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Abstract. In this article we give the complete list of all non-architecturally singular parallel manipulators of
Stewart Gough type with planar base and platform, whose singularity set for any orientation of the platform
is a cylindrical surface with rulings parallel to a given fixed direction p in the space of translations. The
presented list has only two entries containing the geometric conditions of the corresponding manipulator
designs possessing such a singularity surface. These manipulators have the advantage that their singularity
set can easily be visualized as curve by choosing p as projection direction. Moreover the computation of
singularity free zones reduces to a 5-dimensional task. We close the paper by formulating a conjecture for
the non-planar case.
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1 Introduction

1.1 Fundamentals

The geometry of parallel manipulators of Stewart Gough type is given by six base an-
chor points M; := (A;,B;,C;)T in the fixed space and by six platform anchor points
m; := (a;,b;,c;)T in the moving space. By using Euler Parameters (eg,e1,ea,e3) for the
parametrization of the spherical motion group the coordinates m; of the platform anchor
points with respect to the fixed space can be written as m; = H ~I'R-m; +t with

e(z)—l—e%—e%—e% 2(ejer +epe3)  2(ejes —eper)
R:=(rij) = | 2(ere2—epe3) e%fe%Jre%fe% 2(eze3+eper) |, (1

2(ejez+eper)  2(exes —eper) e%—e%—e%—i—e%

the translation vector t := (tl,tz,t3)T and H := e(z) + e% + e% + e%. Moreover it should be
noted that H is used as homogenizing factor whenever it is suitable.

It is well known (see e.g. Merlet [6]) that the set of singular configurations is given by
Q :=det(Q) = 0, where the " row of the 6 x 6 matrix Q equals the Pliicker coordinates
(li,T,-) := (R-m; +t— HM;,M; x |;) of the carrier line of the i'" leg.

As we consider only manipulators with planar platform we may suppose ¢; = 0 for
i=1,...,6. Moreover we can choose the Cartesian frames in the fixed space and moving
space (w.l.o.g.) such that Ay = By = a; = by = by = 0 hold.
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1.2 Preliminary Considerations

The set of Stewart Gough Platforms whose singularity set for any orientation is a cylindrical
surface with rulings parallel to a given fixed direction p also contains the set of architec-
turally singular manipulators!. This is due to the fact that the singularity surface of these
manipulators equals the whole space of translations for any orientation.

It can easily be seen from the following example that the above two sets are distinct:
The non-planar manipulator determined by m; = my, m3 = my4, ms = mg and MM ||
M;3My || MsMg || p has for any orientation of the platform a cylindrical surface with rul-
ings parallel to the direction p without being architecturally singular (see Fig. 1 (a)). This
manipulator is in a singular configuration if and only if the three planes [M;,M;,my],
[M3, M4, m3] and [M5, Mg, ms] have a common intersection line. The singularity surface
is a quadratic cylinder (see Fig. 1 (b)) due to the (singular) affine correspondence between
the base and the platform (cf. Karger [3]).

Remark: As the direct kinematics of this manipulator can be put down to that of a 3-dof
RPR parallel manipulator, a rational parametrization of its singularity surface according to

Husty et al. [1] can be given. Moreover it should be noted that if we assume My, ..., Mg
coplanar we get an example for a planar parallel manipulator with this property. o
M;

Mg

My
(@) (b)

Fig. 1 Non-planar manipulator with cylindrical singularity surface: (a) Axonometric view. (b) Projection
in direction p: The singularity surface (with respect to the barycenter of the platform) is displayed as conic.

Now the question arises for the whole set of non-architecturally singular manipulators
possessing such a singularity surface. For the determination of this set we have to dis-
tinguish between planar and non-planar Stewart Gough Platforms because the structure (of
the subset) of architecturally singular manipulators depends on the planarity of the platform
and the base (cf. Karger [2, 4], Nawratil [9], Roschel and Mick [10]).

In this paper we restrict ourselves to the planar case and give only a conjecture for the
non-planar one (cf. section 5).

1.3 Prior Work

The following main theorem about planar parallel manipulators with a cylindrical singular-
ity surface was given in Nawratil [7].

! These manipulators which are singular in any configuration were introduced by Ma and Angeles [5].
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Theorem 1. The set of planar parallel manipulators with no four anchor points on a line
which possess a cylindrical singularity surface with rulings parallel to a given fixed di-
rection p for any orientation of the platform equals the set of planar architecture singular
manipulators (with no four anchor points on a line).

The analytically proof of this main theorem is based on the following idea:

We choose an Cartesian frame in the space of translations such that one axis #; is par-
allel to the given direction p. Then Q := det(Q) = 0 must be independent of #; for all
€o,...,e3,t,t with j # k # i # j. The proof is based on the resulting equations and Theo-
rem 1 of Karger [2], which is used to characterize the subset of planar architecture singular
manipulators (with no four anchor points on a line) algebraically. For more details we refer
to Nawratil [7, 8] 2.

As byproduct of the cited proof we get an-
other planar parallel manipulator with cylin-
drical singularity surface (cf. section 4 of
Nawratil [7]). The geometric properties of
this Stewart Gough Platform (see Fig. 2)
with planar base and platform are as follows:

M|,M;,M3,M, are collinear,
m;,mp,m3,my are collinear,
MM || MsM || p,

and ms5 = mg.

Fig. 2 A further example.

This manipulator is in a singular position if and only if m5 = mg lies in the carrier plane of
the base or if the carrier lines of M|, M, M3, M, and m;, m;, m3, my intersect each other.
Therefore the quadratic singularity surface always splits into two planes (parallel to p).

2 The Complete List

In the following theorem we give the complete list of all non-architecturally singular planar
parallel manipulators with cylindrical singularity surface.

Theorem 2. The set of non-architecturally singular planar parallel manipulators which
possess a cylindrical singularity surface with rulings parallel to a given fixed direction p
for any orientation of the platform contains only two elements, namely:

1. m; = mj, m; =m;, m, =m, and M,'Mj || MkM] || MmMn || )2
2. M;,M;, My, M; are collinear, m;,m;,my,m; are collinear, M,M,, || M;M; || p and
m;;, =my,

where (i, j,k,1,m,n) consists of all indices from 1 to 6.

