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ABSTRACT

It has been previously shown that non-architecturally giagparallel manipulators of Stewart Gough
type, where the planar platform and the planar base aredgbgta projectivity, have either so-called elliptic
self-motions or pure translational self-motions. As thergetry of all manipulators with translational self-
motions is already known, we focus on elliptic self-motiokige show that these necessarily one-parameter
self-motions have a second, instantaneously local, degreeedom in each pose of the self-motion. More-
over, we introduce a geometrically motivated classificatd elliptic self-motions and study the so-called
orthogonal ones in detail.

Keywords: Self-motion, Stewart Gough platform, Borel Bricard prohle
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1. INTRODUCTION

The geometry of a planar Stewart Gough (SG) platform is glweithe six base anchor poinks; (i =
1,...,6) with coordinatesM; := (A, B;)" with respect to they-planery, of the fixed system and by the six
platform anchor pointsn; with coordinatesn; := (a;,b;)" with respect to thexy-plane s, of the moving
system. If the geometry of the manipulator is given as wethassix leg lengths, then the SG platform is in
general rigid, but under particular conditions, it can perf ann-parametric motionr( > 0), which is called
self-motion. Note, that these motions are also solutiote@famous Borel Bricard problem (cf. [1-3]).

It is well known, that planar SG platforms, which are singueevery possible configuration, possess self-
motions in each pose (ov€)). These so-called architecturally singular planar SG@iats were extensively
studied in [4-7]. Therefore, we are only interested in sabtions of planar SG platforms, which are not
architecturally singular.

In this paper, we discuss the case where the base anchos phiahd the platform anchor poinis; are
related by a non-singular projectiviky, i.e.

K. Tk — Ty With mj— M;. Q)
For the remainder of this article, we call these maniputapdanar projective SG platforms.

Remark 1 A non-singular projectivity is a bijective linear mapping between two planes, which aogge-
tively extended; i.e. we also consider the ideal points es¢hplanes. Moreovet, preserves incidences and
cross-ratios. Finally it should be mentioned, that projeités, which map all ideal points again onto ideal
points, are so-called affinities (or affine mappings). o

It is well known (cf. Chasles [8]), that a planar projectiv@ Platform is architecturally singular if and
only if one set of anchor points is located on a conic sectidnich can also be reducible. Moreover, it was
shown by the author in [9], that one can attach a two-paracst.# of additional legs to planar projective
SG platforms without changing the forward kinematics amgjglarity surface. The platform anchor points
ni and the base anchor poirils of these additional legs are also relatedkhy.e. nik = N;.

Under the assumption thatlenotes the line of intersection mf;, andrg, in the projective extension of the
Euclidean 3-space, an elliptic self-motion can be definddlasvs (cf. Def. 1 of [9]):

Definition 1 A self-motion of a non-architecturally singular planar pgotive SG platform is called elliptic,
if in each pose of this motiox exists withs = sk and the projectivity frons onto itself is elliptic & the
projectivity froms onto itself has no real fixed points).

It should be noted, that Definition 1 implies that neitimgy and 1z, nor two related points of the platform
and the base coincide during an elliptic self-motion.

It was also shown by the author in [9], that non-architedlysingular planar projective SG platforms
can either have elliptic self-motions or pure translatlares. The latter are the only self-motions of non-
architecturally singular planar affine SG platfortn this case, the projectivity has to be an affirdty A-x,
where the singular valuess ands, of the 2x 2 transformation matriA with 0 < s; < s, fulfill the condition
s1 <1< s. But, it should be mentioned, that all planar affine SG platf®, which do not fulfill this condition,
only have ‘brdinary’ singularities causing a local shakiness of the manipulaib no actual self-motion.

LCorresponding anchor points of the planar platform and theay base are related by an affinity (cf. Remark 1).

Transactions of the Canadian Society for Mechanical Emging, Vol. 00, No. 0, 0000 2




ns

Figure 1: Sketch and notation of points and lines used foptbef of Theorem 1. Note, that the projectivity
from s onto itself is determined biy; — N; fori =1,2,3. As itis elliptic, it does not have real fixed points.

