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ABSTRACT
It has been previously shown that non-architecturally singular parallel manipulators of Stewart Gough

type, where the planar platform and the planar base are related by a projectivity, have either so-called elliptic
self-motions or pure translational self-motions. As the geometry of all manipulators with translational self-
motions is already known, we focus on elliptic self-motions. We show that these necessarily one-parameter
self-motions have a second, instantaneously local, degreeof freedom in each pose of the self-motion. More-
over, we introduce a geometrically motivated classification of elliptic self-motions and study the so-called
orthogonal ones in detail.
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1. INTRODUCTION

The geometry of a planar Stewart Gough (SG) platform is givenby the six base anchor pointsMi (i =
1, . . . ,6) with coordinatesM i := (Ai,Bi)

T with respect to thexy-planeπM of the fixed system and by the six
platform anchor pointsmi with coordinatesmi := (ai ,bi)

T with respect to thexy-planeπm of the moving
system. If the geometry of the manipulator is given as well asthe six leg lengths, then the SG platform is in
general rigid, but under particular conditions, it can perform ann-parametric motion (n > 0), which is called
self-motion. Note, that these motions are also solutions ofthe famous Borel Bricard problem (cf. [1–3]).

It is well known, that planar SG platforms, which are singular in every possible configuration, possess self-
motions in each pose (overC). These so-called architecturally singular planar SG platforms were extensively
studied in [4–7]. Therefore, we are only interested in self-motions of planar SG platforms, which are not
architecturally singular.

In this paper, we discuss the case where the base anchor points Mi and the platform anchor pointsmi are
related by a non-singular projectivityκ ; i.e.

κ : πm → πM with mi 7→ Mi. (1)

For the remainder of this article, we call these manipulators planar projective SG platforms.

Remark 1 A non-singular projectivityκ is a bijective linear mapping between two planes, which are projec-
tively extended; i.e. we also consider the ideal points of these planes. Moreover,κ preserves incidences and
cross-ratios. Finally it should be mentioned, that projectivites, which map all ideal points again onto ideal
points, are so-called affinities (or affine mappings). ⋄

It is well known (cf. Chasles [8]), that a planar projective SG platform is architecturally singular if and
only if one set of anchor points is located on a conic section,which can also be reducible. Moreover, it was
shown by the author in [9], that one can attach a two-parametric setL of additional legs to planar projective
SG platforms without changing the forward kinematics and singularity surface. The platform anchor points
ni and the base anchor pointsNi of these additional legs are also related byκ , i.e.niκ = Ni .

Under the assumption thats denotes the line of intersection ofπM andπm in the projective extension of the
Euclidean 3-space, an elliptic self-motion can be defined asfollows (cf. Def. 1 of [9]):

Definition 1 A self-motion of a non-architecturally singular planar projective SG platform is called elliptic,
if in each pose of this motions exists withs = sκ and the projectivity froms onto itself is elliptic (⇔ the
projectivity froms onto itself has no real fixed points).

It should be noted, that Definition 1 implies that neitherπM andπm nor two related points of the platform
and the base coincide during an elliptic self-motion.

It was also shown by the author in [9], that non-architecturally singular planar projective SG platforms
can either have elliptic self-motions or pure translational ones. The latter are the only self-motions of non-
architecturally singular planar affine SG platforms.1 In this case, the projectivity has to be an affinitya+A·x,
where the singular valuess1 ands2 of the 2×2 transformation matrixA with 0 < s1 ≤ s2 fulfill the condition
s1≤1≤ s2. But, it should be mentioned, that all planar affine SG platforms, which do not fulfill this condition,
only have “ordinary” singularities causing a local shakiness of the manipulator but no actual self-motion.

1Corresponding anchor points of the planar platform and the planar base are related by an affinity (cf. Remark 1).
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Figure 1: Sketch and notation of points and lines used for theproof of Theorem 1. Note, that the projectivity
from s onto itself is determined byni 7→ Ni for i = 1,2,3. As it is elliptic, it does not have real fixed points.

Note, that a self-motion is dangerous because it is uncontrollable thus a hazard to man and machine.
Therefore being able to avoid manipulator designs that engender self-motion is of interest to engineers. Is
the large class of planar projective SG manipulators, whereκ is no affinity, free of self-motions? An answer
to this question, which is given at the very end of the paper (cf. Sect. 7), is based on the following study of
non-architecturally singular planar projective SG platforms with elliptic self-motions. Let us start with the
following basic result:

Theorem 1 If a non-architecturally singular planar projective SG platform allowing an elliptic self-motion
exists, then it possesses in each pose of the elliptic self-motion exactly two instantaneous degrees of freedom.

Proof: Due to Lemma 1 of [9] and the results of [10], we can replace the original six legsmiMi with i =
1, . . . ,6 by a new set of six legsniNi without changing the direct kinematics and singularity surface, ifniκ = Ni

holds andn1, . . . ,n6 are not located on a conic section. Therefore,n1, . . . ,n6 can be selected as follows (cf.
Fig. 1): We choose three linesg1,g2,g3 ∈ πm so thatg1,g2,g3, s are pairwise distinct and that no three of them
belong to a pencil of lines. Then, we can defineni as the intersection point ofgi ands = sκ for i = 1,2,3.
Moreover, the intersection point ofgi and g j is denoted bynk+3 with pairwise distincti, j,k ∈ {1,2,3}.
By applyingκ to n1, . . . ,n6, we get the corresponding base anchor pointsN1, . . . ,N6. The resulting planar
projective SG platformn1, . . . ,N6 is not architecturally singular, asn4, n5 andn6 are not collinear.

