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We transfer the basic idea of bonds, introduced by Hegedüs,
Schicho and Schröcker for overconstrained closed chains
with rotational joints, to the theory of self-motions of parallel
manipulators of Stewart Gough type. Moreover we present
some basic facts and results on bonds and demonstrate the
potential of this theory on the basis of several examples. As
a by-product we give a geometric characterization of all SG
platforms with a pure translational self-motion and of all
spherical3-dof RPR manipulators with self-motions.

1 Introduction
The theory of bonds was introduced by Hegedüs, Schi-

cho and Schröcker in [1]1 as a new means for the analy-
sis of overconstrained closed linkages with revolute joints (R
joints). In the following we give only a very tight summary
of this theory in order to sketch its basic idea:

A dual unit-quaternionh := (e0,e1,e2,e3, f0, f1, f2, f3)
describes a rotation in the Euclidean 3-space, iff0 = 0 holds
ande1 = e2 = e3 = 0 does not hold.2 Then t− h yields a
1-parametric rotation around a fixed axisa with t = (t : 0 : 0 :
0 : 0 : 0 : 0 : 0) andt ∈ R.

Now we consider a composition of consecutive rota-
tions, which can be written as:

(t1−h1)◦ (t2−h2)◦ . . .◦ (tn−hn), (1)

where◦ denotes the product of dual quaternions. If there
exists a setK := {(t1, . . . , tn)} of dimension one in a way that
Eq. (1) yields an element ofR\{0} then then rotational axes
a1, . . . ,an associated withh1, . . . ,hn form a closednR linkage
with one degree of freedom.

Now the set of bonds is defined as those elements of
the so-called configuration curveK, which imply that Eq. (1)

0Dedicated to my newborn daughter and her mother on the occasion of
her birth.

1Recently an extended version of this paper was published (cf. [2]).
2For e1 = e2 = e3 = 0 the rotation degenerates into a translation. This

case is excluded.
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Fig. 1. A SG manipulator with planar platform and planar base

(Ci = ci = 0 for i = 1, . . . ,6) is called planar SG manipulator.

equals the exceptional number 0. Therefore bonds are the
points on the complex configuration curve at some degen-
erate infinity, which contain a lot of information regarding
the geometry of the overconstrained closed chain. For more
details we refer to [1].

Remark 1. For a better understanding of the concept of
bonds we offer the following well known analogy: To a curve
k in Euclidean 3-space, we associate the points of k at infin-
ity. These ideal points correspond with the bonds. If this set
is a singleton, then the curve is a line in direction of the ideal
point. If it consists of two points located on the absolute
conic, then the curve is circular, and so on. ⋄

1.1 Stewart Gough manipulator
The geometry of a Stewart Gough (SG) platform is given

by the six base anchor pointsMi with coordinatesMi :=
(Ai ,Bi ,Ci)

T with respect to the fixed system and by the six
platform anchor pointsmi with coordinatesmi := (ai ,bi ,ci)

T

with respect to the moving system (fori = 1, . . . ,6). Each
pair(Mi ,mi) of corresponding anchor points is connected by
a SPS-leg, where only the prismatic joint (P) is active and the
spherical joints (S) are passive (cf. Fig. 1).

If the geometry of the manipulator is given as well as
the six leg lengths, the SG platform is generically rigid. But



under particular conditions the manipulator can perform a
d-parametric motion (d > 0), which is called self-motion.
Note that such motions are also solutions to the still unsolved
problem posed by the French Academy of Science for the
Prix Vaillant of the year 1904, which is also known as Borel
Bricard problem (cf. [3–5]) and reads as follows:

”Determine and study all displacements of a rigid body
in which distinct points of the body move on spherical paths.”

It is already known that manipulators, which are singular
in every possible configuration, possess self-motions in each
pose (overC). These so-called architecturally singular SG
platforms are well studied and classified (for the planar case
we refer to [6–9] and for the non-planar case see [10, 11]).
Until now only few self-motions of non-architecturally sin-
gular SG platforms are known as their computation is a very
complicated task. To the best knowledge of the author, a
complete and detailed review of these self-motions was given
in [12].

In Section 2 we transfer the basic idea of bonds to par-
allel manipulators of SG type and explain how these bonds
can be computed. In Section 3 we present some basic facts,
results and examples on bonds of SG platforms with self-
motions. Moreover we characterize all SG platforms with
pure translational self-motions, as these self-motions are not
covered by the theory of bonds. In the Sections 4 and 5 we
demonstrate the potential of bond theory on the basis of two
interesting tasks. Finally we close the paper with conclusions
and an outlook to future research.

2 Bonds of parallel manipulators of SG type
We start with the direct kinematic problem of parallel

manipulators of SG type. Due to the result of Husty [13], it
is advantageous to work with Study parameters, which are
nothing else than homogenized dual unit-quaternions; i.e.
(e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3). Note that the first four
homogeneous coordinates(e0 : e1 : e2 : e3) are the so-called
Euler parameters.

Now all real points of the 7-dimensional Study param-
eter spaceP7, which are located on the so-called Study
quadricΨ : ∑3

i=0ei fi = 0, correspond to an Euclidean dis-
placement with exception of the 3-dimensional subspaceE
of Ψ given by e0 = e1 = e2 = e3 = 0, as its points can-
not fulfill the conditionN 6= 0 with N = e2

0 + e2
1 + e2

2 + e2
3.

The translation vectort := (t1, t2, t3)T and the rotation ma-
trix R := (r i j ) of the corresponding Euclidean displacement
Rx+ t are given by:

t1 = 2(e0 f1−e1 f0+e2 f3−e3 f2),

t2 = 2(e0 f2−e2 f0+e3 f1−e1 f3),

t3 = 2(e0 f3−e3 f0+e1 f2−e2 f1),

and
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 ,

if the normalizing conditionN = 1 is fulfilled. All points of
the complex extension ofP7, which cannot fulfill this nor-
malizing condition, are located on the so-called exceptional
quadricN = 0. It can easily be seen by differentiation that a
point of the exceptional quadric is singular, if and only if it
belongs toE. ThereforeN = 0 is a cone with vertexE.

