied, less is known about their self-motions (cf. [24,25,26]). 
As demonstrated by Sommese and Wampler (e.g. [27]) the method of numerical continuation is a powerful tool for the 
numeric computation of these self-motions. 
3 Planar SG platforms of this type are also called polygon platforms (cf. [29]). 



 

2 Recent results on SG platforms with self-motions 

In recent publications [43,44,45,46] of the author, it was shown, that based on the geometric-
kinematic approach of redundancy, amazing new results can be achieved in the field of self-motions 
of SG platforms. In this section we give a short overview of these results.  
Mielczarek et al. [47] investigated redundant SG platforms with a maximal forward kinematics 
solution set.  They showed that the set Λ of additional legs, which can be attached to a given planar 
SG platform 61,...,Mm  without restricting the forward kinematics, is determined by a linear system 

of equations given in Eq. (30) of [47]. As the solvability condition of this system is equivalent with 
the criterion given in Eq. (12) of [48], also the singularity surface of the manipulator does not 
change by adding legs of Λ. Moreover, it was shown in [47], that in the general case Λ is one-
parametric and that the base anchor points as well as the corresponding platform anchor points of Λ 
are located on planar cubic curves C and c (see Fig. 1). Note that C and c have to do with the cubic 
correspondence of point paths and the centers of their osculating spheres (cf. page 142 of [49]). 
 
Assumption 1. We assume that there exist such cubics c and C (which can also be reducible) in 

the Euclidean domain of the platform and the base, respectively.  
 
The correspondence between the points of C and c in the complex projective extension 3P of the 
Euclidean 3-space is determined by the geometry of the manipulator 61,...,Mm  and can be 

computed according to [47,48]. As this correspondence has not to be a bijection (see Fig. 1), a 
point 3P∈  of c or C, respectively, is in general mapped to a non-empty set of points 3P∈  of C or 
c, respectively. We denote this set by the term corresponding location and indicate this fact by the 
usage of brackets {}. In 3P  the cubic C has three ideal points 1U , 2U , 3U  and we can compute the 

corresponding locations }{ 1u , }{ 2u , }{ 3u  of c. We denote the ideal points of c by 4u , 5u , 6u  and 

compute the corresponding locations }{ 4U , }{ 5U , }{ 6U  of C (see also Fig. 1).  

 
Assumption 2. For guaranteeing a general case, we assume that each of the corresponding 

locations }{ 1u , }{ 2u , }{ 3u , }{ 4U , }{ 5U , }{ 6U  consists of a single point.  Moreover, we assume that 

no four collinear platform anchor points iu  or base anchor points iU  ( 6,...,1=i ) exist. 

 

Now the basic idea can simply be expressed by attaching the special legs iiUu  of Λ with 6,...,1=i  

to the manipulator 61,...,Mm . The attachment of the leg iiUu  for }3,2,1{∈i  corresponds with the 

so-called Darboux constraint (cf. [50] and Darboux’s note to the book of Kœnigs [13]), that the iu  

moves in a plane of the fixed system orthogonal to the direction of the ideal point iU  (see Fig. 2a). 

The attachment of the leg iiUu  for }6,5,4{∈i  corresponds with the so-called Mannheim constraint 

(cf. [12,51]), that a plane of the moving system orthogonal to iu  slides through iU  (see Fig. 2b).  

 

Figure 2. Octahedral manipulator: (a) Darboux constraint ( 1=i ). (b) Mannheim constraint ( 6=i ). 



 

By removing the originally six legs iiMm  with 6,...,1=i  we remain with the manipulator 61,...,Uu , 

which is uniquely determined due to Assumption 1 and 2. Moreover, under consideration of these 
two assumptions, the following statement holds (cf. [43]): 
 
Theorem 1. The manipulator 61,...,Uu  is redundant and therefore architecturally singular.  

Moreover, all anchor points of the platform 61,...,uu  and of the base 61,...,UU  are distinct.  

 
It was also proven in [43] that there only exist type I and type II Darboux Mannheim (DM) self-
motions, where the definition of types reads as follows:  
 
Definition 1. Assume Ψ is a one-parametric self-motion of a non-architecturally singular SG 

platform 61,...,Mm . Then Ψ is of type n  DM if the corresponding architecturally singular 

manipulator 61,...,Uu  has a n -parametric self-motion.  