Remark: The first entry of this list is the planar case of the manipulator presented in sub-
section 1.2 (see Fig. 1) whereas the second entry corresponds to the design repeated in
subsection 1.3 (see Fig. 2). o

2 The proof of Theorem 1 was given in two parts due to its length.
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2.1 Outline of the proof

The proof of Theorem 2 is organized as follows:

Due to Theorem 1 we only have to investigate planar parallel manipulators with four
anchor points collinear whereas we have to distinguish if the anchor points belong to the
platform (section 3) or the base (section 4). Within these sections we have to distinguish
several subcases which are performed as subsections and lower hierarchical layout struc-
tures, respectively.

Basically, the analytical proof of this theorem is based on the same idea as the one of
Theorem 1. The difference is that the subset of planar architecturally singular manipulators
with four points collinear cannot be characterized algebraically in such a way as it was
done for the case with no four points on a line (cf. Karger [2], Nawratil [7, 8]).

Therefore we use the entries 1 to 10 of the list of architecturally parallel manipula-
tors, planar or non-planar, with four collinear anchor points given in Karger [4] Theorem
3 and the corrected two degenerated cases from the planar case (entry 11 and 12) given in
Nawratil [9]. These twelve entries form the whole set of architecturally singular manipula-
tors with four points collinear.

2.2 Notation

As already mentioned above our proof is based on the equations which result from the fact
that Q := det(Q) = 0 must be independent of 7; for all e, ..., e3,1;,4 with j # k # i # jif
we choose a Cartesian frame in the space of translations with #; || p. Therefore we denote
the coefficients of 7i#;¢% from Q by Q. If possible we cross out the homogenizing factor
H from Q' and call the remaining factor again Q“*. Moreover we denote the coefficient
of efehesed of Ok by P .

The case study performed in section 3 and 4 can only end up with one of the following

four possibilities:

1. The i’* and the ;" leg coincide. As shortcut we use the symbol i| j for i, j € {1,...,6}.

2. We get a contradiction to any assumption. This case will be expressed by ! .

3. We end up with an architecturally singular manipulator which corresponds to the /"
entry of the list. As corresponding abbreviation we use E; with i € {1,...,12}.

4. We get one of the two possible solutions given in Theorem 2. These cases are indicated
by S; with i € {1,2}.

We use the introduced symbols to mark the factors of the considered equations whose
vanishing cause the corresponding case. In this way it is possible to give the proof in a very
compact and clear form.

Moreover it should be noted that the number n of terms of a not explicit given factor F
is written into square brackets, i.e. F[n].

3 Four platform anchor points are collinear

We set b3 = by = 0 such that the platform anchor points m;,m,, m3,my are located on a
line. In the following we must distinguish two cases depending on the parallelity of the
base and p.
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3.1 Base is not parallel to p

We set up the planar base as
Ci=B=0, C= [C2(33Ai —A3B)) +A2C3Bi] /(A2B3) for i=4,56. )

In this case we eliminate the coefficients of #3 from Q. Moreover we have to take into
account that the base anchor points M|, M,, M3 cannot be collinear 3 due to AyB3 # 0.
Therefore we cross out A, and B3 from Q¥ if possible and call the remaining factor again
Q7% 1f we compute 0% we see that r33 factors out, where r;; are the entries of the rotation
matrix R given in Equ. (1). From the remaining factor we compute

P5o0 — Posoo = bsbe(As — Ae)[B3(Azas — azAs) + Ba(Asar — azAs), (3)
Ploor — Porio = bsbe(Bs — Be)[B3(Azas — axAs) + B4(Azar — azAs)). 4)

Therefore we have to distinguish the following three cases:

3.1.1 bs =0

As b5 = 0 implies my,...,ms collinear we can assume bg # 0 (E|) and that no four points
from my, ..., ms coincide (Fs). In this case A, B3 # 0 (= M, M;, M3 cannot be collinear)
is no restriction because if the corresponding five base anchor points My, ...,Ms are also
on a line we get E3.

Part [A] Three points from my, ..., ms coincide
W.lLo.g. we set ap = a4 = 0 (= m; = mp = my, azas # 0) and compute
PZO(S)SO + POOZOOO = AzB4a3a5b6(B3 — B5) and Plo(())gl —|—P(()){)10 = AzB4a3a5b6(A3 —As), ®))

respectively. For By = 0 we get Eq and M3 = M5 yields E4.

Part [B] At most two points from my, ..., ms coincide
We set a, = 0 (= m; = my, azaqas # 0) and compute again
P5o0 + Poso0 = AabglazasBs(Bs — By) + asasBs(Bs — B3) + asasBs(Bs — Bs)],  (6)
PO+ PO = Aobg[azasBs (A3 — Ag) + azasBa(As — A3) + asasB3(Ay — As)]. (7)
The resultant of these equations with respect to a3 yields
A2*be*Byasas (asBs — Baas) (BsAs — ByAs + A4Bs — BsA3 +AsBs — B3Ag).  (8)

1. M3,M4,M;5 collinear:

a. Assuming B4 # Bs we can compute A3 from the collinearity condition. Then Equ.
(6) can only vanish for Aybg =0 (& ) or for a factor Tj[6] indicating the special
case of Ejp.

3Asa consequence we loss the case M, ..., My collinear and my, ..., my collinear. The missing cases will
be discussed in subsection 4.1.2 and 4.1.3, respectively.
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b. B3 = B4 = Bs: The polynomial of Equ. (7) can only vanish for Aybg = 0 (&),
Bs = 0 (E3) or a factor T [6] implying the special case of Eg.
c. My = Ms: Substituting A4 = As, B4 = Bs into Equ. (6) and (7) yields

A2a3b6 B5 ((14 — (15)(33 — Bs) and A2(13b635 (114 — (15)(143 —As), (9)
N S~

Eg 415

respectively. The remaining case M3 = Mj yields Eg.

2. Bs = Bsas /a4 and M3, My, M5 not collinear: Then Equ. (6) and (7) yields
AzasbgBa(as — as)(Bsas — a3By)/as  and  Azasbe(As — As)(Bzas —azBs), (10)

respectively. The three remaining cases (By =0, A4 = As | as = a5, Ay = A5 | B3 =
Byas /ay) imply the collinearity of M3, My, Ms (4).