By using the Study parametrization of Euclidean dis-
placements the condition that the pointmi is located on a
sphere centered inMi with radiusRi is a quadratic homo-
geneous equation according to Husty [13]. This so-called
sphere conditionΛi has the following form:

Λi : (a2
i +b2

i + c2
i +A2

i +B2
i +C2

i −R2
i )N

−2(aiAi +biBi + ciCi)e
2
0−2(aiAi −biBi − ciCi)e

2
1

+2(aiAi −biBi + ciCi)e
2
2+2(aiAi +biBi − ciCi)e

2
3

+4(ciBi −biCi)e0e1−4(ciAi −aiCi)e0e2

+4(biAi −aiBi)e0e3−4(biAi +aiBi)e1e2

−4(ciAi +aiCi)e1e3−4(ciBi +biCi)e2e3

+4(ai −Ai)(e0 f1−e1 f0)+4(bi −Bi)(e0 f2−e2 f0)

+4(ci −Ci)(e0 f3−e3 f0)+4(ai +Ai)(e3 f2−e2 f3)

+4(bi +Bi)(e1 f3−e3 f1)+4(ci +Ci)(e2 f1−e1 f2)

+4( f 2
0 + f 2

1 + f 2
2 + f 2

3 ) = 0.
(2)

Now the solution of the direct kinematics overC can be
written as the algebraic varietyV of the idealI spanned by
Ψ,Λ1, . . . ,Λ6,N = 1. In generalV consists of a discrete set
of points with a maximum of 40 elements.

After the removal of then-th leg we end up with a
5-legged manipulator, which has at least a 1-parametric
self-motion (overC). Its solution for the direct kinemat-
ics is given by the algebraic varietyVn of the idealIn

spanned byΨ,Λi ,Λ j ,Λk,Λl ,Λm,N = 1 with pairwise dis-
tinct i, j,k, l ,m,n ∈ {1, . . . ,6}. Note thatIn is a subideal
of I .

In the following we give a rough idea of bonds of 5-
legged manipulators: We consider the algebraic motion of
the mechanism, which are the points on the Study quadric
that the constraints define; i.e. the common points of the six
quadricsΨ,Λi ,Λ j ,Λk,Λl ,Λm. Now the points of the alge-
braic motion withN 6= 0 equal the kinematic image of the
algebraic varietyVn. But we can also consider the points of
the algebraic motion, which belong to the exceptional cone
N = 0. An exact definition of these so-called bonds is given
within the next section.

2.1 Direct kinematics of 5-legged manipulators
Based on the algorithm of Husty [13] for solving the

direct kinematics of SG manipulators we sketch the general
procedure for computing the forward kinematics of 5-legged
parallel manipulators of SG type. In the following we also
use the equation∆ j ,i , which denotes the differenceΛ j −Λi

of two sphere constraints. Note that∆ j ,i is only linear in
f0, . . . , f3.



The five linear equationsΨ,∆ j ,i ,∆k,i ,∆l ,i ,∆m,i in
f0, . . . , f3 only have a solution, if the determinant of the aug-
mented coefficient matrix (5×5 matrix) of this linear system
with respect off0, . . . , f3 equals zero. From this determinant
we can factor outN and we remain with a polynomialFn

of degree four in the Euler parameters. ThisFn can also be
seen as a quartic surfaceΦn in the Euler parameter spaceP3,
which is a projective 3-space.

Remark 2. Due to e.g.∆ j ,k = ∆ j ,i −∆k,i and ∆k,i = −∆i,k,
the idealJ :=

{

Ψ,∆ j ,i ,∆k,i ,∆l ,i ,∆m,i
}

is also spanned by
Ψ,∆i,k,∆ j ,k,∆l ,k,∆m,k. Now Fn is the algebraic variety of
the elimination-ideal ofJ with respect to f0, . . . , f3. As the
elimination of f0, . . . , f3 is done linearly, Fn does not depend
on the choice of i∈ {1, . . . ,6}\ {n}. ⋄

Moreover we can also solve the subsetSm of equa-
tions Ψ,∆ j ,i ,∆k,i ,∆l ,i with pairwise distinct i, j,k, l ,m ∈
{1, . . . ,6}\{n} for f0, . . . , f3 and plug the obtained solutions
into Λi . The numerator of the resulting expression is a poly-
nomial Gm of degree eight in the Euler parameters, which
can also be seen as an octic surfaceΓm in the Euler parame-
ter spaceP3.

Remark 3. Gm is the algebraic variety of the elimination-
ideal of Ψ,Λi ,Λ j ,Λk,Λl with respect to f0, . . . , f3. As the
elimination of f0, . . . , f3 is again done linearly, Gm does not
depend on the choice of i∈ {1, . . . ,6}\ {n,m}. ⋄

All points of Γm with N 6= 0 andQm 6= 0 can be extended
to solutions of the direct kinematics of the 4-legged manipu-
lator, which is obtained from the 5-legged one by removing
them-th leg. Note thatQm = 0 is a quadric in the Euler pa-
rameter spaceP3, which equals the set of orientations, where
the denominator of thefi ’s vanishes.

We denote the set of common points of the quarticΦn

and the five octicsΓi ,Γ j ,Γk,Γl ,Γm by Kn. If a pointQ of Kn

is located on all five quadricsQi = Q j = Qk = Ql = Qm = 0,
then the back-substitution in all solutions forf0, . . . , f3 yields
a contradiction (division by zero). But this already implies
for the orientation determined byQ that the rank of the coef-
ficient matrix of the linear systemΨ,∆ j ,i ,∆k,i ,∆l ,i ,∆m,i is less
than 4. Therefore this system lets at least one of the Study pa-
rametersf0, . . . , f3 undetermined. As a consequence the only
remaining equation (any sphere condition of the involved five
legs) can be solved for this Study parameter. Hence the point
Q corresponds with multiple solutions of the direct kinemat-
ics (which have the same orientation). Therefore each point
of Kn can be extended to at least one solution of the forward
kinematics problem (overC). Summed up we can state that
the points ofKn with N 6= 0 are the projection ofVn into the
Euler parameter spaceP3, which is induced by the elimina-
tion of f0, . . . , f3.

Clearly the kernel of this projection equals the group of
translational motions. As a consequence a component ofVn,
which corresponds to a pure translational motion overC (i.e.
ei = λgi wheregi are constants∈ C for i = 0, . . . ,3 with
g2

0+g2
1+g2

2+g2
3 6= 0 andλ ∈C\{0}), is projected to a sin-

gle pointO of the Euler parameter spaceP3. As the intersec-
tion of O andN = 0 equals∅, we have to restrict ourselves

to non-translational motions3 for the following definition of
bonds, which is similar to Definition 2 of [1]:

Definition 1. For a 5-legged parallel manipulator of SG
type the setBn of bonds is defined as:

Bn :=ZarClo(V⋆
n ) ∩ {(e0 : . . . : f3) ∈ P7 |

Ψ,Λi ,Λ j ,Λk,Λl ,Λm,N = 0},

with pairwise distinct i, j,k, l ,m,n ∈ {1, . . . ,6}. V⋆
n de-

notes the variety Vn after the removal of all components,
which correspond to pure translational motions. Moreover
ZarClo(V⋆

n ) is the Zariski closure of V⋆n ; i.e. the zero locus
of all algebraic equations that also vanish on V⋆

n .