 
In [44,45] the author proved the necessity of three conditions for obtaining a type II DM self-
motion. Moreover, a geometric interpretation of these conditions was given, which also identifies a 
new property of type 1 Bricard octahedra (see Fig. 3). Based on these necessary conditions, the 
author [46] was able to determine all planar SG platforms (fulfilling Assumption 1 and 2) with a 
type II DM self-motion.  These manipulators are either generalizations of type 1 Bricard octahedra 
(12-dimensional solution set) or special polygon platforms (cf. footnote 3; 11-dimensional solution 
set). Moreover, it was shown that the type II DM self-motions of all these SG platforms are line-
symmetric and octahedral, where the latter property is defined as follows:  
 
Definition 2. A DM self-motion is called octahedral

4
, if the following triples of points are collinear 

for ikji ≠≠≠  and }3,2,1{,, ∈kji : 
 
 ),,( 6uuu ji , ),,( 5uuu ki , ),,( 4uuu kj , ),,( 54 kUUU , ),,( 65 iUUU , ),,( 64 jUUU .   (1) 

 

Figure 3. The vertices av  and bv  of a type 1 Bricard octahedron a1 , b1 , a2 , b2 , a3 , b3  are  

symmetric with respect to the line l  for }3,2,1{∈v . The following three planes have a common line 

ijkT : (i) plane orthogonal to ]2,1[ ji  though '3k , (ii) plane orthogonal to ]3,2[ kj  though '1i , (iii) plane 

orthogonal to ]1,3[ ik  though '2 j , with 'ii ≠ , 'jj ≠ , 'kk ≠  and },{',',',,, bakjikji ∈ . This is 

illustrated for akji ===  in (a). In (b) all eight possible axes ijkT  are displayed. 

                                                           
4 The reason for this nomenclature, which was introduced by the author in [43], is that all octahedral manipulators 
have this point-configuration. For i=1, j=2 and k=3 this can be seen in Fig. 1. 



 

3 New results in the context of Assumption 1 and 2 

In the following we present the basic result for the determination of all planar SG platforms with a 
type II DM self-motion, where Assumption 1 holds in contrast to Assumption 2. For the study of 
this case, which is dedicated to future research, we can always assume without loss of generality 
(w.l.o.g.) that four platform anchor points iu  or four base anchor points iU  are collinear, due to the 

following theorem:  
 
Theorem 2. Given is a planar SG platform fulfilling Assumption 1. If one cannot choose anchor 

points within }{ 1u , }{ 2u , }{ 3u , }{ 4U , }{ 5U , }{ 6U  such that four platform anchor points iu  or base 

anchor points iU  are collinear, then each of these corresponding locations has to consist of a 

single point.  
 
Proof: We choose an arbitrary manipulator 61,...,Uu  within the set of all possible manipulators 

determined by the corresponding locations }{ 1u , }{ 2u , }{ 3u , }{ 4U , }{ 5U , }{ 6U . For the same 

reasons as given in the proof of Theorem 1 of [43], this manipulator is redundant and therefore 
architecturally singular. Moreover, due to [18,20] we know that architecture shakiness of a planar 
manipulator does not change under even different projectivities of the platform and the base. This 
property is important for the following argumentation:  
Due to Lemma 3 of [18], there always exist four pairs of anchor points such that the anchor points 
in the platform and the corresponding ones in the base form quadrilaterals. After permutation of 
indices, we can assume w.l.o.g. that these four pairs equal ),( ii Uu  for 4,...,1=i . Then we apply 

projectivities to the platform and the base such that the anchor points have the following projective 
coordinates in the platform and the base, respectively: 
 

)0:0:1(11 == Uu , )0:1:0(22 == Uu , )1:0:0(33 == Uu , )1:1:1(44 == Uu .   (2) 

 
Now we have exactly the same situation as in Section 3 of [20], where Röschel and Mick 
considered the regular projectivity κ determined by 

ii Uu a  for 4,...,1=i . They demonstrated that 

there only exist more than six pairs of anchor points if 55 uU = κ holds. In this case all 

corresponding point pairs on the conic sections k  and k κ determined by 51,...,uu  and 51,...,UU , 

respectively, are possible anchor points. Note that also 66 uU = κ holds and that this case 

corresponds with item (a) of Section 1.1. As any regular projectivity κ is a bijection, each of the 
corresponding locations has to consist of single point, which finishes the proof.     
 
Under consideration that Γ denotes the set of planar architecturally singular manipulators with no 
four points collinear, which do not belong to item (a) of Section 1.1, we formulate the following 
theorem:  
 
Theorem 3. To any planar SG platform 61,...,Mm  with exception of the set Γ, at least a one- 

parametric set of legs Λ can be attached without changing the forward kinematics and singularity 

surface.  
 
Proof: For the proof we consider the linear system of equations given in Eq. (30) of [47] (cf. second 
paragraph of Section 2): 
 

D TT

761 ),...,( δλλ =  with D ),...,( 61
TT

δδ=  and ),,,,,,,,1( iiiiiiiiiiiii BbAbBaAaBAba=δ ,  (3) 



 

where ),( ii ba  and ),( ii BA  are the coordinates of the platform and base points, respectively. 

Moreover, the points with index 7 represent the anchor points of the additional legs of Λ. In the 
following, we have to distinguish two cases:  
 

• For rank(D) 6<  the manipulator 61,...,Mm  is architecturally singular (cf. Remark 1 of [20]).  