Part [C] The points my,...,ms are pairwise distinct

In this case we factorize Q%' = beF\[10]F>[16]F3[132]. As the coefficient of epey from
F; =0 equals AyB3 (&) we set F3 = 0: Computing jo + j» yields A2K, where j; denotes
the coefficient of ¢7 from F3. Moreover Py, + Posgy = beK) holds and therefore the two
conditions K| = K, = 0 given in Karger [4] Equ. (17) indicating E1o must be fulfilled.

We proceed with F, = 0: A2B3Ag and AyB3Bg are the coefficients of epey and epeq,
respectively. As for Ag = Bg = 0 the factor F> vanishes we factorize QO02 = ber33F1F3

which finishes this part.

3.1.2 M5 = Mg
We set A5 = Ag, Bs = Bg and compute the following four linear combinations:

003 003 003 003 002 002 002 002
Pyoo +Fo200 =M1, Proot +Forio =N2, - Pspig+Proso =A2B3N3,  Pyoit — Prigo =A2B3Ny.
(11)
This implies N; = N, = N3 = N4 = 0 which are the four conditions given in Nawratil [9]
indicating Ej;.

Remark: The four conditions also indicate Ej; which can be regarded as a special case of
E15 (cf. Nawratil [9]). Moreover as we only consider planar architecturally parallel manip-
ulators with four points collinear the cases E; and Ey are also special cases of Ej;. o

3.1.3 B3(Aras — apAs) + B4(Azar —azAy) =0

W.Lo.g. we can assume bsbg # 0 and M5 # Mg. From the above condition we compute ay.

Computing P, + PO yields

B4D[B3b5 (Aza() — azA(,) +B3b(,(A5a2 — a5A2) + (B5b6 — b536) (A2a3 — a2A3)] (12)
with D := B3(Azas — arA3) + Ba(Azay — azAz). (13)

Part [A] B4 =0

Computing Q% yields
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ay Ag (Ay —A4)G[1736]/As. (14)
N ——
Es 14 24

Then we calculate G5()1() + G105() — G05()1 — G01()5 = A22332b5b6 (A6 —A5) where Gabcd de-
notes the coefficient of egebegef{ of G. Therefore we set As = Ag and compute Gao11 —

Goa11 — G140+ Gr104 = A2”B3bsbe (Bs — Bg) which yields Bs = Bg (4).

Part [B] D=0

Due to Part [A] we can assume By # 0. Nevertheless we have to distinguish the following
two cases:

1. Assuming B3 # B4 we can compute as from this equation, which yields m3 = my.

Factorizing P{yg; + Poy;, yields

an (B3A4 —AsB3; —A3By +AQB4)(A3B4 —B3A4)L[12]/((B3 —B4)2A2). (15)

Es Eg Eg

From L = 0 we compute as. Of course we can also factor out all the explicit given
factors of Equ. (15) from Q%?. Computation of the same linear combinations as in Part
[A] for the remaining factor G[5920)] yield the same contradiction.

2. Bz = By4: Then the condition of Part [B] simplifies to ayBs (A3 —A4) = 0. As A3 = Ay

yield 3|4 we set a, = 0 (= m; = m; and m3 = my). Factorizing PIO(())SI +P810130 yields

Ay a3 (A3 —A4) [bs ((1336 — (1634) + be (a5B4 — a335)]. (16)
~ ——
E Es 3[4
From the last factor we express again as. Now the contradiction can be seen by per-
forming the same computational steps as in the above case.

Part [C] B3bs (A2a6 - a2A6) + B3b6(A5a2 - asAz) + (Bsbg — b5B6)(A2a3 — a2A3) =0

W.l.o.g. we can express as from this condition. Moreover we can assume B4D # 0. Then
Pglogo — P(%)Szl =0 implies A5 = Ag. From PSO{)OZO — P{)SOOZO = 0 we get a3 = apA3/A;. Then we
consider

PR% — Py = AoB3Baarbsbe(A3 — As)(Bs — Bg). (17)

As ay =0 yields Es, we set A3 = As. Now P32, — P2 + P92 — P02, = 0 can only vanish

for architecturally singular manipulators (or & ).

3.2 Base is parallel to p

In this case we set C; = 0 for i = 1,...,6 and eliminate #; from Q. From Q' Q!0 (200
we can additionally factor out r3; and from 0200 0201 the factor ry3. In the following we
have to distinguish again three cases due to
Pyigy = bsbe(As — Aq)[B2(Asas — asAs) + B3(Aras — axAs) + Ba(Asar — asAs)],  (18)
P20l = bsbe(Bs — Bs) (B2 (Asas — asA3) + B3 (Azay — arAg) + Ba(Azar — azAz)].  (19)
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3.21 b5=0

As bs = 0 implies my, ..., ms collinear we can assume bg # 0 (E}) and that no four points
frommy,...,ms coincide (E5).

Part [A] Three points from my, ..., ms coincide

W.lLo.g. we set ap = a3 =0 (= m; = mp = m3, agas # 0) and compute
Pl = asasbe(Bs — By)(A2Bs — BaA3),  Pilay = asasbs(As — Ag)(A2B3 — BoA3z). (20)

If the last factor vanishes we get Eq and My = M3 yields E4.

Part [B] At most two points from my, ..., ms coincide
We set a; = 0 (= azagas # 0) and compute Pi, — Pk — PLit, + P, which yields
azagasbgBy (B5A3 —A3B4+A4B3 + B4As — BsAy — B3A5). 21

1. M3,My4, M5 collinear.

a. B4 # Bs: Under this assumption we can compute A3. Substituting this into P]200110

yields bgTi[14] where T[14] = 0 implies the special case of Ejg.

b. Bz = B4 = Bs: Here PJ}) yields bsT>[12] where T>[12] = 0 implies the special case
of E] 0-

c. My = Ms: Computing Plz(g)llo and le(%zlo yields

a3b6(A2B5 —A532)(d4 - a5)(B3 —Bs), b6a3 (AzBS —A532)(d4 - 05)(143 —AS).
————— N~

Eg 45
(22)
The remaining case M3 = Ms implies Eg.