Therefore the set of bondsBn are the exceptional points
(N = 0) of the algebraic motion, which are limits of non-
translational motions. Due to this definition ofBn, the set of
bonds can easily be computed by intersectingKn with N = 0,
which can generally be done as follows:

We eliminate an Euler parameteres by computing the
resultantUn := Res(Fn,N,es) of Fn and N with respect to
es. Beside this polynomial, we can also calculate the re-
sultantsLx := Res(Gx,N,es) with x ∈ {i, j,k, l ,m}. We
eliminate a further Euler parameteret by computingWx :=
Res(Un,Lx,et). Then the greatest common divisorGCDn of
these five equationsWi ,Wj ,Wk,Wl ,Wm corresponds with the
intersection points ofKn andN = 0. Therefore each solution
of GCDn implies a bond, which can be computed stepwise
by back-substitution (cf. Example 1).

2.2 Bonds of SG platforms
Based on Definition 1, we can give the definition of

bonds for a SG platform as follows:

Definition 2. For a SG manipulator the setB of bonds is
defined asB :=

⋂6
n=1Bn, whereBn denotes the set of bonds

of the5-legged manipulator after removal of the n-th leg.

Due to Definition 2, the setB equals the common points
of K1, . . . ,K6 andN = 0. Therefore these points correspond
to common factors ofGCD1, . . . ,GCD6. Note that it is suffi-
cient to compute the common factors ofGCDi andGCDj for
i 6= j as all six legs of the manipulator are already involved.
But the computation of bonds can further be simplified due
to the following consideration:

The common points ofK1, . . . ,K6 are contained within
the six quartic surfacesΦ1, . . . ,Φ6. Their corresponding
equationsF1, . . . ,F6 can be generated within the ideal

I0 :=
{

Ψ,∆ j ,i ,∆k,i ,∆l ,i ,∆m,i ,∆n,i
}

, (3)

with pairwise distincti, j,k, l ,m,n ∈ {1, . . . ,6}.
We denote the set of common points ofΦ1, . . . ,Φ6 by

K0. Note that the algebraic degree ofK0 is lower than the

3Note that this is an analogy to the theory of bonds of overconstrained
closed chains (cf. footnote 2).



degree ofK1, . . . ,K6, as it is determined by the intersection
of only quartic surfaces. In the general case, the common
points ofK0 andN = 0 can be computed as follows:

We eliminate an Euler parameteres by computing the
resultantUi := Res(Fi ,N,es). Then we eliminate a further
Euler parameteret by calculatingWi, j := Res(Ui ,U j ,et) for
pairwise distincti, j ∈ {1, . . . ,6}. Now the greatest common
divisor GCD0 of these equationsWi, j corresponds with the
intersection points ofK0 andN = 0.

Due to the lower algebraic degree ofGCD0, we recom-
mend to computeB by using the common factors ofGCD0

andGCDi for an arbitraryi ∈ {1, . . . ,6}. This is already suf-
ficient, as again all six legs of the manipulator are involved.
Finally it should be noted that in the general case there does
not exist a common factor ofGCD0 andGCDi ; i.e. B = ∅

holds (cf. Example 4).

Remark 4. There are two special cases, where the given
algorithm has to be modified as the linear system for the so-
lution of f0, . . . , f3 is always linear dependent. According to
page 513 of [14], these cases are as follows:

1. the platform and the base are planar and the anchor
points are related within an affinity,

2. the platform and the base are congruent.

An algorithm for these cases is given within Example 5.⋄

The theory of bonds is based on the following funda-
mental theorem:

Theorem 1. The setB of bonds depends on the geometry
of the SG manipulator and not on the leg lengths R1, . . . ,R6.

Proof: We considerKn in the Euler parameter spaceP3.
Beside the geometry of the corresponding 5-legged ma-
nipulator, Kn depends on the leg lengthsRi ,Rj ,Rk,Rl ,Rm

with pairwise distincti, j,k, l ,m∈ {1, . . . ,6} \ {n}. But the
intersection points ofKn and N = 0 are independent of
these leg lengths as theses variables do not appear within
the polynomialsLi ,L j ,Lk,Ll ,Lm,Un. The reason for this
is that the coefficients of the leg lengths within the equa-
tions Gi ,G j ,Gk,Gl ,Gm,Fn contain the factorN. As a con-
sequence the Euler parameters of the bonds do not depend
onRi ,Rj ,Rk,Rl ,Rm.

After back-substitution of the obtained Euler parame-
ters intoΛi ,Λ j ,Λk,Λl ,Λm, these sphere conditions are also
independent of the leg lengths, as the Euler parameters ful-
fill N = 0 (cf. Eq. (2)). Therefore the remaining Study
parameters, which are computed from these equations, are
also independent of the leg lengths. ThereforeBn depends
on the geometry of the 5-legged manipulator and not on
Ri ,Rj ,Rk,Rl ,Rm. Based on this result the proof for the gen-
eral case is closed by Definition 2.

A similar argumentation also holds for the two special
cases given in Remark 4. �

Due to this theorem, we can choose arbitrary values for
Ri (i = 1, . . . ,6) for the computation of the bonds. This prop-
erty can be used to simplify the sphere constraintsΛi of Eq.
(2) by settingR2

i = a2
i +b2

i + c2
i +A2

i +B2
i +C2

i .

We close this section with the following definition:

Definition 3. A bond is called singular, if it belongs to the
vertex E of the exceptional cone N= 0.

3 SG manipulators with self-motions
In this section we discuss the use of bonds for the theory

of self-motions of SG manipulators.
We assume that a given SG manipulator has ad-

dimensional self-motion, which is not pure translational.
As a d-dimensional self-motion corresponds with ad-
dimensional solution of the direct kinematics problem, the
seven quadricsΨ,Λ1, . . . ,Λ6 have to have ad-dimensional
set of points in common (= algebraic motion). But not all
bonds of the bond-setB have to be implied by the self-
motion. This necessitates the following definition:

Definition 4. A bond, which does not belong to a d-
dimensional (d> 0) algebraic motion6⊂ N = 0 of the ma-
nipulator, is called pseudo-bond.

In order to improve the understanding of bonds and
pseudo-bonds we give the following two examples with re-
spect to the analogy of Remark 1 :

• Assume thatk1, . . . ,kn are conic sections located in pair-
wise distinct carrier planes, which have a linel in common.
Moreoverk1, . . . ,kn are reducible, where eachki splits into
the linesl andli with l 6= li for i = 1, . . . ,n. The common
componentl represents the self-motion and its ideal point
is the corresponding bond.

• Assume thatk1, . . . ,kn are circles of arbitrary radius lo-
cated in pairwise distinct carrier planes, which are par-
allel to each other. Nevertheless these circles do not
have a component in common, they have the same two
ideal points. Therefore these cyclic points correspond to
pseudo-bonds.