Note, that a self-motion is dangerous because it is uncitettte thus a hazard to man and machine.
Therefore being able to avoid manipulator designs that mehgyeself-motion is of interest to engineers. Is
the large class of planar projective SG manipulators, wkaseno affinity, free of self-motions? An answer
to this question, which is given at the very end of the papkrSect. 7), is based on the following study of
non-architecturally singular planar projective SG platie with elliptic self-motions. Let us start with the
following basic result:

Theorem 1 If a non-architecturally singular planar projective SG piiarm allowing an elliptic self-motion
exists, then it possesses in each pose of the elliptic sgibmexactly two instantaneous degrees of freedom.

Proof. Due to Lemma 1 of [9] and the results of [10], we can replagedtiginal six legsmjM; with i =
1,...,6 by a new set of six leggN; without changing the direct kinematics and singularityace, ifnjk = N;
holds andny,...,ng are not located on a conic section. Therefarg, ..,ng can be selected as follows (cf.
Fig. 1): We choose three lings, g2, g3 € T, SO thatg, g2, g3,s are pairwise distinct and that no three of them
belong to a pencil of lines. Then, we can definas the intersection point @ ands = sk fori =1,2,3.
Moreover, the intersection point @ andg; is denoted byn, 3 with pairwise distinct, j,k € {1,2,3}.

By applyingk to ny,...,ng, we get the corresponding base anchor paWits..,Ng. The resulting planar
projective SG platformmy, ..., Ng is not architecturally singular, a5, ns andng are not collinear.

As the three lega1N1, n2N2, n3N3 coincide withs = sk, we get at least two instantaneous degrees of
freedom (dofs). Moreover, due to the above given constsaocthe remaining three leggN4, nsNs, ngNg
are pairwise skew. Therefore, the carrier lines of thesedpgn a regulu® of a regular ruled quadric, based
on a well known fact from line geometry (e.g. page 182 of [11])

Due to this fact, there only exist three instantaneous dafs-isk also belongs te7. In the following, we
show by contradiction that this cannot be the case:

If we assume that = sk belongs taZ, then each plane throughs = sk has to intersec# in a conic,
which splits intos = sk and another line. By settinge = 1, we see, that has to contain the points,, ns
andng, which already yields the contradiction, as these poirgsat collinear. O
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Figure 2: Sketch of basic quadranglesb, c,d) € 1, and(A, B, C,D) € my of k and the Cartesian coordinate
systemgo, x,y) in T, and(O, X,Y) in Tiy.

Theorem 1 shows that elliptic self-motions are highly siagmotions, if indeed non-architecturally singular
planar projective SG platforms with these motions evert@xe try to shed light on this still open question
within this paper, which is structured as follows:

In Sect. 2, we present the basic quadrangles afid their coordinatization. In Sect. 3, we give the analyt-
ical version of the Darboux constraints and Mannheim cainsis determined by the basic quadrangles and
we introduce the so-called angle constraint. Based on thik@matical framework, we study the geometry
of elliptic self-motions in Sect. 4, which also yields a deepnderstanding of Theorem 1. In Sect. 5, we give
two approaches to the determination of planar projectivep&@orms with a special class of elliptic self-
motions; namely orthogonal ones. Moreover, in Sect. 6 wegmethe main theorem on orthogonal elliptic
self-motions and in Sect. 7 we give a conjecture for the ninegonal case and some final remarks.

2. BASIC QUADRANGLES OF «k

The projectivityk of the planar projective SG manipulater, ..., Mg is given. It is well known, that
K is uniquely determined by any pair of quadrangles, whichresond withink. In the following, we
choose special quadrangles, on which we base the coomdfihati of the manipulator in order to get the
most compact equations in the computations given lateiS@et. 3-6). Without loss of generality (w.l.0.g.)
the selection can be done as follows (cf. Fig. 2):

Assumew andW denote the ideal line afi,, and g, respectively. Due to Sect. 1, we can assumerhiat
no affinity, i.e.wk # W. Therefore Wk~ andwk are finite lines. We denote the ideal pointwk 1 by f,
which is mapped under onto the ideal poinE of wk.