As the three legsn1N1, n2N2, n3N3 coincide withs = sκ , we get at least two instantaneous degrees of
freedom (dofs). Moreover, due to the above given construction, the remaining three legsn4N4, n5N5, n6N6
are pairwise skew. Therefore, the carrier lines of these legs span a regulusR of a regular ruled quadric, based
on a well known fact from line geometry (e.g. page 182 of [11]).

Due to this fact, there only exist three instantaneous dofs if s = sκ also belongs toR. In the following, we
show by contradiction that this cannot be the case:

If we assume thats = sκ belongs toR, then each planeε throughs = sκ has to intersectR in a conic,
which splits intos = sκ and another linet. By settingε = πm we see, thatt has to contain the pointsn4, n5
andn6, which already yields the contradiction, as these points are not collinear. �
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Figure 2: Sketch of basic quadrangles(a,b,c,d)∈ πm and(A,B,C,D)∈ πM of κ and the Cartesian coordinate
systems(o,x,y) in πm and(O,X,Y) in πM.

Theorem 1 shows that elliptic self-motions are highly singular motions, if indeed non-architecturally singular
planar projective SG platforms with these motions even exist.2 We try to shed light on this still open question
within this paper, which is structured as follows:

In Sect. 2, we present the basic quadrangles ofκ and their coordinatization. In Sect. 3, we give the analyt-
ical version of the Darboux constraints and Mannheim constraints determined by the basic quadrangles and
we introduce the so-called angle constraint. Based on this mathematical framework, we study the geometry
of elliptic self-motions in Sect. 4, which also yields a deeper understanding of Theorem 1. In Sect. 5, we give
two approaches to the determination of planar projective SGplatforms with a special class of elliptic self-
motions; namely orthogonal ones. Moreover, in Sect. 6 we present the main theorem on orthogonal elliptic
self-motions and in Sect. 7 we give a conjecture for the non-orthogonal case and some final remarks.

2. BASIC QUADRANGLES OF κ

The projectivityκ of the planar projective SG manipulatorm1, . . . ,M6 is given. It is well known, that
κ is uniquely determined by any pair of quadrangles, which correspond withinκ . In the following, we
choose special quadrangles, on which we base the coordinatization of the manipulator in order to get the
most compact equations in the computations given later (cf.Sect. 3-6). Without loss of generality (w.l.o.g.)
the selection can be done as follows (cf. Fig. 2):

Assumew andW denote the ideal line ofπm andπM, respectively. Due to Sect. 1, we can assume thatκ is
no affinity, i.e.wκ 6= W. Therefore,Wκ−1 andwκ are finite lines. We denote the ideal point ofWκ−1 by f,
which is mapped underκ onto the ideal pointF of wκ .

Further, we denote the infinite vertex of the pencil of lines orthogonal towκ by A. Analogously, the infinite
vertex of the pencil of lines orthogonal toWκ−1 is denoted byb. Therefore,a := Aκ−1 andB := bκ are finite
points ofπm andπM, respectively. Then, we choose a pointc with f 6= c 6= a on Wκ−1 and a pointD with
F 6= D 6= B onwκ . We can still specify the pointsc andD by assuming that the angles∢(d,a, f) and∢(F,B,C)
equalπ/4 with d := Dκ−1 andC := cκ . This yields our basic quadrangles(a,b,c,d) and(A,B,C,D) of κ .

As the basic quadrangles are related byκ , the legs, which are spanned by corresponding vertices, canbe
added to the planar projective SG platformm1, . . . ,M6 without changing the direct kinematics and singularity
surface. Therefore, we can attach the special legsaA, . . . ,dD ∈ L . It was shown by the author in [12], that
the attachment of the special legaA (resp.cC) corresponds with the so-called Darboux constraint, that the
platform anchor pointa (resp.c) moves in a plane of the fixed system orthogonal to the direction of the ideal

2Until now, no example is known to the author.
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pointA (resp.C). The attachment of the special legbB (resp.dD) corresponds with the so-called Mannheim
constraint, that a plane of the moving system orthogonal tob (resp.d) slides through the pointB (resp.D).

2.1. Coordinatization of the basic quadrangles
As we are dealing with planar projective SG platforms, we have to consider the projective extension ofπm

andπM, i.e.
(ai,bi)

T 7→ (wi : xi : yi)
T and (Ai,Bi)

T 7→ (Wi : Xi : Yi)
T . (2)

Note, that ideal points are characterized bywi = 0 andWi = 0, respectively.
W.l.o.g. we can choose the following system(O,X,Y) of Cartesian coordinates inπM (cf. Fig. 2):B is the

origin O , F is the ideal pointX of thex-axis andA the ideal pointY of they-axis. This yields the following
homogeneous Cartesian coordinates for the quadrangle(A,B,C,D):