2. B, =0 and M3,My,Mj5 not collinear: The resultant of Plzgllo =0 and le(}zlo = 0 with
respect to a3 yields

A>? agasb?(BsAs — A3By + AyBs — B3As — AyBs + BsA3)Bs(asBs —asBy).  (23)

12 b (M3, My, M; collinear)

a. B3 = 0: Substituting this into P2 yields AxbgazBsBs (as — as). As Py, = 0 im-
plies only contradictions for a4 = as we set By = 0. Now P}1}; can only vanish for
Bs = 0 which yields E3 (or ).

b. Bs = Bjas/as: Computing P2101210 and Plzoollo yield

A205b6 (B3(l4 — B4a3)(A4 —As), A205b634 (B3a4 — B4a3)(a4 — 615)/614. (24)
The three remaining cases (Bs =0, Ay = As | as = as, Ay = As | B3 = Bsaz/aa)
imply the collinearity of M3, My, Ms ().
Part [C] The points my, ..., ms are pairwise distinct

We compute P20l, = beK;[24] and PXY) = beK3[24]. The set of equations Ki = Kj = 0 is
the generalized version (B; # 0) of the one given in Karger [4] Equ. (17) indicating E.
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3.2.2 Ms = Mg

We set A; = Ag, Bs = Bg and consider the following coefficients:
Pioio = Ni[48], Py =N3[48], Piglo = N3[48],  Payo =N;[48].  (25)

The four conditions Ni = N = N3 = N; = 0 are the generalized version ( B, # 0) of those
given in Nawratil [9] indicating E>.

3.2.3 By(A4a3 — asAsz) + B3(Azas — apAs) + Ba(Azaz — a3A;) =0

First of all we can assume M5 # Mg as well as bsbg # 0. Moreover we can assume a4 7% 0
because a; = a3 = a4 = 0 yields Es.

Part [A] Azar —a3zA; #0
Under this assumption we can compute Bs. Computing Py{%, — P4, + P30 — PI%, =0
and le(%)o =+ Polggz = 0 shows that the following three cases must be distinguished:
1. aaz =0: W.lLo.g. we set ap =0 (= m; = my). We compute
Pyto + Patuo + o + oo = aabsbe(As — Ae)(as — as) (BsAy — B2A3),  (26)
PiMlo + Potts + Pilor + Plody = aabsbe(Bs — Bs)(As —As) (BsA2 — BoA3).  (27)
As a3 = a4, A3 = A4 yields 3|4 only three cases remain:

a. a3 = ag, Bs = Bg, A3 # A4: Then P2y, = 0 implies B, = 0. From P} = 0 we get
the following two cases:
i. B3y =Bg: P2101210 = Bg Ay as(A3—As)(asbs — asbe + asbg — bsag).
—~

Ep 12 ? S>(+m3=my)
il. as = agbs/be: P2101210 = Bg A ai(A3 —Ay)(bs —bg).
E 12 S|

b. A3 =As4, As = A, a3 # as: The equation ;L)) — POl + PlS, — PloL, = 0 can only
vanish without contradiction for B3 = ByA4 /A, which implies Mz = My (Eg).
c. B3 = ByA3/A; (= M, My, M; collinear): Now we consider
PO+ pI00 4 plO0 4 Pl — 43 aubsbe(As —As)Ba(AsBg — AgBs).  (28)
2110 T Lor12 + 41201 T 11021 3 asbsbe(A3 —A4)Ba(AsBs —AgBs).  (
Eq Eg

i. By =0: As Ay = 0 yields 1|2 the condition P\ + PLL0, = azasbsbeAs(Bs —
Bs) (A3 — A4) implies Bs = Bs. Computing Py, and P53 yields

A2a3a4B6 (A3 —A4) (b5 - b6) 5 A2a3a4B(, (A3 —A4) (a(,b5 - a5b6) . (29)

Bg = 0 implies E;. The remaining case ms = mg yields S>(+m; = my).
ii. AsBg —AgBs =0, By # 0: The condition Plzlo(())O = 0 can only vanish for archi-
tecturally singular manipulators (or ).
2. Az(a4 — a3) —|—A3(a2 — a4) +A4(a3 — az) =0, apaz #0:

a. Assuming A, # Az we can express a4. Computing P41(?210 +P218410 +P()IA(,)(}2 +P()12()(}4 and
101 101 101 101 5
Pytio t Fora + Prgor + Progy yield
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b5b6(a2 — a3)2(A4 —Az)(Ag, —A4)(B2A3 —B3A2)(A5 —AG)/(A_?, —Az)z, (30)
bsbg(ar —az)(As —A2)(A3 —A4)(B2A3 — B3A)(Bs — Bg) /(A3 — A). 3
Eg 2|4 3|4

As M5 = Mg yields a contradiction we set B3 = BA3/A5. It should be noted that

we can assume A, # 0 (w.o.1.g.) due to A, # A3. Computing P2110100 + Pollofz + Pll%)l +

P]I(?QO] yields

bsbe(a2A3 —azAz)(az —az)(As — Az) (A3 — Ay) (BsAs — BsAg) B2 /[A2 (A3 — Az)].

1 Es 204 34

(32)
i. By =0: Now PZIIIPO —|—P1]21(())1 = 0 implies Bs = Bg. Then ledzlo and P2101200 can only
vanish for Bg = 0 (E|) or ms = mg (S, with an additional condition on ay).
ii. BeAs —BsAg =0, By # 0: The condition P75}, = 0 can only be fulfilled if the
manipulator is architecturally singular (or ).

b. A, = Aj3: Then the condition already yields A3 = A4 due to a; # a3. Then lellloo +
Pllzl(())l =0 implies As = Ag. Now Pz&?llo — Pol{)1]4 + Pfﬁ}l — Pll&ll can only vanish for
architecturally singular designs (or & ).

3. BoA3s —AyB3 =0,A5(as —a3) +As(ar —aa) +As(az —ay) # 0, azaz # 0: W.l.o.g. we

can assume Ay # 0 due to the condition of Part [A]. Therefore we set B3 = BoA3 /A,
(= My,...,My collinear). Now P70}, vanishes for bsbg =0 (%), CR; = 0 with

CR; := a4ArA3 (03 — az) + a3A2A4(a4 — az) + a2A3A4(a4 — ag) (33)

implying Eg or the following two cases:

a. B = 0: Now P2101210 = 0 implies Bs = Bgbs/bs. Then le(}go and P2111?0 JrPllzl(())1 can
only vanish for B¢ =0 (E1), bs =0 (% ), CR1 =0 (Eg) or ms = mg (S7).

b. Bs = (A2Bg + BaAs — BoAg)/Az, By # 0: Now Pyl = 0 implies bs = bg. From
PJi% =0 we get ms = mg. Then PJ3 = 0 can only be fulfilled if the manipulator
is architecturally singular (or k ).