Further, we denote the infinite vertex of the pencil of linegbogonal tovk by A. Analogously, the infinite
vertex of the pencil of lines orthogonal Wk — is denoted by. Thereforea := Ak ~1 andB := bk are finite
points of 1, and 74y, respectively. Then, we choose a paintith f # ¢ # a on Wk ! and a pointD with
F # D # B onwk. We can still specify the pointsandD by assuming that the anglegd, a, f) and<(F,B, C)
equalrr/4 withd := Dk~1 andC := ck. This yields our basic quadranglesb,c,d) and(A,B,C, D) of k.

As the basic quadrangles are relatedkhyhe legs, which are spanned by corresponding verticeshean
added to the planar projective SG platfam, . .., Mg without changing the direct kinematics and singularity
surface. Therefore, we can attach the specialdégs..,dD € .Z. It was shown by the author in [12], that
the attachment of the special leg (resp.cC) corresponds with the so-called Darboux constraint, that t
platform anchor poind (resp.c) moves in a plane of the fixed system orthogonal to the doeaif the ideal

2Until now, no example is known to the author.
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point A (resp.C). The attachment of the special I8 (resp.dD) corresponds with the so-called Mannheim
constraint, that a plane of the moving system orthogonbl(tesp.d) slides through the poirg (resp.D).

2.1. Coordinatization of the basic quadrangles

As we are dealing with planar projective SG platforms, weehtavconsider the projective extensionmgf
andry, i.e.

(a,b)T — (Wi:x:y)T and (A,B)T — W :X:Y)T. 2)

Note, that ideal points are characterizedWpy= 0 andW = 0, respectively.

W.l.0.g. we can choose the following syst¢t X,Y) of Cartesian coordinates im, (cf. Fig. 2): B is the
origin O, F is the ideal poinX of thex-axis andA the ideal pointy of they-axis. This yields the following
homogeneous Cartesian coordinates for the quadréagh: C,D):

A=(0:0:1)7, B=(1:0:0", C=(0:1:1)", D=(1:a:0)7, (3)

where we can additionally assume w.l.0.g. that O holds. Moreover, we can choose the following system
(0,x,y) of Cartesian coordinates m, w.l.0.g. (cf. Fig. 2):a is the origino, b is the ideal poink of thex-axis
andf the ideal pointy of they-axis. This yields the following homogeneous Cartesiarrdioates for the
quadrangléa,b,c,d):

a=(1:0:0", b=(0:1:07, c=(1:0:8)", d=(0:1:1". (4)

In addition, we can eliminate the factor of similarity bytse a = 1. As a consequengeonly depends on
B € R\ {0} and the matriP (resp.P~1) of k (resp.k 1) equals:

010 0 01
P=(0 0 1|R, P!l=(|B 0 O|R (5)
B OO 0B 0

3. MATHEMATICAL FRAMEWORK

For the determination of self-motions, it is advantageousdrk in the Study parameter spaéné which
is a 7-dimensional real projective space with homogeneoasdinatesey, ..., es, fo,..., f3. By using these
so-called Study parameters for the parametrization ofiéeah displacements, the coordinatesof the
platform anchor points with respect to fixed system can beemwiaskKm/ = Rm; + (t1,t2,t3)" with

t1:=2(epf1—eifo+exfz—esf),

to:=2(epfo—exfo+e3fr —erfs),

t3:=2(epfz—e3fo+er1fo—exfy),
and the rotation matriR := (rj;) (i denotes the row anglthe column) given by:
(G%Jref—‘%—% 2(e16 —€pes)  2(ere3+€ey) )

2(e1e+epe3) -+  2(e63—eper)
2eres—ee) 2eesteper) €—e— e+

with Euler parametersy, ...,es. Now, all points ofP/, which are located on the so-called Study quadric
d: zf;oa fi = 0, correspond to Euclidean displacements with exceptidheo$ubspacey = ... =e3 =0 of
®, as these points cannot fulfill the normalizing conditior- 1 with K := €5+ € + €% + €3
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The formulas for the analytical versions of the Darboux angnNheim constraints were given by the
author in [12]. If we introduce the coordinates of our anghaintsa,...,d,A,...,D of Egs. (3) and (4) into
these formulas, we get the following expressions for theDadoux constraints:

aA: tr+LaK =0, EZ t1+t2+LCK+B(r12+r22):O, (6)
with variabled_,, L € R and the following expressions for the two Mannheim constsai
MR:fi+gK=0,  NE:f+T+gqK—(ra+r12) =0, (7)

with variablesgy, g4 € R and

f1:=2(epfr—er1fo—exfz+esfy), fr:=2(epfr+eifs—exfo—esfy).
Therefore, we get four homogeneous quadratic equationidy$arameters which are linearig ..., fs.