A = (0 : 0 : 1)T , B = (1 : 0 : 0)T , C = (0 : 1 : 1)T , D = (1 : α : 0)T , (3)

where we can additionally assume w.l.o.g. thatα > 0 holds. Moreover, we can choose the following system
(o,x,y) of Cartesian coordinates inπm w.l.o.g. (cf. Fig. 2):a is the origino, b is the ideal pointx of thex-axis
andf the ideal pointy of the y-axis. This yields the following homogeneous Cartesian coordinates for the
quadrangle(a,b,c,d):

a = (1 : 0 : 0)T , b = (0 : 1 : 0)T , c = (1 : 0 :β )T , d = (0 : 1 : 1)T . (4)

In addition, we can eliminate the factor of similarity by setting α = 1. As a consequenceκ only depends on
β ∈ R\{0} and the matrixP (resp.P−1) of κ (resp.κ−1) equals:

P =





0 1 0
0 0 1
β 0 0



R, P−1 =





0 0 1
β 0 0
0 β 0



R. (5)

3. MATHEMATICAL FRAMEWORK

For the determination of self-motions, it is advantageous to work in the Study parameter spaceP7
R

, which
is a 7-dimensional real projective space with homogeneous coordinatese0, . . . ,e3, f0, . . . , f3. By using these
so-called Study parameters for the parametrization of Euclidean displacements, the coordinatesm′

i of the
platform anchor points with respect to fixed system can be written asKm′

i = Rmi +(t1, t2, t3)T with

t1 : = 2(e0 f1−e1 f0 +e2 f3−e3 f2),

t2 : = 2(e0 f2−e2 f0 +e3 f1−e1 f3),

t3 : = 2(e0 f3−e3 f0 +e1 f2−e2 f1),

and the rotation matrixR := (r i j ) (i denotes the row andj the column) given by:




e2
0 +e2

1−e2
2−e2

3 2(e1e2−e0e3) 2(e1e3+e0e2)
2(e1e2 +e0e3) e2

0−e2
1 +e2

2−e2
3 2(e2e3−e0e1)

2(e1e3−e0e2) 2(e2e3 +e0e1) e2
0−e2

1−e2
2 +e2

3



 ,

with Euler parameterse0, . . . ,e3. Now, all points ofP7
R

, which are located on the so-called Study quadric
Φ : ∑3

i=0ei fi = 0, correspond to Euclidean displacements with exception ofthe subspacee0 = . . . = e3 = 0 of
Φ, as these points cannot fulfill the normalizing conditionK = 1 with K := e2

0+e2
1 +e2

2 +e2
3.
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The formulas for the analytical versions of the Darboux and Mannheim constraints were given by the
author in [12]. If we introduce the coordinates of our anchorpointsa, . . . ,d,A, . . . ,D of Eqs. (3) and (4) into
these formulas, we get the following expressions for the twoDarboux constraints:

Ωa
A : t2+LaK = 0, Ωc

C : t1+ t2+LcK +β (r12+ r22) = 0, (6)

with variablesLa,Lc ∈ R and the following expressions for the two Mannheim constraints:

Πb
B : t1 +gbK = 0, Πd

D : t1+ t2 +gdK − (r11+ r12) = 0, (7)

with variablesgb,gd ∈ R and

t1 := 2(e0 f1−e1 f0−e2 f3 +e3 f2), t2 := 2(e0 f2 +e1 f3−e2 f0−e3 f1).

Therefore, we get four homogeneous quadratic equations in Study parameters which are linear inf0, . . . , f3.

3.1. The angle constraint
In the following, we attach a further leggG of L to the manipulator withg = (1 : 0 :−β )T andG = (0 :

−1 : 1)T , which gives rise to a third Darboux constraint:

Ωg
G : −t1+ t2+LgK +β (r12− r22) = 0,

with the variableLg ∈ R. Now, the linear combination

−Ωa
A/β +Ωc

C/(2β )+Ωg
G/(2β ) (8)

equalsr12− γΩK with γΩ := (2La−Lc−Lg)/(2β ).
Moreover, we attach a further leghH of L with h = (0 : 1 :−1)T andH = (1 :−1 : 0)T , which causes a

third Mannheim constraint:
Πh

H : t1− t2+ghK +(r11− r12) = 0,

with the variablegh ∈ R. Now, the linear combination

−Πb
B +Πd

D/2+Πh
H/2 (9)

equalsr12− γΠK with γΠ := −(2gb−gd −gh)/2.
As the anchor pointsa, . . . ,d,g,h andA, . . . ,D,G,H are located on two lines (degenerate conic), the ma-

nipulator, defined by these six pairs of anchor points, is architecturally singular. This is the reason for the
existence of the following linear combination:

2Ωa
A−Ωc

C−Ωg
G−2βΠb

B +βΠd
D +βΠh

H = K(2La−Lc−Lg +2βgb−βgd−βgh),

which immediately implies thatγ := γΩ = γΠ has to hold. Clearly, due to the projectivity, the resulting
special conditionr12− γK = 0 can be generated by the linear combination of any three of either Darboux or
Mannheim constraints, which correspond with legs ofL .

Moreover, it can easily be verified that this remarkable equation has the following geometric interpretation:
The y-axis of the moving frame (with ideal pointf) and thex-axis of the fixed frame (with ideal pointF)
subtend a constant angle arccos(γ). Therefore, we introduce the following notation:

∢
f
F : r12− γK = 0, (10)

where the variableγ ∈]−1,1[ has to hold.3 This condition is a homogeneous quadratic equation in Euler
parameters. Finally, it should be noted, that this equationis a special case of Eq. (3) of [2].