Part [B] Asaz — asAz = Ayas — arAqy = Azar —azAy =0

From the above conditions we can express Ay and As. Computing PJ0) — Pi%, + PO, —
Pllgzol =0and leé’é)o + Polzo(())2 = 0 shows that the following three cases must be distinguished:

1. A4 =0: Now Plzlogo can only vanish for bsbg =0 (& ), CRy = 0 with

CR) := a4B)B3 (a3 — az) + a3BzB4(a4 — az) + azB3B4(a4 — 613) (34)

implying Eg or As = Ag. From P!} = 0 follows bs = be and from P, = 0 we get

as = ag. Now Q'°! can only vanish for architecturally singular manipulators (or }).
2. apaz =0, A4 # 0: Wlo.g. we set ap = 0 (= m; = my). We compute

Pi630 + Pagio + Posy + Posos = bsbeAaBaasz(as — as)(As — Ag), (35)
PPl + Pty + Pl + Plg4, = bsbeAsBoas(as — as)(Bs — Be). (36)

a3 = 0 implies Eg, B, = 0 yields 1]|2. Therefore we set a3 = a4 (= m3 = my). Now
Plzlo(())U implies A5 = Ag and from lezo(())o we get A4 = Ag. Then Plzgllo yields as = (asbg —
asbs +bsag) /be. P+ Padly — Plig; — Py shows that as = ag must hold. Now Q'%!

can only vanish if the manipulator is architecturally singular (or } ).



All Planar Parallel Manipulators with Cylindrical Singularity Surface 11

3. By(as —a4) + B3(as — az) + Ba(ax — a3) = 0, apazA4 # 0: W.lo.g. we can assume

ap # a3 because for ay = a3 = a4 we get Eg. Therefore we can express By from the

above Condit_ion- Now P, 4020 + P 21(())410_ + Poino +F o204 and Pyl -+ Potly + Pligy + Pios,
can only vanish for architecturally singular designs (or }).

4 Four base anchor points are collinear

In this section we assume that My, ..., My are collinear. Moreover we can always stop the
case study if four platform anchor points are collinear; with exception of the cases discussed
in subsection 4.1.2 and 4.1.3 (cf. footnote 3).

4.1 Base is not parallel to p

We set up the planar base as
C1 = B2 = B3 = B4 = O7 C,' = [C4(B6A,‘ —A6B,') +A4C6B,'] /(A4B6) for i= 2,3,5.
(37
In this case we eliminate the coefficients of 3 from Q. We factor out A4 and Bg from Q'/F

if possible and call the remaining factor again QK. After crossing out r33 from Q%3 we
compute

P30 + Posoo = BsBs(as — ae) [b3(azAs — Azas) + ba(azAr — Azar)), (38)
P{oor — Po\io = BsBs(bs — be) [b3(a2As — Asas) + ba(azAs — Azaz)). (39)

Therefore we have to distinguish the following three cases:

41.1 Bs=0
As Bs =0implies My,...,Ms collinear we can assume that no four points from My, ..., Ms
coincide (E5).
Part [A] Three points from My, ..., Ms coincide
W.lo.g. we set Ay = A3 =0 (= M| = M, = M3, A4A5 # 0) and compute
P50 — PiSeo = aab3A4AsBg(bs —bg), Pl + Pty = axb3A4AsBg(as —ag).  (40)

For ay; =0 we get 1

2, b3 =0 yields Eq and my = ms yields E4.

Part [B] At most two points from My, ..., M5 coincide
We set A, = 0 (= M| = M3, A3A4A5 # 0) and compute again

P30 — Posop = @2Bs(A3Asbs(bs — b3) +A3Asba(bs — bs) +AsAsbz (bs —bs)),  (41)
Py + POy = axBe(AsAabs(as — as) +AsAsba(as — as) +AaAsby(as —as)).  (42)

The resultant of these equations with respect to A3 yields



12 G. Nawratil
azzB%A4A5b3 (b5A4 — A5b4) (b4615 —asby + bzas — bzas — asbs + a3b5). 43)

The case bsA4 — Asby = 0 as well as the case of collinear points m3, m4, ms can be done
analogously to 3.1.1 Part [B,1] and 3.1.1 Part [B,2], respectively. Therefore we only have to
discuss b3 = 0 under the assumption bsA4 — Asby # 0 and m3, my, ms not collinear. Now
Equ. (41) simplifies to ayA3Bebabs(As — As). As for Ay = As the Equ. of (42) yields a
contradiction we set by = 0. Now Equ. (42) can only vanish for a3 = a4 (special case of
Ey).

Part [C] The points M, ..., Mj are pairwise distinct

In this case we factorize Q%! = BgFi[6]F>[22]F3[132]. As the coefficient of ege, form
F1 =0 equals A4 (k) we set F3 = 0: Computing jo — j» yields a,K, where j; denotes
the coefficient of e? from Fs. Moreover Py, — Py = BsK1 holds.

1. ap # 0: In this case the two conditions K; = K> = 0 given in Karger [4] Equ. (17)
indicating E19 must be fulfilled.
2. ay = 0: We compute

Py — PSSy = AaBs(bsbaas(As — As) + bibsas(As — As) + babsas(As — Ag)), (44)
PS4 POV = AaBs(azashs(Ag — A3) + azasba(A3 — As) +agasby(As — Ay)). (45)

As Ay = 0yields 12, we set the remaining factors equal to zero. If we solve the result-
ing linear equations for Az and A4, we get A3 = Ay = As (k ). This system cannot be
solved if m; = my, m;, m; collinear for i, j € {3,4,5} and i # j (}).

We proceed with F, = 0: A4Bgae and A4Bgbg are the coefficients of epep and ege;, re-
spectively. As for ag = bg = 0 the factor F> vanishes we factorize Q92 = B¢F; F3H which
finishes this part.

4.1.2 ms = Mg

We set as = ag, bs = bg and compute the following four linear combinations:

003 003 003 003 002 002 002 002
Prooo —Foa00 =N, Proot T+ Forio =N2, - Psgio+Proso =AaBeN3,  Pipit +Priig =A4BeNs.
(46)
This implies N| = N, = N3 = N4 = 0 which are the four conditions given in Nawratil [9]
indicating E1;.