Remark 5. In this context it should be noted that one can
get rid of pseudo-bonds by using the following alternative
definition of bonds for SG platforms (without the detour
through5-legged manipulators; cf. Definition 2):

B :=ZarClo(V⋆) ∩ {(e0 : . . . : f3) ∈ P7 |
Ψ,Λ1,Λ2,Λ3,Λ4,Λ5,Λ6,N = 0},

where V⋆ denotes the variety V after the removal of all com-
ponents, which correspond to pure translational motions.⋄

The restriction of the bond theory to non-translational
self-motions does not cause any problems as all SG plat-
forms, which possess pure translational self-motions, can
easily be characterized as follows:

Theorem 2. A SG platform possesses a pure translational
self-motion, if and only if the platform can be rotated about
the centerm1 =M1 into a pose, where the vectors

−−−→
Mimi for

i = 2, . . . ,6 fulfill the condition rk(
−−−→
M2m2, . . . ,

−−−→
M6m6)≤ 1.



Proof: Based onΛi of Eq. (2) we prove this theorem ana-
lytically. Without loss of generality (w.l.o.g.) we can fix the
orientation of the platform by(e0,e1,e2,e3) = (1,0,0,0). As
the group of translations is 3-dimensional, we are looking
for conditions, which imply at least a 1-dimensional variety
of the ideal spanned byΨ,Λ1,Λ2,Λ3.

W.l.o.g. we can choose a fixed frame in a way thatM1

coincides with the origin,M2 is located on itsx-axis, andM3

lies within thexy-plane (⇒ A1 = B1 = B2 =C1 =C2 =C3 =
0). For the moving frame we can only assume w.l.o.g. that
m1 coincides with its origin (⇒ a1 = b1 = c1 = 0).

Then we can solve the system of equationsΨ,∆2,1,∆3,1,
which is linear inf0, . . . , f3, for:

1. f0, f2, f3 if D1 6= 0 holds withD1 := c2b3−c2B3−c3b2,
2. f0, f1, f3 if D2 6= 0 holds with D2 := c2a3 − c2A3 −

c3a2+ c3A2,
3. f0, f1, f2 if D3 6= 0 holds with D3 := b2A3 − b2a3 −

b3A2+b3a2−B3a2+B3A2,

and plug them intoΛ1. We denote the resulting expressions
by Θ1, Θ2 andΘ3, respectively. In order to get a self-motion,
Θi has to be fulfilled independently offi . Therefore the co-
efficientΞi of f 2

i of Θi , which only depends on the geometry
of the manipulator and not onR1,R2,R3, has to vanish.

We can solveΞ1, which is quadratic ina2, for this
variable if T1 6= 0 holds withT1 := (b3 −B3)

2 + c2
3. Now

it can easily be seen (e.g. by using the simplify command
within Maple) that the obtained value fora2 in dependency
of b2,c2,a3,b3,c3,A2,A3,B3 ∈ R cannot be a real number.
This already yields the contradiction.

Analogously this can be done forΞ2 with respect tob2,
if T2 6= 0 holds withT2 := (a3−A3)

2 + c2
3, and forΞ3 with

respect toc2, if T3 6= 0 holds withT3 := (a3−A3)
2 +(b3−

B3)
2.
Therefore we always end up with a contradiction as long

asD1 6= 0 6= T1 or D2 6= 0 6= T2 or D3 6= 0 6= T3 holds. Now
it can easily be checked thatD1 = D2 = D3 = 0 equals the
condition that the vectors

−−−→
M2m2 and

−−−→
M3m3 are linearly de-

pendent4; i.e. rk(
−−−→
M2m2,

−−−→
M3m3) = 1. In this case, the coef-

ficient matrix of the linear systemΨ,∆2,1,∆3,1 has rank 2.
Then one of the radiiR1,R2,R3 can be determined in a way
that the augmented coefficient matrix also has rank 2. This
already yields the 1-parametric translational self-motion.

Now it is not difficult to verify that all other combi-
natorial casesX1 = Y2 = Z3 = 0 for X,Y,Z ∈ {D,T} and
(X,Y,Z) 6= (D,D,D) also implyD1 = D2 = D3 = 0. There-
fore these cases are only special cases of the already dis-
cussed one, which also include the case that

−−−→
M2m2 and−−−→

M3m3 equal the zero-vectoro.
Similar considerations for the idealsΨ,Λ1,Λi ,Λ j for

pairwise distinct i, j ∈ {2, . . . ,6} imply the condition

rk(
−−−→
M2m2, . . . ,

−−−→
M6m6)≤ 1. �

Finally it should be noted that all 1-parametric self-
motions are circular translations, which can easily be seen
by considering a normal projection of the SG manipulator

4We denote the ideal point of this direction byP.

in direction ofP (cf. footnote 4). Clearly we only get a 2-
parametric translational self-motion, ifP is not defined as−−−→
M2m2 = . . . =

−−−→
M6m6 = o holds (⇒ the platform and the

base are congruent). This completes the discussion of SG
platforms with pure translational self-motions.

Remark 6. This also verifies that translational self-motions
correspond with components of Vn (cf. Definition 1). ⋄

3.1 Basic facts, results and examples
We want to start this section with a first example; namely

the Schönflies Borel Bricard motion.

Example 1. For the study of this self-motion we can as-
sume w.l.o.g. that the platform and the base are both planar
(cf. [15]); i.e. ci = Ci = 0 for i = 1, . . . ,6. If the base an-
chor points and the corresponding platform anchor points
are coupled by an inversion with respect to the unit circle;
i.e.

Ai = ai/(a
2
i +b2

i ), Bi = bi/(a
2
i +b2

i ),

then there exists a1-parametric self-motion with

R2
i := (a2

i +b2
i +1)2/(a2

i +b2
i ).

It can easily be verified that this self-motion is given by:

(e0 : 0 : 0 :±e0

√

e2
0− f 2

3/ f3 : ∓
√

e2
0− f 2

3 : 0 : 0 : f3).

As it is well known [4] that all points of the platform move
on spherical path, we can choose any six platform anchor
points. We use the following ones:

m1 = (17,−11)T, m2 = (0,1)T , m3 = (2,1)T ,

m4 = (3,5)T , m5 = (−7,13)T, m6 = (1,0)T .

Then we run the algorithm given in Section 2. We compute
GCD0 and GCD1 and their greatest common divisor, which
equals e20+e2

3. Therefore we have to distinguish two cases:

1. e0 = e3I, where I denotes the complex unit: Now the
stepwise back-substitution can be done as follows. We
set e0 = e3I in the already computed Lx and Ui . Then we
compute their common solution, which yields e2 = 0.
We proceed by plugging e0 = e3I and e2 = 0 into the
already computed Gx and Fi as well as N. The common
solution of these equations is trivially given by e1 = 0.
Now we can compute f0, f1, f2 from e.g.Ψ,∆2,6,∆3,6

which yields f0 = f3I and f1 = f2 = 0. As∆1,6,∆4,6,∆5,6

are fulfilled identically, we only remain withΛ6 = 4e2
3,

which implies e3 = 0. This yields the first bond.
2. e0 = −e3I: Analogous computations yield the conju-

gated bond.