3As γ = ±1 impliesf = F (= fixed point) this contradicts the definition of an elliptic self-motion. For this case, please see [9].
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4. ON THE GEOMETRY OF ELLIPTIC SELF-MOTIONS

Based on the same arguments as in the proof of Theorem 1, we canreplace the original six legsmiMi with
i = 1, . . . ,6 by a new set of six legsaA, . . . ,dD, fF andmM, wherem andM has to be chosen in a way that the
manipulator is not architecturally singular. E.g. we can set:

m = (1 :−β : 0)T and M = (1 : 0 :−1)T . (11)

Note, that for this selection the following triples of anchor points are collinear:

(m,c,d) ⇔ (M,C,D), (m,a,b) ⇔ (M,A,B), (b,d, f) ⇔ (B,D,F), (a,c, f)⇔ (A,C,F).

These collinearity properties imply, under considerationof Lemma 2 of Karger [4], that the resulting 6-legged
manipulator cannot be architecturally singular. Based on this special 6-legged manipulator, we can prove the
following theorem.

Theorem 2 If a non-architecturally singular planar projective SG platform allowing an elliptic self-motion
exists, then the elliptic self-motion has to be a one-parametric motion.

Proof: By removing the legmM, there remains a 5-legged manipulatoraA, . . . ,dD, fF. In the following
we show, that this 5-legged manipulator cannot have a two-parametric motion. This is equivalent with the
statement, that the six hyperquadricsΩa

A, Ωd
C, Πb

B, Πd
D, ∢f

F, Φ in the Study parameter space, cannot have a
surface in common. This can be proven as follows:

We solveΦ together with three of the following four conditionsΩa
A, Ωd

C, Πb
B, Πd

D for f0, . . . , f3. Then, we
introduce the resulting values into the remaining equation, which yields for all four possible cases the same
polynomialΛ[72], where the number in the brackets gives the number of terms.

We proceed by computing the resultantΓ of ∢f
F andΛ with respect toe3; i.e.Γ[684] := Rese3(∢

f
F,Λ). Now,

all coefficients ofΓ, with respect to the remaining Study parameterse0, e1 ande2, have to vanish identically.
The coefficient ofe8

1 of Γ equalsγ and therefore we get a contradiction, asγ is the coefficient of the highest
exponent ofe3 in ∢

f
F (cf. Eq. (1.1) of Chapter 3 of [13]).

Therefore, we have to setγ = 0 and recomputeΓ, which yields an expression with only 36 terms. Now,
the coefficients ofe6

0e1 ande6
0e2 of Γ imply Lc = La +gb−β andgd = La +gb+1, respectively. Finally, the

coefficient ofe4
0e3

1 equalsβ , which contradicts the assumptionβ 6= 0.
It can easily be seen, thatf0, . . . , f3 can not be computed with the above approach, if eithere0 = e3 = 0 or

e1 = e2 = 0 hold. In both casesπM andπm have to be parallel, as they cannot coincide due to Definition1.
Therefore,κ maps the line at infinity ofπm (= the lines) onto the ideal line ofπM. This implies a planar
affine SG platform, which contradicts our assumptions.

Now, we sum up our results: From the computation above we see,that a two-parametric motion of the
5-legged manipulator is not possible and therefore it can only have one-parametric ones. As a consequence,
the elliptic self-motion of the planar projective SG platform can only be one-parametric. �

Based on this result, we can proceed with the following geometric analysis of elliptic self-motions:
If s does not change during the self-motion, then the self-motion can only be a pure rotation about the line

s = sκ (one-parametric motion), as no instantaneous motion alongs = sκ is possible.4 Now it can easily be
seen, that any leg ofL with anchor points not ons = sκ prevents this rotational mobility.

4This follows immediately from the fact, that we can attach legs ofL with anchor points ons = sκ .
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Figure 3: Sketch of the decomposition of an elliptic self-motion.

Therefore,s has to change during the one-parametric elliptic self-motion. Now,e denotes the envelope of
the resulting one-parametric set of liness generated during the self-motion (cf. Fig. 3). Due to the projective
correspondence, the envelope ofsκ in πM is given byeκ . Moreover, as no instantaneous sliding alongs = sκ
is possible (cf. Footnote 4), any elliptic self-motion can be decomposed into: (1) a rolling (without slipping)
of sκ on eκ, (2) a rotation ofπm abouts = sκ , and (3) a rolling5 (without slipping) ofe on s.

This has the following consequences for the instantaneous behavior of a planar projective SG platform:
On the velocity level, each of the rolling motions can be replaced by an instantaneous rotation about a line
pm (resp.pM) perpendicular toπm (resp.πM) through the contact pointT (resp.Tκ) of s = sκ ande (resp.
eκ). As the angular velocities of these two rotations are coupled byκ (cf. Footnote 5), we get only one
dof. The second dof arises from the instantaneous rotation of πm abouts = sκ . This gives the geometric
interpretation/reasoning for the two instantaneous dofs noted in Theorem 1.

Finally, we can also introduce a classification of elliptic self-motions based on the geometric interpretation
of ∢f

F. This implies the following definition:

Definition 2 An elliptic self-motion is called orthogonal, if the angle enclosed by the unique pair of ideal
points(f,F) with fκ = F equalsπ/2.