4.1.3 b3(arAs —Aas) +ba(azAr —Azay) =0

Assuming ayb3 # 0 we can express A4. The rest of this case can be done 1 by 1 to section
3.1.3. Therefore we only have to discuss the special case axb3 = 0. If a = 0 holds, we can
set b3 = 0 without loss of generality. Hence, we start with b3 = 0. Now the condition splits
into by (a2A3 —A2a3) =0:

1. by = 0: Now P{gs; + P35y = 0 can only vanish for CR; = 0 (Eg) with CR; of Equ. (33)
or for bs = bgBs/Bg. Then PSO(())Oz1 - P?(?OZS = 0 implies as = a¢. The condition Pfloozl +
PY2 = 0 can only vanish for architecturally singular manipulators (or ).

2. Due to the last case we can assume by 7# 0. Moreover we can assume A3 # 0 as Ay =

Az = 0 yields Eg. Therefore we set a, = a3A; /A3. Now Plo&?l +P81()130 implies
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A3 [B5 (a4b6 — b406) — B5 (a4b5 — b4(15)] —dasj [Bs (A4b6 — b4A6) —|—B6 (A4b5 — b4A5)] =0.

(47)
From this factor we can express as. Then Pfglzl — Plolofo — nglzl +P10|0024 = 0 implies

bs = be. Computing P{%, + Pz, — Py, — PO yields
Ay (Ay—A3) a3 AsBebabg(AsBg+ BsAg — BgAs — A4Bs). 48)
~— ——
12 213 Eg

In both remaining cases the condition Pfﬁ% — Pg{)fl = 0 can only vanish for architec-

turally singular manipulators (or ¥ ).

4.2 Base is parallel to p and My, ... , My is parallel to p

In this case we set Bp = B3 = B4 =C; =0 fori=2,...,6 and eliminate #; from Q. From
Q' 200 3201 we can additionally factor out r3;. In the following we have to distinguish
again three cases due to

P{lo = BsBs(as — ae) [b3(a2As — Azas) + ba(asAr — Azaz)], (49)
P{ito = BsBs(bs — be) [b3(a2A4 — Azas) + ba(asAr — Azaz)]. (50)
4.2.1 Bs; =0
As Bs =0implies My,...,Mjs collinear we can assume that no four points from My, ..., Mjs

coincide (E5).

Part [A] Three points from My, ...,Ms coincide
W.lo.g. we set Ay = A3 =0 (= M| = My = M3, A4A5 # 0) and compute
lellllo = d2b3A4A5B6(b5 — b6) and le(;zlo = a2b3A4AsB6(a5 — aﬁ), (51)

respectively. For a; = 0 we get 1

2, by = 0 yields Eg and m4 = ms yields Ej.

Part [B] At most two points from My, ...,Ms coincide

We set Ay =0 (= M| = M3, A3A4A5 # 0) and compute the equations P2111110 =0and le(}zlo =
0 which are identically with those given in Equ. (41) and (42), respectively. Therefore this
case can be done analogously to 4.1.1 Part [B].

Part [C] The points M, ..., Mj are pairwise distinct

Now we compute QlOO = B6a2r31 (a6r13 + b6r23)K2 and P2111110 = BéKl. For ag = b6 =0we
compute Q%! = @, B¢H 13, K,.

1. ap # 0: In this case the two conditions K; = K, = 0 given in Karger [4] Equ. (17)
indicating Ejo must be fulfilled.

2. ap = 0: This case can be done analogously to 4.1.1 Part [C,2] if we replace the equa-
tions (44) and (45) by PJll, = 0 and Pj}}, = 0, respectively.
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4.2.2 ms5 = Ing

We set as = ag, bs = bg and compute Q''0 = r31(agri3 + bera3)G[120]. As ag = bg = 0
yields a contradiction we consider G100 = N; and G919 = N,. As it was shown in Nawratil
[9] the conditions N; = N, = 0 are not sufficient for case Ej,. There are three cases where
N1 = N> = 0 holds and the manipulator is not architecturally singular. From these three
designs only one (S>) possesses a cylindrical singularity surface (cf. Nawratil [9]).

4.2.3 bi(arAs —Azas) +ba(azAr —Azap) =0

W.lLo.g. we can assume b3 # 0, because b3 = by = 0 yields a contradiction (4 platform
anchor points are collinear).

1. Assuming A; # 0 we can express a4 from the above condition. Then we compute
P2220(())0 = a2b3b4B5B6 (A3 —A4)<b5 — bﬁ). As ay = 0 yields mip = myp,m3my collinear ( k )
there are three cases left:

a. For by = 0 we can compute As from the only non-contradicting factor of Q''!.
Finally Q*% can only vanish for architecturally singular manipulators (or ).

b. A3z = Ay, by # 0: We can again compute As from the only non-contradicting factor
of Q'''. Now Q''° can only vanish for architecturally singular designs (or ).

c. bs = bg, by # 0, A3 # A4: This can be done analogously to case b.

2. For A; =0 the condition simplifies to ay(A4b3 —Azbs) = 0. As ap = 0 yields 1|2 we set
A4 = A3by/bs. Finally Q°® can only vanish for architecturally singular manipulators

(or b).

4.3 Base is parallel to p and M, ... , My is not parallel to p

In this case we set By = C; =0 fori = 2,...,6. Moreover we rotate the Cartesian frame of
the space of translation around the z-axis of the fixed frame about the angle ¢. This results
in a more general translation vector t := (cos @] — sin @t2, sin @t; +cos @t5,13)7 . Then we
eliminate again ¢; from Q where we can assume sin @ # 0 due to section 4.2. We start the
case study by considering

P, = sin @b3byBsBg(asbs — aghs)(Az — Ag)(Ar — a2), (52)
Poy = sin b3baBsBs(asbs — ashs) (A3 — Ag) (A2 +az). (53)

For the discussion of the possible four cases we introduce the abbreviations:

5100 pl00 |, pl00  pl00 5100 pl00 _ pl00 | pl00

Py :=Py10 — Posor + Prios — Poinss Py = Pgy10— Po3pr — Pion +Foiz, - (59
. plo0 _ plo0 . ploo  ploo . pl00 L plO0 _ plo0 _ pl0o

P3 1= P31+ Po3or + Pion + Foros, Py := P10+ Po3gr — Pioza — Pz, (55)
. plol 101 _ plol . plol . pl0L . pio] 101 101

Ps == Pyi10 — Piso1 — Pioar + For1a Fs := Pyi10 + Praor — Pios1 — Porias — (56)

. plol _ plol
and Py := Pyy00 — Fooa-

43.1 B5s=0

As Bs =0implies My,...,Ms collinear we can assume that no four points from My, ..., Ms
coincide (Ej5).
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Part [A] Three points from M, ..., M;s coincide

Without loss of generality we set A, = A3 =0 (= M = M, = M3, A445 # 0) and compute
Py = sin @ayb3A4AsBebg(asbs —bsas). For ay = 0 we get 1|2 and b3 = 0 yields E. For both
remaining cases Q'% and Q'%! can only vanish for architecturally singular designs (or 4).