As the set of bonds only consists of one element up to conju-
gation of coordinates; i.e.

B := {(0 : 0 : 0 : 0 :I : 0 : 0 : 1)} ,

the setB does not contain a pseudo-bond. Moreover as the
bond has the expected dimension d−1, it corresponds to a
point on the Study quadricΨ. Note that this point is located
in the linear subspace E ofΨ, and therefore the bond is a
singular one (cf. Definition 3). ⋄

Clearly the complex algebraic varietyB can be used
to classify all already known SG platforms with non-
translational self-motions with respect to algebraic properties
of their bond-set. Note that these algebraic properties (e.g.
algebraic multiplicities of bonds) have to be invariant with
respect to changes of the reference frames in the platform
and the base, respectively. In this context the well-known
fact should be noted that the quadricN= 0 and the linear sub-
spaceE possess this invariance property (otherwise the pre-
sented bond theory and the notion of singular bonds would
be senseless). This invariance property also holds for the fol-
lowing theorem, which follows immediately by intersecting
the sphere constraintΛi of Eq. (2) withE:

Theorem 3. A singular bond fulfills the condition f2
0 +

f 2
1 + f 2

2 + f 2
3 = 0.

Remark 7. It is clear that non-singular bonds cannot be
real as they fulfill N= 0. Due to Theorem 3 this property
also holds for singular bonds. ⋄

In the following we investigate a trivial self-motion,
which is very interesting from the viewpoint of bond theory.

Example 2. We assume thatM1, . . . ,M4 are located on a
line g. Then there exists a trivial self-motion, ifm5 and
m6 are located ong as well, as in this case the platform
can rotate aroundg. This pure rotational self-motion is also
known as butterfly self-motion (cf. [12]). W.l.o.g. we can as-
sume thatg is the x-axis of the fixed frame (⇒ B1 = . . . =
B4 =C1 = . . . =C4 = 0) and thatm5 andm6 are located on
the x-axis of the moving frame (⇒ b5 = b6 = c5 = c6 = 0).
Moreover we can assume that the origin of the moving frame
equals the point(2p,0,0)T of the fixed axis. We are still left
with two possibilities, namely if the x-axes of the fixed and
moving frame have the same orientation or the opposite one.
Now this choice fixes the values of the radii R1(p), . . . ,R6(p)
in dependency of p. Then the Study parametrization of the
rotation for equally oriented x-axes can for example be writ-
ten as:

(e0 : e1 : 0 : 0 :−e1p : e0p : 0 : 0).

By computing the bonds analogously to Example 1 we end
up with the following set of bonds up to conjugation of coor-
dinates:

B := {(uI : u : 0 : 0 :vI : v : 0 : 0),

(0 : 0 :u : uI : 0 : 0 :v : vI)}. (4)

m5 =m6 m4

m3

m1

m2

M1 =M2

M5

M4

M3

M6

Fig. 2. Sketch of the platform (left) and the base (right) of the planar

SG manipulator of Example 3, where M1 =M2 and m5 =m6 hold.

We get two1-parametric bonds, where the ratio u: v can be
seen as projective parameter with(u,v) 6= (0,0). For u= 0
we get the singular points of these two1-parametric bonds.

For each p there exist two rotational self-motions
(equally or oppositely oriented x-axes), which shows that the
bonds have to be1-dimensional. Therefore the first bond cor-
responds to the1-dimensional set of rotational self-motions,
where the x-axes have the same orientation. For the second
bond they have opposite orientation. ⋄

This example shows very well the property formulated
in Theorem 1, namely that bonds are independent of the leg
lengthsR1, . . . ,R6. Due to this property, bonds can not only
be used for the above mentioned classification of known SG
manipulators with self-motions, but they are also suited for
the following two interesting tasks:

Task 1. Check if a given SG platform is free of non-
translational self-motions.

Task 2. Determine the geometry of SG platforms with non-
translational self-motions.

Before we discuss these tasks in the next two sections,
we want to study a further very informative example from the
viewpoint of bond theory, which is strongly connected with
the previous example.

Example 3. The geometry of the planar SG manipulator,
which is displayed in Fig. 2, is given by:

M1 = (0,0)T , M2 = (0,0)T , M3 = (3,0)T ,

M4 = (0,2)T , M5 = (−1,1)T , M6 = (2,3)T ,

m1 = (1,1)T , m2 = (3,2)T m3 = (0,3)T ,

m4 = (4,0)T , m5 = (0,0)T , m6 = (0,0)T .

An analogous computation as done for Example 1 yields
the following set of bonds up to conjugation of coordinates:

B := {(0 : 0 :u : uI : 0 : 0 :v : vI),

(uI : u : 0 : 0 :vI : v : 0 : 0),

(0 : uI : 0 : u : 0 : vI : 0 : v),

(u : 0 : uI : 0 : v : 0 : vI : 0)}.

(5)

Due to Example 2, we can already give a geometric interpre-
tation of these bonds. The first and second bond contain the
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Fig. 3. Sketch of the platform (left) and the base (right) of a pla-

nar SG manipulator with pairwise distinct anchor points, where Bi =
ai = 0 for i = 1, . . . ,4 and A5 = A6 = b5 = b6 = 0 hold.

information that the manipulator possesses rotational self-
motions around the x-axis of the fixed frame. These motions
have the property that the pointsm5 = m6 andm4 are lo-
cated on the x-axis of the fixed frame.

An analogous interpretation can be given for the bonds
three and four, as they also correspond to rotational self-
motions around the y-axis of the fixed frame. In this case,
the pointsm5 = m6 andm3 are located on the y-axis of the
fixed frame.

Beside these butterfly self-motions, the manipulator is
known to have also a spherical self-motion ifM1 =M2 coin-
cides withm5 = m6. Therefore this spherical self-motion is
also encoded withinB (cf. the later given Remark 9), which
demonstrates that the set of bonds is more than the sum of its
single bonds. ⋄

This example also shows that for a serious classification
of SG manipulators with non-translational self-motions the
consideration of algebraic multiplicities of bonds is essential,
as there exist manipulators with the same setB of bonds
given in Eq. (5), which only possess the butterfly motions
but no spherical self-motion. As example we can consider
the planar manipulator given in Fig. 3.

For the sake of length and simplicity we ignore the con-
cept of algebraic multiplicities within this introductionarti-
cle of bonds and postpone it to a follow-up paper.

4 Study of task 1
For the explanation given in the following two para-

graphs we restrict ourself to 1-dimensional self-motions,but
it should be noted that analogous considerations can be done
for higher-dimensional ones as well.