In the remainder of this article, we answer the question of existence of orthogonal elliptic self-motions.
Therefore, we setγ = 0.

5. DETERMINATION OF ORTHOGONAL ELLIPTIC SELF-MOTIONS

In this section, we introduce two approaches to the determination of planar projective SG platforms with
orthogonal elliptic self-motions.

5.1. The classical approach
Until now, we have a set of six constraintsΩa

A, Ωc
C, Πb

B, Πd
D, ∢f

F, Φ in eight homogeneous unknownse0 :
. . . : f3. We get a self-motion, if we can attach the sixth legmM of L to the 5-legged manipulator pertaining
to Theorem 2 without restricting at least one component of its one-parametric motion. The attachment of the
legmM corresponds to the so-called sphere constraint, thatm has to be located on a sphere with centerM and
radius6 R∈R. Due to Husty [14], this condition can again be expressed by ahomogeneous quadratic equation

5Clearly, the two rolling motions of item 1 and item 3 are coupled by the projectivityκ .
6Note, that the variablesLa,Lc,gb,gd,γ of the Darboux, Mannheim and angle constraint, respectively, can be seen as the

analogue to the variableR of the sphere constraint.
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Θm
M in Study parameters. For our selection given in Eq. (11), we get the following compact expression:

Θm
M : (R2−β 2−1)K−4( f 2

0 + f 2
1 + f 2

2 + f 2
3 )−2t2+2β (t1+ r21) = 0. (12)

As a consequence, each common curve of the seven hyperquadrics in the Study parameter space, which are
given byΩa

A, Ωc
C, Πb

B, Πd
D, ∢

f
F, Φ, Θm

M, corresponds with an elliptic self-motion. This is a necessary and
sufficient condition.

Therefore, the classical approach for the determination ofthese self-motions can be done with a modified
version of Husty’s algorithm [14] as follows: We consider the following two ideals:

I
c
C :=

{

Ωa
A,Πb

B,Πd
D,∢f

F,Φ,Θm
M

}

, I
d
D :=

{

Ωa
A,Ωc

C,Πb
B,∢f

F,Φ,Θm
M

}

. (13)

For I c
C (resp.I d

D), we computef0, . . . , f3 from Ωa
A,Πb

B,Πd
D,Φ (resp.Ωa

A,Ωc
C,Πb

B,Φ), which are linear in
these unknowns. Substituting the resulting values intoΘm

M yieldsΛc
C[737] (resp.Λd

D[737]). Now, we eliminate
in each of the two ideals the variablee3 by computing the following resultants with respect toe3:

Rese3(∢
f
F,Λc

C) = (e2
0+e2

1)Γ
c
C[244], Rese3(∢

f
F,Λd

D) = (e2
0+e2

2)Γ
d
D[244]. (14)

Analogous considerations can be done for the ideals:

I
a
A :=

{

Ωc
C,Πb

B,Πd
D,∢f

F,Φ,Θm
M

}

, I
b
B :=

{

Ωa
A,Ωc

C,Πd
D,∢f

F,Φ,Θm
M

}

, (15)

which yield
Rese3(∢

f
F,Λ

a
A) = (e2

0+e2
1)Γ

a
A[440], Rese3(∢

f
F,Λb

B) = (e2
0 +e2

2)Γ
b
B[440]. (16)

Now, Γa
A, . . . ,Γd

D are polynomials of degree 14 ine0 andΓ[36] (cf. proof of Theorem 2) is a polynomial of
degree 6 ine0. Moreover, as we deal with planar SG platforms, only even powers ofe0 in all five polynomials
appear. Therefore, we can substitutee2

0 by e0 and compute

Ψa
A := Rese0(Γ

a
A,Γ), . . . , Ψd

D := Rese0(Γ
d
D,Γ). (17)

Finally, the greatest common divisor (gcd) ofΨa
A, . . . ,Ψd

D yields

βe9
1e9

2(e
4
1−e4

2)ϒ[24685], (18)

which corresponds to the solution of the direct kinematics problem. Therefore, in the general case, the
coefficients ofϒ with respect toe1 ande2 have to vanish identically. Asϒ is of degree 16 ine1 ande2 this
yields 17 equations in the six unknownsLa,Lc,gb,gd,β ,R. As the resulting system of equations is highly non-
linear, we were not able to solve it explicitly. Therefore, we developed the following alternative approach,
which is based on two necessary conditions for an elliptic self-motion.

Remark 2 For non-orthogonal elliptic self-motions, which additionally depend onγ 6= 0, we were not able
to computeΨa

A, . . . ,Ψd
D symbolically (withMAPLE) because intermediate expressions were so large as to

exceed capacity of largest available computational resources (78GB RAM). This also shows that the classic
approach is hopeless for solving the non-orthogonal case, which is a further motivation for the following
alternative method. ⋄
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Figure 4: Left: Sketch of the points and lines used for the alternative approach. Right: Situation foru = V.

5.2. The alternative approach
Due to the properties of elliptic self-motions derived up tonow, we can formulate two necessary condi-

tions, so that at least a component of the one-parametric motion of the 5-legged manipulator of Theorem
2 corresponds with an elliptic self-motion. These two conditions arise from the property thats = sκ must
remain valid throughout the entire motion.