Part [B] At most two points from My,..., M5 coincide

We set Ay = 0 (= Mj = My, A3A4A5 # 0) and compute

P+ PIX: = sin payA3A4AsBsag(azby — asbs — byag + ashs + bsas —baas).  (57)
1. For m3, my, ms collinear the condition Q'% = 0 implies ag = bg = 0. Then Q''! =0
yields an architecturally singular design (or & ).
2. ag =0, m3,my, ms not collinear: We get

Py =sinpaybgBg [b3A4,A5 (a5b4 - a4b5) +byAzAs ((l3b5 — a5b3) +bsA3A4 (a4b3 — a3b4)] .
(58)

a. bg =0 (= b3bybs #0): Then Q%! factors into sin @ayBe (sin @r3; +cos @rs; ) G[24].
The resultant of Gip19 = 0 and G190 = 0 with respect to A3 can only vanish for
A4 = Asby/bs (or k ). Then G919 = 0 and G190 = 0 imply A3 = Asb3/bs. Finally
Q' can only vanish for architecturally singular designs (or & ).

b. Now we set the last factor of Equ. (58) equal to zero and assume bg # 0. More-
over we can assume (w.l.o.g.) that two b;’s with i = 3,4,5 are different from zero
because otherwise 4 platform anchor points would be collinear (& ). We choose
b3bs # 0.

i. Assuming A3 # A4 we can express as. Now Q' can only vanish for architec-
turally singular designs (or k ).
ii. For A3 = A4 we get Py = sin (pBﬁb6A4\aLb5 (a3bs — asb3)(As — As). For all

12
three remaining cases Q'%° = 0 can only be fulfilled if the manipulator is ar-
chitecturally singular (or }).

Part [C] The points M, ...,Mj are pairwise distinct
1. ap # 0: The following relations hold
Py =sin@ayBsbsKy, axPs+ AxPy = sin arA2BebeK . 59)
For bg = 0 we compute U; = P3110200 — PZI(())gl and U, = P;?ZOO + PZI(%)I yielding
U =sin@ayBeasgKy, axUs +AxU; = sin@arArBeagK] - (60)
If also ag = 0 holds we compute V| = leollo — P(}loll4 and V, = P4110110 + Polloll4 with
Vi =sin@ayBeK>, a;Vo+ A2V = sinpayArBeK . (61)

Therefore the two conditions K; = K> = 0 indicating E19 must hold.

2. a» = 0: Now Q'!! splits up into A Bg[2cos @(sin @r3 + cos @rs;) — r31]G[24]. This
case can be done analogously to 4.1.1 Part [C,2] if we replace the equations (44) and
(45) by G100 = 0 and G919 = 0, respectively.
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432 b3=0

As bz = 0 implies the collinearity of m;, my, m3 we can assume bybsbg # 0. Moreover we
can assume BsBg # 0. Due to

P; = sin @bsBsBcA4(bs — be)(a2A3 — a3A) (62)

we have to distinguish the following three cases:

1. For A4 =0 (= M = My) the polynomials P> and P; simplify to

sin (PA2A3b4BsB6 (a5b6 — a5b6) (a2 — 613), sin @A2A3b4b5b6 (A5B6 —A5B6) (az — Cl3).
(63)

a. M;,Ms, Mg collinear, m;, ms, mg collinear: For ag = asbg/bs and A¢ = AsBg/Bs
we get
Ps; =sin (szBf, (a4b5 — a5b4) ArAj (b5 — b(,)(ag — Cl3)/b5. (64)
—_———

mj,my,ms,mgcoll.

Moreover for A,A3 = 0 we get five collinear base anchor points, which was already
discussed in subsection 4.3.1. For both remaining cases Q*°! can only vanish for
architecturally singular designs (or % ).

b. A; = 0 and not both triples M|, M5, Mg and m;,ms,mg are collinear: W.1.0.g. we
can assume A3 # 0 because otherwise we would get Es. Now Py =0 and P, =0
imply a3 = 0. From ono we get Ag = AsBg/Bs. Then Q111 can only vanish for
architecturally singular designs (or & ).

c. ay = az, Ay # 0 and not both triples M}, Ms,Mg and m;,ms, mg are collinear:
Then the polynomials P; = 0 and P4 = 0 can only vanish for architecturally singular
designs (or &).

2. b5 = b6, A4 75 0: Now P4120010 —|—P214?010 yields sin ¢b43536b6 ((15 — aé)(a2A3 — (13A2).

a. For as = ag (= ms = mg ) the equations P3 = 0 and P, = 0 imply the collinearity
of My,Ms, Mg, i.e. Ag = (A4Bs5 — AyBg + AsBg)/Bs. Then Q'% can only vanish
for architecturally singular designs (or & ).

b. W.o.l.g. we can set ay = a3Aa /A3 because for Ay = A3 = 0 we would get Eg. Then
P, = 0 can only vanish for architecturally singular designs (or & ).

3. ay = a3Ay /A3, bs # bg, Ay # 0: Now P, = 0 implies as = agbs /bg. From P; = 0 follows
As = (A4B6 — A4Bs + AgBs) /B and from Ps = 0 we get a3 = Az (asbe — acbs)/(Aabe).
Now Q%! can only vanish for architecturally singular designs (or }).