3.1. The angle constraint

In the following, we attach a further legG of . to the manipulator witly = (1:0: —p)T andG = (0 :
—1:1)T, which gives rise to a third Darboux constraint:

Q% : —t1+tr+LgK+B(ri2—r22) =0,

with the variabld_g € R. Now, the linear combination

—Qa/B+Q¢/(2B) +Q¢/(2B) (8)
equalsz — yoK with yg := (2La — Lc —Lg)/(2B).

Moreover, we attach a further légi of .2 withh = (0:1:-1)T andH = (1:—-1:0)7, which causes a
third Mannheim constraint:
|_|l|1| T+ oK+ (ri1—ri12) =0,
with the variablegy, € R. Now, the linear combination
—nNg+ng/2+np/2 (9)

equalsyz — ynK with i := —(2gp — ga — n) /2.

As the anchor points,...,d,g,h andA,...,D,G,H are located on two lines (degenerate conic), the ma-
nipulator, defined by these six pairs of anchor points, ifiggcturally singular. This is the reason for the
existence of the following linear combination:

203 — Q¢ — QF —2BMNZ + NG + BN} = K(2la— Le — Lg+ 2By — Bda — Boh),

which immediately implies thay := yo = yn has to hold. Clearly, due to the projectivity, the resulting
special conditiom1, — yK = 0 can be generated by the linear combination of any thredlodéreDarboux or
Mannheim constraints, which correspond with legsf

Moreover, it can easily be verified that this remarkable &gudnas the following geometric interpretation:
The y-axis of the moving frame (with ideal poifi} and thex-axis of the fixed frame (with ideal poirit)
subtend a constant angle arc¢ps Therefore, we introduce the following notation:

<firp—yK=0, (10)

where the variablg €] — 1,1[ has to hold® This condition is a homogeneous quadratic equation in Euler
parameters. Finally, it should be noted, that this equasi@nspecial case of Eq. (3) of [2].

3As y = +1 impliesf = F (= fixed point) this contradicts the definition of an elliptidfsaotion. For this case, please see [9].
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4. ON THE GEOMETRY OF ELLIPTIC SELF-MOTIONS

Based on the same arguments as in the proof of Theorem 1, wemiage the original six legsiM; with
i=1,...,6 byanewsetof sixlegsA,...,dD,fF andmM, wherem andM has to be chosen in a way that the
manipulator is not architecturally singular. E.g. we cain se

m=(1:—B:0" and M=(1:0:-1)". (11)
Note, that for this selection the following triples of anclpoints are collinear:
(m,c,d) < (M,C,D), (m,a,b)< (M,A/B), (b,d,f)< (B,D,F), (a,c,f)< (A CF).

These collinearity properties imply, under consideratibbemma 2 of Karger [4], that the resulting 6-legged
manipulator cannot be architecturally singular. Basedchidpecial 6-legged manipulator, we can prove the
following theorem.

Theorem 2 If a non-architecturally singular planar projective SG piiarm allowing an elliptic self-motion
exists, then the elliptic self-motion has to be a one-patammotion.

Proof By removing the legnM, there remains a 5-legged manipulatdy,...,dD,fF. In the following
we show, that this 5-legged manipulator cannot have a twarpetric motion. This is equivalent with the
statement, that the six hyperquadreg, Q4, Mg, N4, <f, ® in the Study parameter space, cannot have a
surface in common. This can be proven as follows:

We solved together with three of the following four conditio®@s,, Q¢, N, N4 for fo,..., f3. Then, we
introduce the resulting values into the remaining equatidrich yields for all four possible cases the same
polynomial/A[72], where the number in the brackets gives the number of terms.