As s (resp.sκ) cannot be parallel to they-axis of the moving frame7 (resp.x-axis of the fixed frame), we
can assume that the ideal pointu of s (resp.V of sκ) can be given by (cf. Fig. 4, left):

u = (0 : 1 :u)T , V = (0 : v : 1)T , (19)

with u,v∈ R. In order thatu andV coincide during the motion the condition

(R·(1,u,0)T)× (v,1,0)T = (0,0,0)T (20)

has to hold. It can easily be checked, that forr32r13 = 0 this system of equations can only be fulfilled for
e0 = e3 = 0 or e1 = e2 = 0. Due to reasoning in the penultimate paragraph of the proofof Theorem 2, this
already yields a contradiction. Under consideration ofr32r13 6= 0, we can solve Eq. (20) w.l.o.g., which
impliesu = −r31/r32 andv = −r23/r13. Now, we have the situation displayed on the right side of Fig. 4.

As s = sκ has to hold,Vκ−1 ∈ πm has to be located also inπM (cf. Fig. 4, right). Due to Eq. (5),Vκ−1

has homogeneous coordinates(1 : 0 :vβ )T with respect to the moving frame. Therefore, this conditioncan
be expressed by

(

R·(0,vβ ,0)T +(t1, t2, t3)
T)

(0,0,1)T = 0, (21)

which yields
Ξ1 : r12t3−β r23r32 = 0. (22)

Moreover, ass = sκ has to hold,uκ ∈ πM has to be located also inπm (cf. Fig. 4, right). Due to Eq. (5),
uκ has homogeneous coordinates(1 : u : 0)T with respect to the fixed frame. Therefore, this condition can be
expressed by

(

R·(0,0,1)T)

(t1, t2, t3)
T −K

(

R·(0,0,1)T)

(u,0,0)T = 0. (23)

K factors out from this equations and we remain with:

Ξ2 : r32t3+ r13r31 = 0 with t3 := 2(e0 f3−e1 f2+e2 f1−e3 f0). (24)

7As f ∈ s implies thatf = F is a fixed point of the projectivity ofs onto itself.
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The obtained equationsΞ1 and Ξ2 are quartic equations in Study parameters, but they are onlylinear in
f0, . . . , f3 (in contrast toΘm

M). A further advantage of these two equations is, that no additional unknown is
introduced, as was in the case forΘm

M (variableR) of Sect. 5.1.
Note, that for an elliptic self-motion it is necessary, thatthe six hyperquadricsΩa

A, Ωc
C, Πb

B, Πd
D, ∢f

F, Φ and
the two hyperquarticsΞ1 andΞ2 have a common curve in the Study parameter space.8 Therefore, this set of
equations can be used to prove the main theorem on orthogonalelliptic self-motions, which is given next.

Remark 3 Note, thatΞ1 = 0 andΞ2 = 0 already imply that there exist two instantaneous dofs. Therefore,
we cannot generate any additional conditions from the property that the rank of the manipulator’s Jacobian
has to be equal to four during the self-motion (cf. Theorem 1). ⋄

6. MAIN THEOREM ON ORTHOGONAL ELLIPTIC SELF-MOTIONS

Theorem 3 There do not exist non-architecturally singular planar projective SG platforms with an orthogo-
nal elliptic self-motion.

Proof: We computef0, . . . , f3 from the system of equationsΩa
A,Πb

B,Πd
D,Φ (resp.Ωa

A,Ωc
C,Πb

B,Φ), which
are linear in these unknowns. Then, we substitute the resulting values intoΞ1, which yieldsΛc

C[84] (resp.
Λd

D[86]). This can only be done fore0e1−e2e3 6= 0 (resp.e0e2−e1e3 6= 0).
Now, we eliminatee3 by computing the following resultants with respect toe3:

Rese3(∢
f
F,Λc

C) = (e2
0−e2

2)Γ
c
C[34], Rese3(∢

f
F,Λd

D) = e2(e
2
0+e2

2)Γ
d
D[35].

This elimination is only valid if the coefficients of the greatest power ofe3 do not vanish, which aree0, e1N2

ande1N3 with
N2 := β +La−Lc−gb, N3 := 1+La−gb +gd. (25)

Now, Γc
C andΓd

D are polynomials of degree 8 ine0, andΓ[36] (cf. proof of Theorem 2) is of degree 6 ine0.
As again only even powers ofe0 appear in all three polynomials, we replacee2

0 with e0 and compute

Ψc
C := Rese0(Γ

c
C,Γ), Ψd

D := Rese0(Γ
d
D,Γ). (26)

This elimination is only valid if the coefficients of the greatest power ofe0 do not vanish, which areN1, e2N4

ande1N1+e2N4 with
N1 := β −La +Lc−gb, N4 := 1+La+gb−gd. (27)

Finally, the greatest common divisor ofΨc
C andΨd

D yields

βe9
1e3

2(e
2
1+e2

2)ϒ1[1960]. (28)

Moreover, the same procedure can be done with respect toΞ2, where we only get one additional condition,
namely(e2

0−e2
1) 6= 0. In this case, we obtain

e3
1e9

2(e
2
1+e2

2)ϒ2[1960]. (29)