The classical approach for the explicit solution of this
problem is as follows: By eliminating the Study parameters
according to the algorithm of Husty [13] we end up with a
homogeneous polynomialH of degree 40 in two Euler pa-
rameters, which additionally depends onR1, . . . ,R6. A nec-
essary condition for a 1-parametric self-motion is thatH van-
ishes independently of these two Euler parameters. This im-
plies a set of conditions for the unknownsR1, . . . ,R6, which
can only be solved, if there exists a 1-parametric self-motion.

The problem with this method is thatH cannot be com-
puted in dependency ofR1, . . . ,R6 in the general case due to
its complexity. Moreover, if this is possible for manipulators

with special geometries, the solution of the set of equations
is still not trivial at all.

With the bond theory task 1 simplifies considerably, as
the following theorem holds due to the definition of bonds:

Theorem 4. A SG platform is free of non-translational self-
motions ifB =∅ holds.

As due to Theorem 1 the computation ofB is indepen-
dent of all leg lengths, we get the paradoxical situation that
task 1 can be solved independently ofR1, . . . ,R6. In this con-
text, we study the following examples:

Example 4. We consider a SG platform with generic ge-
ometry; i.e. the coordinate vectorsMi andmi (i = 1, . . . ,6)
of the anchor pointsMi and mi , respectively, are gener-
ated randomly. By a straightforward computation according
to the procedure of Section 2 it can easily be checked that
⋂6

i=1Bi = ∅ holds. Moreover due to Theorem 2 a generic
SG platform is also free of pure translational self-motions.
Therefore a generic SG manipulator does not possess any
self-motions. ⋄

In the following we discuss one of the two special cases
mentioned in Remark 4.

Example 5. The planar platform and planar base of the SG
manipulator are related by an affinity. Moreover we assume
that the affinity is regular, as otherwise we end up with a triv-
ial case of an architecturally singular manipulator, whichis
not of interest in this context. It was proven in [16] by ge-
ometric considerations that these so-called planar affine SG
manipulators only possess translatory self-motions, if they
are not architecturally singular; i.e. the anchor points are
not located on a conic section. In the following we want to
verify this result by means of bond theory.

Due to a well known result (cf. [16–18]), we can use any
six platform and base anchor points related by the affinity as
long as they are not located on a conic section. We choose
the following six platform anchor points:

m1 = (0,0)T , m2 = (1,0)T , m3 = (1,1)T ,

m4 = (2,1)T , m5 = (0,2)T , m6 = (3,−2)T .

W.l.o.g. we can assume thatM1 is located in the origin of the
fixed frame andM2 on its x-axis. This already implies that
the affinity is of the formMi = Ami for i = 1, . . . ,6, where
the2×2 transformation matrixA is given by:

A :=

(

α1 α2

0 α3

)

with det(A)=α1α3 6= 0. As for this SG manipulator any four
equations of the setI0 of Eq. (3) are linearly dependent, the
algorithm of Section 2 fails. In this case we use the following
modified one:

Now we can solveΨ,∆ j ,i ,∆k,i for three of the four fi ’s.
The remaining fi can be computed fromΛi , but this is not of



interest. If we plug the obtained expression for the three fi ’s
into ∆l ,i ,∆m,i , we get homogeneous quadratic equations in
the Euler parameters. Therefore they represent two quadrics
in the Euler parameter space P3. Moreover we denote the
intersection curve of these quadrics by Kl ,m. Now the inter-
section of Kl ,m with N= 0 can be computed as follows:

We eliminate an Euler parameter es by computing the
resultant Res(∆l ,i ,N,es) and Res(∆m,i ,N,es). Then we elimi-
nate a further Euler parameter et by computing the resultant
Jl ,m of the obtained two expressions with respect to et .

If we start with another system of linear equations and
proceed analogously, then we end up with another curve. In
this way we can generate the following six curves:

K j ,k, K j ,l , K j ,m, Kk,l , Kk,m, Kl ,m.

Therefore the bonds of the5-legged manipulator correspond
with the greatest common divisor GCDn of

Jj ,k, Jj ,l , Jj ,m, Jk,l , Jk,m, Jl ,m.

Finally the bonds of the planar affine SG manipulator are im-
plied by the greatest common divisor of GCD1, . . . ,GCD6. In
our case this yieldsα1α3, which cannot vanish without con-
tradiction. ThereforeB = ∅ holds, which proves again that
planar affine SG manipulators can only have translational
self-motions, if they are not architecturally singular.

For the sake of completeness it should be noted that
these manipulators only have translational self-motions,if
and only if the singular values s1 and s2 of A with 0< s1 ≤ s2

fulfill the relation s1 ≤ 1≤ s2. For more details see [16]. ⋄

Remark 8. For the second special case of Remark 4, where
the platform and the base are congruent, the setB of bonds
can be computed as in Example 5. ⋄

Note that due to the possibility of pseudo-bonds and
bonds of complex self-motions we cannot replace ”if” by ”if
and only if” in Theorem 4. In order to point this out more
clearly, we study the self-motional behavior of a superset of
planar affine SG platforms.

Example 6. We investigate so-called planar projective SG
platforms; i.e. corresponding anchor points of the planar
platform and planar base are coupled by a non-singular pro-
jectivity κ : mi 7→ Mi for i = 1, . . . ,6. Moreover due to Ex-
ample 5 we can assume thatκ is no affinity. The author has
proven within the publications [16,19,20] that these manip-
ulators are free of self-motions (overR), if they are not archi-
tecturally singular; i.e. if the anchor points are not located
on a conic section.

According to [19] the direct kinematics of these manip-

ulators is determined by the following set of equations:

∆2,1 := t2+R2N = 0,

∆3,1 := t1+R3N = 0,

∆4,1 := r12−R4N = 0,

∆5,1 := t1+ t2+R5N+β (r12+ r22) = 0,

∆6,1 := t1+ t2+R6N− (r11+ r12) = 0,

with

t1 := 2(e0 f1−e1 f0−e2 f3+e3 f2),

t2 := 2(e0 f2+e1 f3−e2 f0−e3 f1).

Moreover β ∈ R \ {0} is the parameter of the projectiv-
ity κ . The remaining missing conditionΛ1 can be com-
puted according to Eq. (2) form1 = (−β ,0,0)T andM1 =
(0,−1,0)T , respectively.