We proceed by computing the resultéinef <& andA with respect tas; i.e.[684) := Reg,(<t,A). Now,
all coefficients ofl", with respect to the remaining Study parametgr®; andey, have to vanish identically.
The coefficient oiei of I' equalsy and therefore we get a contradiction,)ais the coefficient of the highest
exponent oks in < (cf. Eq. (1.1) of Chapter 3 of [13]).

Therefore, we have to sgt= 0 and recomputé€, which yields an expression with only 36 terms. Now,
the coefficients o&Se; andeSe, of I imply Le = La+gp — B andgg = La+gp + 1, respectively. Finally, the
coefficient ofegef equalsB, which contradicts the assumpti@n 0.

It can easily be seen, théj, ..., f3 can not be computed with the above approach, if ekger e3 =0 or
e; = & = 0 hold. In both casesy, and T, have to be parallel, as they cannot coincide due to Definition
Therefore,k maps the line at infinity oft,, (= the lines) onto the ideal line ofg,. This implies a planar
affine SG platform, which contradicts our assumptions.

Now, we sum up our results: From the computation above wetbata two-parametric motion of the
5-legged manipulator is not possible and therefore it cdy lnave one-parametric ones. As a consequence,
the elliptic self-motion of the planar projective SG platfocan only be one-parametric. O

Based on this result, we can proceed with the following gedmanalysis of elliptic self-motions:

If s does not change during the self-motion, then the self-matém only be a pure rotation about the line
s = sk (one-parametric motion), as no instantaneous motion aleagk is possible* Now it can easily be
seen, that any leg o with anchor points not oa= sk prevents this rotational mobility.

4This follows immediately from the fact, that we can attaaslef.# with anchor points om = sk.
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Figure 3: Sketch of the decomposition of an elliptic selftiow.

Therefores has to change during the one-parametric elliptic self-amotNow,e denotes the envelope of
the resulting one-parametric set of liregenerated during the self-motion (cf. Fig. 3). Due to thgeutve
correspondence, the enveloperfin my is given byek. Moreover, as no instantaneous sliding aleagsk
is possible (cf. Footnote 4), any elliptic self-motion candecomposed into: (1) a rolling (without slipping)
of sk onek, (2) a rotation off, abouts = sk, and (3) a rolling (without slipping) ofe ons.

This has the following consequences for the instantaneehavior of a planar projective SG platform:
On the velocity level, each of the rolling motions can be @aeptl by an instantaneous rotation about a line
pPm (resp.pm) perpendicular tot, (resp.my) through the contact poinft (resp.Tk) of s = sk ande (resp.
ek). As the angular velocities of these two rotations are cedifly k (cf. Footnote 5), we get only one
dof. The second dof arises from the instantaneous rotafion,abouts = sk. This gives the geometric
interpretation/reasoning for the two instantaneous dofsdin Theorem 1.

Finally, we can also introduce a classification of ellipgtfsnotions based on the geometric interpretation
of <t. This implies the following definition:

Definition 2 An elliptic self-motion is called orthogonal, if the angleatosed by the unique pair of ideal
points(f,F) with fk = F equalsrt/2.

In the remainder of this article, we answer the question adterce of orthogonal elliptic self-motions.
Therefore, we sgt = 0.

5. DETERMINATION OF ORTHOGONAL ELLIPTIC SELF-MOTIONS

In this section, we introduce two approaches to the detextioin of planar projective SG platforms with
orthogonal elliptic self-motions.

5.1. The classical approach

Until now, we have a set of six constrair®3, Q¢, N, N4, <t, ® in eight homogeneous unknowes:
... f3. We get a self-motion, if we can attach the sixth tell of .# to the 5-legged manipulator pertaining
to Theorem 2 without restricting at least one componentsadiite-parametric motion. The attachment of the
legmM corresponds to the so-called sphere constraintpil@s to be located on a sphere with ceeand
radiu$ R e R. Due to Husty [14], this condition can again be expressedimnaogeneous quadratic equation

SClearly, the two rolling motions of item 1 and item 3 are cagpby the projectivity.
SNote, that the variableka, Lc, g, dq, y of the Darboux, Mannheim and angle constraint, respegtivein be seen as the
analogue to the variabR of the sphere constraint.
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Oy} in Study parameters. For our selection given in Eq. (11), &tetee following compact expression:
O (RR—B>— 1)K —4(f§+ 12+ 12+ 12) — 2, + 2B(T1 +r21) = 0. (12)

As a consequence, each common curve of the seven hypercpiadtine Study parameter space, which are
given by Q3, Q¢, ng, I'I%, <sz, ®, Oy, corresponds with an elliptic self-motion. This is a neeegsand
sufficient condition.