Therefore, in the general case the coefficients ofϒ1 andϒ2 with respect to the remaining Study parameterse1
ande2 have to vanish identically. As both equations are homogeneous of degree 12 ine1 ande2, this yields
26 necessary conditions. Now, we are looking for solutions of this system under the assumption

e0e1e2(e
2
0−e2

1)(e
2
0−e2

2)(e0e1−e2e3)(e0e2−e1e3) 6= 0. (30)

8Note, that these conditions are not sufficient for an elliptic self-motion.
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6.1. Case study of the general case

In the following, we denote the coefficient ofej
1ek

2 of ϒi by ϒ j ,k
i for i = 1,2. Now,ϒ12,0

i andϒ0,12
i split up

into:
ϒ12,0

1 = N1P2
1 Q1, ϒ0,12

1 = N2P2
2 Q2, ϒ12,0

2 = N3P2
3 Q3, ϒ0,12

2 = N4P2
4 Q4,

P1 : = β +La−Lc +gb, Q1 : = (La−gb +gd)(La−Lc +β )+gb, (31)

P2 : = β −La+Lc +gb, Q2 : = (La+gb−gd)(La−Lc−β )−gb, (32)

P3 : = 1−La+gb−gd, Q3 : = (gb+La−Lc)(gb−gd +1)+βLa, (33)

P4 : = 1−La−gb +gd, Q4 : = (gb−La +Lc)(gb−gd−1)−βLa. (34)

Note, thatN1N2N3N4 = 0 is not allowed, as otherwise at least one of the greatest powers of e3 and e0,
respectively, within the above given resultant based elimination vanishes. Therefore, these cases have to be
discussed separately (see Sect. 6.1.1). As a consequence,PjQ j = 0 for j = 1, . . . ,4 has to hold, where all
possible combinatorial cases are discussed within the following listing. Note, that for this discussion the
assumptionsN1N2N3N4 6= 0, La,Lc,gb,gd ∈ R, β ∈ R\{0} hold in addition to Eq. (30):

1. P1 = P2 = P3 = P4 = 0: In this case, we solve the four equations, which yieldLa = Lc = 1 andgb =
gd = −β . Then, we get:

ϒ1 = e3
1e3

2(βe2
1+βe2

2 +2e1e2)(e
2
1+e2

2 +β 2e2
1+β 2e2

2+4βe1e2)
2, (35)

ϒ2 = e3
1e3

2(e
2
1+e2

2 +β2e1e2)(e
2
1+e2

2 +β 2e2
1+β 2e2

2+4βe1e2)
2, (36)

which cannot vanish without contradiction (w.c.).

2. P1 = P2 = P3 = 0, P4 6= 0: In this case, we solve the three equations, which yieldLa = Lc = 1−gd−β
andgb = −β . Now,Q4 cannot vanish w.c.

Analogously, it can be shown for the casesP4 = Pi = Pj = 0, Pk 6= 0 with pairwise distincti, j,k ∈
{1,2,3}, that no solution exists.

3. P1P2 6= 0: Therefore,Q1 = Q2 = 0 has to hold and we can expressgb andgd from these equations. Now,
ϒ12,0

2 andϒ0,12
2 can only vanish w.c. forLa = Lc. Then,ϒ11,1

2 impliesLc = 0 (⇒ La = gb = gd = 0),
which yields a solution to the necessary system of equations.

Note, that the caseP3P4 6= 0 can be done analogously. This case also yields the same solution.

4. P1P3 6= 0: Therefore,Q1 = Q3 = 0 has to hold and we distinguish the following two cases:

a) La−gb+gd 6= 0: Under this assumption, we can solveQ1 = Q3 = 0 for Lc andβ . Now,ϒ0,12
1 and

ϒ0,12
2 can only vanish w.c. for

i. gb = gd: Then,ϒ11,1
2 cannot vanish w.c.

ii. La−1−3(gb−gd) = 0, La−1+ gb−gd = 0, gb 6= gd: The difference of these equations
already yields the contradiction.

b) La = gb−gd: Now, Q1 impliesgb = 0. We distinguish two cases:

i. gd 6= 0: Under this assumption, we can expressβ from Q3. Then,ϒ0,12
1 cannot vanish w.c.
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ii. gd = 0: Then,Q3 impliesLc = 0 and we get again the above solution.

Note, that the caseP2P4 6= 0 can be done analogously. This case also yields the same solution.

5. P1P4 6= 0: Therefore,Q1 = Q4 = 0 has to hold and we distinguish the following two cases:

a) La−gb+gd 6= 0: Under this assumption, we can solveQ1 = Q4 = 0 for Lc andβ . Now,ϒ0,12
1 and

ϒ0,12
2 can only vanish w.c. forgb = gd. Then,ϒ11,1

2 cannot vanish w.c.

b) La = gb−gd: Now, Q1 impliesgb = 0. We distinguish two cases:

i. gd 6= 0: In this case, we can expressβ from Q3. Then,ϒ0,12
1 cannot vanish w.c.

ii. gd = 0: Then,Q4 impliesLc = 0 and we get again the above solution.

Note, that the caseP2P3 6= 0 can be done analogously. This case also yields the same solution.

Now it remains to check, if the obtained solutionLa = Lc = gb = gd = 0 yields an elliptic self-motion.
Therefore, we compute

gcd(Γ,Γc
C) = e2

0−e2
1, gcd(Γ,Γd

D) = e2
0−e2

2, (37)

which impliese2
0 = e2

1 = e2
2, but this contradicts Eq. (30). Therefore, the general casedoes not yield a solution

to our problem. In the following, we discuss the excluded cases N1N2N3N4 = 0 under the assumptions
La,Lc,gb,gd ∈ R andβ ∈ R\{0}.