433 M; =M,

W.lLo.g. we can assume b3byBsBg # 0. We set A3 = A4 and compute the polynomials P;
PIOO _PIOO PlOO

and Pji5 — Poys — Pags) + Pi3g, which yield
sin (pa2A4 (A4 —Az)B5B6 (b5a6 — a5b6) (b3 — b4), sin (pa2A4 (A4 —Az)B536 (b5a(, —as b6) (a3 — a4) .
(65)

1. a; = 0: Now Q*% implies Ag = (A4Bs — A4Bg + AsBg)/Bs. From Ps = 0 and Ps = 0
follows A4 = 0. Now Q'!! can only vanish for architecturally singular designs (or k ).

2. Ay =00rAy =A4,ap #0: Wlo.g. we set A4y =0 (= M; =Mj3 =My). Now P, =0
implies the collinearity of m;,ms, mg, i.e. ag = asbg/bs (w.l.0.g. we can assume bs #
0 because bs = bg = 0 yields the collinearity of four platform anchor points). Now
Q'% can only vanish for bg = 0 or Aq = AsBg/Bs. In both cases Q!9 = 0 yields an
architecturally singular design (or k ).
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3. ag = asbg/bs, arA4(Ar — Ag) # 0: We have to distinguish three cases due to
P4 = sin (pa2b5b6 (A4 — Az) (A5B6 —A6B5 +A4B5 - A4B6) (Cl4b3 — b4a3). (66)

a. For bg = 0 the condition Q1% = 0 cannot vanish without contradiction.
b. as = azbs /b3, bg # 0: Now Ps = 0 implies bs = bg. We compute

P; =sin (pa2A2A4b62(b3 —b4)(BsAs — AyBs + BsAg — AsBg). 67)

i. My, Ms, Mg collinear, i.e. Ag = (A4Bs — A4Bg +AsBg) /Bs: Q'% = 0 already
yields an architecturally singular design (or & ).
ii. Ay =0, My,Ms, Mg not collinear: Now Q'% = 0 implies Ag = A5Bg/Bs. Then
Q%! can only vanish for architecturally singular designs (or }).
c. Ag = (A4Bs — AyBg +AsBg)/Bs, bg(asbs — bsaz) # 0: We compute

Ps = sin 9A4BsBg(bs — bg)[arA4(ba — b3) + A (asbs — azbs)). (68)

i. bs = bg: Q*°! can only vanish for architecturally singular designs (or & ).

ii. W.Lo.g. we can express A, from the last factor of Equ. (68). Moreover we
can assume bs # bg. Now Ps = 0 implies the collinearity of m3,my, ms, i.e.
a3 = (asbs — byas +asb3) /bs. From Q%! we get Bs = Bg. Then Q''° can only
vanish for architecturally singular designs (or k ).

4.3.4 m;,ms, mg collinear

W.Lo.g. we can assume b3byBsBg(A3 — As) # 0. Moreover we can set as = agbs/bg
(w.Jo.g.) because for bs = bg = 0 we get a contradiction. We start with

P30 + Pogks = sin @BsBeazbsbaag(bs — be ) (As — A4) /be. (69)
1. b5 = bg (= ms5 = mg): Now Q200 factors into
(a6r13 + b6r23) [COS (p(sin Pr3; —Ccos (pr32) + r32]G[1 20]. (70)

As Ag = bg = 0 yields a contradiction we consider G100 = N; and Gojg; = N2. The
remaining conditions N3 = Ny = 0 indicating E> can be computed as

101 |, pl0l | plol | plOl _ 101 | pl0l _ plol _ plol _ .
Py1i0+ Prsor + Pioar +FPoria =Sin@N3,  Pigno+Papao — Foaon — Fozo4 = sin @Ns. (71)

2. ag =0, bs # bg: Moreover we can assume azazas 7 0 because otherwise 4 platform
anchor points are collinear. The resultant of Ps = 0 and P; = 0 with respect to A; yields

sin ¢2B52362(b5 — b6)2a2A3A4 (b3a4 — b3(12 + b4a2 — b4a3) (A3a4 —A4a3). (72)

Therefore we have to distinguish the following three cases:

a. A3=0o0r A4 =0: Wlo.g. we set A3 = 0. Now Py can only vanish for A, =0 or
As =0. W.Lo.g. we set A = 0. Then Q100 factors into

ayasbibg Ay b5(BSA6 —A5B5)(COS ¢@r3; +sin (pr32)r23r31. (73)

Es

i. bs = 0: Now Q?% = 0 implies A5 = cot @Bs. Then Q''° can only vanish for
architecturally singular designs (or & ).
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ii. A5 = AgBs/Bs, bs # 0: Now 0?°! = 0 implies A5 = cot @Bs. Again Q''° can
only vanish for architecturally singular designs (or k ).

b. ay =azA4/A3: Now Ps =0 and P; = 0 imply a» = a3A,/As. From Q?' = 0 we get
Ag = AsBs/Bs. Finally Q''° can only vanish for architecturally singular designs
(or 17).

c. my,m3,my collinear, A3A4(Azas —Agaz) # 0: We set az = (asb3 — arbs +axba) /ba.

i. Assuming A, # 0 we can express a4 from the only non-contradicting factor of
P; = 0. Now P4 = 0 can only vanish without contradiction for Ag = AsBg/Bs
or bs = 0. For both cases 0'% = 0 implies A5 = cot Bs. Then Q'!! = 0 resp.
Q"9 = 0 can only vanish for architecturally singular designs (or }).

ii. Ap =0: From P; = 0 we get b3 = b4 (= m3 = my). Then Qloo splits up into

ayaqsbabg (A3 —A4) bs (B5A6 — A5B6) (COS @r3; +sin (pr32)r23r31 . (74)
———r

3|4

For both remaining cases Q'! can only vanish for architecturally singular
designs (or k ). End of all cases. O

5 Conclusion

In this article we presented the complete list of all non-architecturally singular planar par-
allel manipulators of Stewart Gough type which possess a cylindrical singularity surface
with rulings parallel to a given fixed direction p for any orientation of the platform. The
list given in Theorem 2 only has two entries containing the geometric conditions of the
corresponding manipulator designs.

The determination of the whole set of non-planar parallel manipulators of Stewart
Gough type which are not architecturally singular and possess a cylindrical singularity
surface remains open. We conjecture that this set consists of only one element, namely the
manipulator presented in subsection 1.2 (see Fig. 1).
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