Therefore, the classical approach for the determinatidhese self-motions can be done with a modified
version of Husty's algorithm [14] as follows: We considee tiollowing two ideals:

JCC::{ g,n%,n%,@,qem}, g8 = {Q;, g,n%,&;,w,am}. (13)

For .7¢ (resp..7g), we computefy,..., f3 from Q3,M8, M9, & (resp.Q3,QS,ME, @), which are linear in
these unknowns. Substituting the resulting values@®fjoyieldsAg (737 (respAY [737). Now, we eliminate
in each of the two ideals the varialdg by computing the following resultants with respeceto

Res,(<k,AE) = (§+€1)¢[244, Res,(<f,Ap) = (5+&)Mb[244. (14)

Analogous considerations can be done for the ideals:
sp={eengng <t oent, s ={on 060t <k o0}, (15)

which yield
Res,(<f,A}) = (§+€)TA[440, Res,(<,AB) = (§+€3)B[440. (16)

Now,I3,..., F% are polynomials of degree 14 & andr [36] (cf. proof of Theorem 2) is a polynomial of
degree 6 ireg. Moreover, as we deal with planar SG platforms, only evengyewfey in all five polynomials
appear. Therefore, we can substit%ebyeo and compute

a:=Reg,(Ma,MN), ..., Wi :=Reg,(I'd,r. (17)

Finally, the greatest common divisor (gcd)¥i, .. ., W% yields

Beles (e — ) Y[24685, (18)

which corresponds to the solution of the direct kinematicsbfgm. Therefore, in the general case, the
coefficients ofY with respect tae; ande, have to vanish identically. A¥ is of degree 16 ire; ande, this
yields 17 equations in the six unknowlnsg L¢, 0, 94, B, R. As the resulting system of equations is highly non-
linear, we were not able to solve it explicitly. Therefores developed the following alternative approach,
which is based on two necessary conditions for an ellipiferaetion.

Remark 2 For non-orthogonal elliptic self-motions, which additalty depend ory ## 0, we were not able

to computeLPi\,...,LP% symbolically (withMAPLE) because intermediate expressions were so large as to
exceed capacity of largest available computational resesi(78 GB RAM). This also shows that the classic
approach is hopeless for solving the non-orthogonal caseclwis a further motivation for the following
alternative method. o
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Figure 4: Left: Sketch of the points and lines used for theratitive approach. Right: Situation foe= V.

5.2. The alternative approach

Due to the properties of elliptic self-motions derived umtaw, we can formulate two necessary condi-
tions, so that at least a component of the one-parametriomof the 5-legged manipulator of Theorem
2 corresponds with an elliptic self-motion. These two ctinds arise from the property that= sk must
remain valid throughout the entire motion.

As s (resp.sk) cannot be parallel to theaxis of the moving frame(resp.x-axis of the fixed frame), we
can assume that the ideal pointf s (resp.V of sk) can be given by (cf. Fig. 4, left):

u=(0:1:w)7", V=(0:v:1)T, (19)
with u,v € R. In order thatu andV coincide during the motion the condition
(R-(L,u,0)7) x (v1,0)T = (0,0,0)" (20)

has to hold. It can easily be checked, thatifgur13 = 0 this system of equations can only be fulfilled for
e =€e3=0ore; = e =0. Due to reasoning in the penultimate paragraph of the pb®heorem 2, this
already yields a contradiction. Under consideratiorr$f13 # 0, we can solve Eq. (20) w.l.0.g., which
impliesu = —r31/rzp andv = —rp3/r13. Now, we have the situation displayed on the right side of &ig

As s = sk has to holdVk~! € m,, has to be located also my (cf. Fig. 4, right). Due to Eq. (5)yk !
has homogeneous coordinatds 0 :vB3)T with respect to the moving frame. Therefore, this conditian
be expressed by