For the given set of equations we run the procedure of
Section 2, which finally yields the following set5 of bonds up
to conjugation of coordinates:

B := {(0 : 0 : 0 : 0 :I : 1 : 1 :−I),

(0 : 0 : 0 : 0 :I : 1 :−1 : I),

(0 : 0 : 0 : 0 :µ I : µ : 1 : I),

(0 : 0 : 0 : 0 :µ I : 1 : µ : −I),

(0 : 0 : 0 : 0 :νI : 1 :−ν : I),

(0 : 0 : 0 : 0 :νI : ν : −1 :−I)},

with µ :=
√

2+1 andν :=
√

2−1. Due to the above cited
result, the six singular bonds are either pseudo-bonds or they
belong to complex self-motions of the manipulator. ⋄

Until now it is an open problem how to identify bonds of
real self-motions only from properties of the bond-set. The
answering of this question is dedicated to future research.

5 Study of task 2
In this section we show that the bond theory can also

be used to design parallel manipulators with self-motions.
In this context we provide a simple proof for the following
theorem on the spherical analogs of SG manipulators (i.e.
spherical three degrees of freedom (dof) mechanisms, where
the platform is connected via three RPR-legs with the base),
which was presented in [16]:

Theorem 5. Given is a spherical3-dof RPR manipulator,
where the base anchor pointsM◦

1,M
◦
2,M

◦
3 and platform an-

chor pointsm◦
1,m

◦
2,m

◦
3 are located on great circles (cf. Fig.

4, left). This manipulator has a self-motion, if and only if
two platform anchor points or two base anchor points coin-
cide (assumed that antipodal points are identified).
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Fig. 4. Left: Spherical 3-dof RPR manipulator. Right: W.l.o.g. we

can assume that m◦
1 and m◦

3 coincide (after a perhaps necessary

exchange of the platform and the base and reindexing of anchor

points). In the configuration, where m◦
1 = m◦

3 coincides with M◦
2,

the platform has a trivial rotational self-motion.

Proof: W.l.o.g. we can assume that the radius of the sphereS2

equals one and that this unit-sphere is centered in the origin
of the fixed frame. Moreover we can assume w.l.o.g. thatM◦

1
is located on thex-axis of the fixed frame and thatM◦

2,M
◦
3

belongs to thexy-plane of the fixed frame.
W.l.o.g. we can assume for the platform thatm◦

1 is lo-
cated on they-axis of the moving frame and thatm◦

2,m
◦
3 be-

longs to thexy-plane of the moving frame. By using the
half-angle substitution we can set:

M◦
1 = (1,0,0)T , M◦

i =
(

2Qi
1+Q2

i
,

1−Q2
i

1+Q2
i
,0
)T

,

m◦
1 = (0,1,0)T , m◦

i =
(

1−q2
i

1+q2
i
, 2qi

1+q2
i
,0
)T

,

with qi ,Qi ∈ R for i = 2,3. Now we can compute the three
leg constraintsΛ1, Λ2 andΛ3 according to Eq. (2) under con-
sideration off0 = f1 = f2 = f3 = 0 (cf. [21]).

In general this 3-legged manipulator has no self-
motions. Therefore we consider the motion of the manip-
ulator after the removal of thejth leg. Note that this yields
a spherical 4-bar mechanism, which trivially has only non-
translational self-motions (= spherical coupler motions).
Now the setB j of bonds of this spherical 4-bar mechanism
consists of the common points ofΛk, Λl andN= 0 with pair-
wise distinctj,k, l ∈ {1,2,3}. These points can be computed
as follows:

We eliminate an Euler parameteres by computingS1 :=
Res(Λk,N,es), S2 :=Res(Λl ,N,es) andS3 :=Res(Λk,Λl ,es).
Then we can eliminate a further Euler parameteret by calcu-
lating Res(S1,S2,et), Res(S1,S3,et) andRes(S2,S3,et). The
greatest common divisorGCDj of the obtained three expres-
sions corresponds with the solution of our problem. The
set of bonds can again be computed by a stepwise back-
substitution. E.g. we get the following setB3 of bonds up

5It is worth noting thatB does not depend on the parameterβ , which
determines the geometry of the planar projective SG platform (cf. [19, 20]).

to conjugation of coordinates:

B3 := {(q2I : −q2 : 1 : I : 0 : 0 : 0 : 0),

(I : 1 : q2 : −q2I : 0 : 0 : 0 : 0),

(Q2 : I : −Q2I : 1 : 0 : 0 : 0 : 0),

(1 : Q2I : I : −Q2 : 0 : 0 : 0 : 0)}.

(6)

A necessary condition for a self-motion of the spherical 3-
dof RPR manipulator is that the setsB1, B2 andB3 have
a common bond, which is equivalent with the statement that
GCD1, GCD2 andGCD3 have a common factor.

It is well known thatGCDi andGCDj only have a com-
mon factor, if the resultantPi, j of these two expressions with
respect to one of the two remaining Euler parameters van-
ishes. Therefore we have to compute the greatest common
divisor ofP1,2, P1,3 andP2,3, which factors into:

(q2
2−1)(q2

3−1)(Q2
2−1)(Q2

3−1)

(q2−q3)(Q2−Q3)(1+q2q3)(1+Q2Q3)
(7)

beside the remaining Euler parameter. But by setting this
Euler parameter equal zero, the stepwise back-substitution
yields e0 = e1 = e2 = e3 = 0; a contradiction. Moreover it
can easily be checked that the vanishing of any factor of Eq.
(7) implies the coincidence of two platform anchor points
or base anchor points, if we identify antipodal points. This
condition is already sufficient, as such manipulators always
have a pure rotational self-motion (cf. Fig. 4, right). �

Remark 9. We consider the spherical coupler motion,
which results from the removal of the third leg. If we set
q2 = Q2 = 0, it can easily be seen that this motion is equiva-
lent with the spherical motion of the SG manipulator of Ex-
ample 3. For(u,v) = (1,0) the setB of Eq. (5) equalsB3

of Eq. (6). This demonstrates that the spherical self-motion
of the SG manipulator is indeed encoded within the setB. ⋄

It the following we show that by means of bond theory
even a stronger statement can be proven in a very elegant
way.

Theorem 6. Theorem 5 also holds if the anchor points are
not assumed to be located on great circles.

Proof: First of all we have to generalize the coordinates of
the third pair of anchor points as follows:

M◦
3 =

(

2Q3(1−Q2
4)

(1+Q2
3)(1+Q2

4)
,
(1−Q2

3)(1−Q2
4)

(1+Q2
3)(1+Q2

4)
, 2Q4

1+Q2
4

)T
,

m◦
3 =

(

(1−q2
3)(1−q2

4)

(1+q2
3)(1+q2

4)
,

2q3(1−q2
4)

(1+q2
3)(1+q2

4)
, 2q4

1+q2
4

)T
.