Due to the considerations given in the proof of Theorem 2, we only have to investigate the 12 
cases of architecturally singular SG platforms with four points on a line, which were listed by 
Karger in Theorem 3 of [22]. Due to the geometric interpretation given in Section 5.1 of [22] 
for the cases 1–10 and in Section 3 of [19] for the cases 11–12, it is clear that we can attach in 
each case at least a one-parametric set of legs without changing the forward kinematics and 
singularity surface.  

• If the rank of D is maximal, i.e. rank(D) 6= , then we can solve six from the nine equations of 
Eq. (3) for 61,...,λλ . Plugging the resulting expressions in the remaining equations yield three 

conditions in four unknowns ( 7777 ,,, BAba ). Therefore, we get at least a one-parametric 

solution set, which finishes the proof.          
 
Beside the result of Theorem 3, only the following non-trivial exceptional case of Assumption 1 is 
known to the author5: To a planar SG platform, where the platform and base anchor points are 
related by a projectivity (so-called planar projective SG platform), one can add a two-parametric set 
of legs without changing the direct kinematics and singularity surface, whereas the correspondence 
of anchor points is given by the projectivity itself (cf. [52]). In this context it should be noted, that 
based on this redundancy property, the author [52] was recently able to prove the following result: 
 
Theorem 4. Non-architecturally singular planar projective SG platforms can only have elliptic 

self-motions (cf. Definition 1 of [52]) or pure translational self-motions. In the latter case the 

projectivity has to be a regular affinity t+Tx (⇒  planar affine SG platform), where the singular 

values 1s  and 2s  of the 22 ×  transformation matrix T with 210 ss ≤<  fulfill 21 1 ss ≤≤ . 
 
For more details on these self-motions6 and further properties of planar projective (affine) SG 
platforms, we refer to [52]. But, it should be mentioned, that all planar affine SG platforms, with 
exception of those given in Theorem 4, only have ”ordinary” singularities causing a local shakiness 
of the manipulator but no self-motion itself. Note that a self-motion is extremely dangerous in 
practice, as the manipulator collapse under the force of gravity in an uncontrollable manner, which 
can damage or even destroy the manipulator and endangers the operators. Therefore such classes of 
manipulators, which are free of self-motions, are also of interest for designers. 

 

Figure 4. Octahedral manipulator: (a) Butterfly motion. (b) Spherical four-bar motion. 
                                                           
5 A completion of this list of special cases is dedicated to future research.  
6 Until now it is open whether planar projective SG platforms with elliptic self-motions even exist, as no example is 
known to the author so far. The study of this problem is also dedicated to future research.  



 

4 Final remarks and central conjecture 

Finally, we should also devote some words to type I DM self-motions under consideration of the 
following definition, which refines the proposed classification scheme (cf. Definition 1 and 2) of 
SG platforms with self-motions: 
 
Definition 3. Assume a planar SG platform is given, where one can add the set Λ of legs

7
 without 

changing the direct kinematics and singularity surface. A self-motion of this manipulator is called 

degenerated, if one can add further legs beside Λ to the planar manipulator without restricting the 

self-motion.  
 
Until now the following type I DM self-motions are known to the author, which can be classified as 
follows:  
 

i. The butterfly motion (see Fig. 4a) and the spherical four-bar motion (see Fig. 4b) of the 
octahedral manipulator [53] and the corresponding motions of the original SG platform [39]. 
Note that all these self-motions are degenerated and that they are pure spherical motions. 
Moreover, it can easily be seen that any SG platform with four collinear anchor points 
possesses a butterfly self-motion. 

ii. In general8, a polygon platform (cf. footnote 3) possesses a degenerated type I DM self-
motion, which is not a pure spherical motion but a Schönflies motion.  

iii. Non-degenerated type I DM self-motions are the self-motions of Bricard octahedra of type 2 
and type 3 (cf. [8]). 

 
In view of all SG platforms with self-motions, known to the author (cf. Section 1, 2, 3 and 4), we 
have good reasons to close this paper with the following central conjecture: 
 
Conjecture 1. All non-degenerated one-parametric self-motions of non-architecturally singular 

planar SG platforms, fulfilling Assumption 1 and 2, are octahedral.  

5 Summary 

In Section 1 we reviewed literature with respect to SG platforms with self-motions and the related 
historical background in form of the Borel Bricard problem. To the best knowledge of the author 
the presented list of relevant references given in the paper is as complete as possible.  
Moreover, in Section 2 we reported about recent results on SG platforms with type II DM self-
motions, which were achieved by the author within the last year.  
In Section 3, we presented two new theorems, which open the way for addressed future work on SG 
platforms with self-motions. In this context, we also described a set of SG platforms which is free 
of self-motions. 
Moreover, in Section 4 we listed all planar SG platforms with type I DM self-motions known to the 
author. Finally, we closed the paper by a central conjecture, which has to be proved or disproved in 
the future. 
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