6.1.1. Excluded caseN1 = 0
Under consideration ofgb = β −La + Lc, computations similar to those at the beginning of Sect. 6 yield

ϒ1[527] of degree 11 ine1,e2 andϒ2[708] of degree 12 ine1,e2. Then, we get

ϒ0,11
1 = N2(La−Lc−β )3, ϒ12,0

2 = N3β (gd−1+2La−Lc−β )2. (38)

As N2N3 = 0 is not allowed, due to the elimination process, we have to discuss these cases again separately.
Therefore, we can assume w.l.o.g.N2N3 6= 0. As a consequence, the remaining factors of Eq. (38) can be
solved forLa andLc. Then,ϒ11,0

1 cannot vanish w.c. Hence, we remain with the discussion ofN2N3 = 0:

1. N2 = 0: In this case, we haveLa = Lc. We end up withϒ1[53] of degree 10 ine1,e2 andϒ2[101] of
degree 12 ine1,e2. Now, alreadyϒ10,0

1 = β 3 yields the contradiction.

2. N3 = 0: Now, we havegd = β +Lc−1−2La. We end up withϒ1[105] andϒ2[113] of degree 11 ine1

ande2. Then,ϒ11,0
1 = β 2 yields the contradiction.

The other excluded casesNi = 0 for i ∈ {2,3,4} can be discussed in a fashion similar to that above in Sect.
6.1.1. They also yield no solution. Therefore, we are only left with the discussion of the special cases where
Eq. (30) does not hold forLa,Lc,gb,gd ∈ R andβ ∈ R\{0}.

6.2. Case study of the special cases
According to the reasoning given in the penultimate paragraph of the proof of Theorem 2, we can assume

that e0 = e3 = 0 ande1 = e2 = 0 do not hold. Moreover, due to∢f
F : e1e2 − e0e3 = 0, we only have to

distinguish the following four cases, if at least oneei equals zero:

e0 = e1 = 0, e0 = e2 = 0, e3 = e1 = 0, e3 = e2 = 0. (39)

But in all these casesr32r13 = 0 holds, which contradicts the assumption of Sect. 5.2. Therefore, we can
assume for the remaining discussionei 6= 0 with i = 0, . . . ,3.
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6.2.1. Special casee2
0 = e2

1
Under consideration of∢f

F, we have to distinguish the following two cases:

1. e0 = e1 ande2 = e3: W.l.o.g., we can computef0, . . . , f3 from the system of equationsΩa
A,Ωc

C,Πd
D,Φ.

Then, the coefficient ofe4
1 of Ξ1 equalsβ , which cannot vanish w.c.

2. e0 = −e1 ande2 = −e3: The argumentation of item 1 also holds in this case.

6.2.2. Special casee2
0 = e2

2
Under consideration of∢f

F, we have to distinguish the following two cases:

1. e0 = e2 ande1 = e3: W.l.o.g., we can computef0, . . . , f3 from the system of equationsΩc
C,Πb

B,Πd
D,Φ.

Then, the coefficient ofe4
1 of Ξ2 equals 1, which yields the contradiction.

2. e0 = −e2 ande1 = −e3: Similarly, the contradiction applies here as well.

6.2.3. Remaining special cases
1. e0e2−e1e3 = 0: This condition yields together with the angle constraint∢

f
F the following two cases:

e0 = e1 ∧ e2 = e3 and e0 = −e1 ∧ e2 = −e3. (40)

These are exactly the same cases already discussed in Sect. 6.2.1.

2. e0e1−e2e3 = 0: This condition yields together with the angle constraint∢f
F the following two cases:

e0 = e2 ∧ e1 = e3 and e0 = −e2 ∧ e1 = −e3. (41)

These are exactly the same cases already discussed in Sect. 6.2.2.

This closes the proof of Theorem 3. �

Remark 4 In view of Remark 2, it should be noted, that with the alternative method presented, the cor-
responding expressions ofϒ1 and ϒ2 given in Eqs. (28) and (29) for non-orthogonal elliptic self-motions
(γ 6= 0), can be computed without major difficulties. Each of these two expressions, which additionally de-
pend on the variableγ, has 8259 terms and implies again 13 equations (cf. paragraph after Eq. (29)). ⋄

7. CONJECTURE AND CONCLUSION

We proved that non-architecturally singular planar projective SG platforms with orthogonal elliptic self-
motions do not exist (cf. Definitions 1 and 2, Theorem 3). Moreover, we conjecture the following:”Non-
architecturally singular planar projective SG platforms with non-orthogonal elliptic self-motions do not ex-
ist”.

In this context it should be noted, that we were recently ableto prove this conjecture in [15], based on
Theorem 3. On one side, this result is a bit frustrating from the kinematican’s point of view, as one-parametric
self-motions, which have everywhere two instantaneous dofs (cf. Theorems 1 and 2), would have been of
theoretical interest. But on the other side, this result is useful to designers who may be sure that a planar
projective SG manipulator, where the projectivity is no affinity, can never have self-motion (cf. last paragraph
before Theorem 1).
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