In this case we do not proceed like in the proof of Theorem
5, as we want to present another way of arguing:

As the spherical 3-dof RPR manipulator can only have a
self-motion, if its set of bonds is not empty, at least one bond



of B3 of Eq. (6) has to fulfill the leg constraintΛ3. If we
plug the first bond ofB3 into Λ3, the numerator factors into:

[q4(q3−q2)− (1+q2q3)I ][q4(1+q2q3)+ (q2−q3)I ]

[Q4(Q3−1)+ (Q3+1)I ][Q4(Q3+1)+ (Q3−1)I ].
(8)

The vanishing of the real and imaginary part of any fac-
tor already implies the coincidence of two anchor points, if
we takeqi ,Qi ∈ R for i = 2,3,4 into account. This can be
checked analogously for the remaining bonds ofB3.

Clearly the coincidence of two anchor points is again
sufficient for the existence of a rotational self-motion (cf.
Fig. 4, right), which proves the theorem. �

Remark 10. It remains as an exercise for the reader to ver-
ify in an analogous way that planar3-dof RPR manipulators
only have non-translational self-motions, if two platforman-
chor points or two base anchor points coincide. Moreover it
is a simple task to figure out that the platform and the base of
planar3-dof RPR manipulators with translatory self-motions
have to be congruent. ⋄

If we want to design SG platforms with non-
translational self-motions, we can also make use of the nec-
essary condition that these manipulators have to possess
bonds. This is demonstrated on the basis of the following
problem, which is connected with the one discussed by Du-
porcq in [22]:

We start with a 5-legged manipulator with planar plat-
form and planar base. Every manipulator of this type has at
least a 1-parametric self-motion. Now we are interested in a
sixth point pair(m6,M6) located in the planar platform and
planar base in a way that the resulting planar SG platform has
the same set of bonds, which correspond to self-motions as
the given 5-legged manipulator. This is a necessary condition
for the SG platform in order to possess the same self-motions
as the 5-legged manipulator.

Due to the Definitions 1 and 2, this necessary con-
dition is trivially fulfilled if Λ6 is contained within the
ideal spanned byΛ1, . . . ,Λ5,Ψ asV = V6 holds. Moreover
this already implies that both manipulators have the same
self-motions. As all involved equations are homogeneous
quadratic in the Study parameters, there has to exist coeffi-
cientsλ1, . . . ,λ6 with

5

∑
i=1

λiΛi +λ6Ψ−Λ6 = 0.

As this equation has to be fulfilled independently of the
Study parameters, all coefficients of these parameters have
to vanish. As the monomialsei fi for i = 0, . . . ,3 are only
contained inΨ, this already impliesλ6 = 0. Now we have
an analogous problem to the one of [18], where the equation
∑6

i=1 λiΛi −Λ7 = 0 was studied. Therefore we can proceed
similar to the cited paper. By doing this we end up with the

following set of necessary and sufficient equations (cf. Eq.
(30) of [18]):

(s1,s2,s3,s4,s5)(λ1,λ2,λ3,λ4,λ5)
T = s6

with si := (1,ai ,bi ,Ai ,Bi ,aiAi ,aiBi ,biAi ,biBi)
T . This system

only has a solution, if the rank of the 9×5 coefficient matrix
M := (s1,s2,s3,s4,s5) equals the rank of the augmented co-
efficient matrixM+ := (s1,s2,s3,s4,s5,s6). We distinguish
the following two cases:

(a) rk(M)< 5: Now the 5-legged manipulator is a so-called
degenerated one (cf. [23]), which is only possible if a
minimum of four anchor points is collinear [24]. More-
over it was shown by the author [24] that in this case at
least a 1-dimensional solution ofrk(M) = rk(M+) exists
with respect to the unknownsa6,b6,A6,B6.

(b) rk(M) = 5: The solution of the problemrk(M) =
rk(M+) = 5 is more complicated, as special cases have
to be studied. But for the general case there exist an
unique solution. For a complete and detailed discussion
please see [24].

If a sixth point pair(m6,M6) with rk(M) = rk(M+) exists,
which therefore is a solution to Duprocq’s problem, then the
resulting SG platform is always architecturally singular,be-
causerk(M+)< 6 holds (cf. Remark 1 of [8]).

As a consequence we can also give the missing geomet-
ric/kinematic reasoning for Lemma 2 of [6], which was only
proven analytically. This lemma reads as follows:

Lemma 1. Let a planar SG manipulator with no four an-
chor points collinear be architecturally singular. Then
the collinearity of mi ,m j ,mk implies the collinearity
of Ml ,Mm,Mn and vice versa with pairwise distinct
i, j,k, l ,m,n∈ {1, . . . ,6}.

Proof: As no four anchor points are collinear, the manipula-
tor fulfills rk(M+) = 5. Moreover the removal of any leg
(w.l.o.g. we can assume that this is the leg with index 6)
yields a 5-legged manipulator withrk(M) = 5. For this 5-
legged manipulator we can assume w.l.o.g. (after a possible
necessary renumbering of indices and exchange of platform
and base) thatM1,M2,M3 are located on a lineg. Moreover
we can choose coordinate systems in the base in a way that
g equals thex-axis of the fixed frame and thatm4 andm5 are
located on thex-axis of the moving frame.

Clearly the 5-legged manipulator has two 1-parametric
sets of butterfly motions around the lineg. This can also
be verified by computingB6, which contains the two bonds
of Eq. (4). Now the sphere constraintΛ6 of the sixth leg
has to contain these bonds as well. By plugging both bonds
into Eq. (2) we get±4b6B6u2. This confirms the trivial fact
that we can only attach a sixth leg without disturbing these
rotational self-motions, ifm6 or M6 is located on thex-axis.
The condition that no four anchor points are allowed to be
collinear implies the collinearity ofm4,m5,m6. �



6 Conclusion and future work
In this paper we transfered the basic idea of bonds for

overconstrained closed chains with rotational joints, to the
theory of self-motions of SG platforms. Clearly this concept
is not limited to SG platforms, but it can also be adopted for
other parallel manipulators as well [e.g. spherical 3-dof RPR
manipulators (cf. Theorems 5 and 6) or planar 3-dof RPR
manipulators (cf. Remark 10)].

We presented some basic facts and results on bonds and
demonstrated the potential of this theory on the basis of sev-
eral examples. Moreover we showed (cf. Example 3) that for
a further deeper study of bonds, their algebraic multiplicities
have to be considered as well. Based on this concept we want
to read off more information from the bond-set; e.g. if a bond
belongs to a real self-motion (cf. Example 6) and the degree
of this self-motion.

Beside this, it is also planned to use the theory of bonds
for the determination of necessary conditions for the de-
sign of non-architecturally singular SG platforms with self-
motions. This theory even raise the hope of giving a com-
plete solution to the Borel Bricard problem in the future.

Due to the computation of bonds given in Section 2, it
is obvious that they are also connected with the manipula-
tors direct kinematic problem. Therefore this theory can also
be of interest for the determination of the maximal number
of solutions for the forward kinematics of manipulators with
special geometries (e.g. coincidence of anchor points [25]).
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