(R-(0,vB,0)T + (t1,t,t3)7) (0,0,1)T =0, (21)

which yields
=1 Itz —PBroarzy =0. (22)

Moreover, as = sk has to holduk € my has to be located also my, (cf. Fig. 4, right). Due to Eq. (5),
uk has homogeneous coordinatés u: 0)" with respect to the fixed frame. Therefore, this conditiom lba
expressed by

(R-(0,0,1)T) (ta,t2,t3)T —K (R(0,0,1)T) (u,0,0)T = 0. (23)

K factors out from this equations and we remain with:

=5 gz +riarz1 =0 with f3:= 2(eof3— e1fot+ef— egfo). (24)

’Asf € simplies thatf = F is a fixed point of the projectivity of onto itself.
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The obtained equatiorns; and =, are quartic equations in Study parameters, but they are lovdgr in
fo,..., f3 (in contrast to@y;). A further advantage of these two equations is, that notiaail unknown is
introduced, as was in the case f@f; (variableR) of Sect. 5.1.

Note, that for an elliptic self-motion it is necessary, tthag six hyperquadricQ3, ng, I'I%, <sz, ® and
the two hyperquartics; and=, have a common curve in the Study parameter sﬁa‘ﬂeerefore this set of
equations can be used to prove the main theorem on orthogllip&ic self-motions, which is given next.

Remark 3 Note, that=; = 0 and =, = 0 already imply that there exist two instantaneous dofs. &loee,
we cannot generate any additional conditions from the priypehat the rank of the manipulator’s Jacobian
has to be equal to four during the self-motion (cf. Theorem 1) o

6. MAIN THEOREM ON ORTHOGONAL ELLIPTIC SELF-MOTIONS

Theorem 3 There do not exist non-architecturally singular planar jgrctive SG platforms with an orthogo-
nal elliptic self-motion.

Proof: We computefo,..., f3 from the system of equatior@3, N3, N4, @ (resp.Q3,QS, MB, @), which
are linear in these unknowns Then, we substitute the regulalues into=;, which yieldsA¢[84] (resp.
N 5[86]). This can only be done fape; — exes # 0 (resp.eper — e1e3 # 0).

Now we eliminates; by computing the following resultants with respeceto

Re%(q};/\‘é) = (9(2) - e%>r(é[34]7 RE%({F,/\d e(2)+ 92 rd 35]
This elimination is only valid if the coefficients of the gteat power o3 do not vanish, which arey, e;N,
ande; Nz with
No:=B+La—Lc—0ph, Nz:=1+La—0o+0q. (25)

Now, "¢ andl'd are polynomials of degree 8 &g, andl" [36] (cf. proof of Theorem 2) is of degree 6 ép.

As again onIy even powers ef appear in all three polynomials, we replﬁewlth g and compute

¢ :=Reg(TE,M), WY :=Reg(rd,M). (26)

This elimination is only valid if the coefficients of the gteat power ofy do not vanish, which arl;, exNg
ande;N; + eoNg with

Np:=B—-Lat+lc—0p, Na:=1+La+0o—0a. (27)
Finally, the greatest common divisor %% andLIJG| yields
Beles(ef +€5)Y1[1960. (28)

Moreover, the same procedure can be done with respégt, twhere we only get one additional condition,
namely(eZ — €2) # 0. In this case, we obtain

ele (€l + €5) Y2[196(. (29)

Therefore, in the general case the coefficientg;odndY> with respect to the remaining Study parametgrs
ande, have to vanish identically. As both equations are homogenebdegree 12 ie; andey, this yields
26 necessary conditions. Now, we are looking for solutidrthie system under the assumption

ee1€2(6§ — €2) (€5 — €3) (e0e1 — €263) (eper — €163) # 0. (30)

8Note, that these conditions are not sufficient for an edligélf-motion.
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6.1. Case study of the general case
In the following, we denote the coefficient efef of Y; by Yi"k fori=1,2. Now, Y|_12,o andY?’12 split up
into:
Y0 =NiPFQu P =NoPiQe, Y370 =NoP3Qs, Y3 = NaPFQ,

Pr:=B+La—Lc+0b, Qr:=(La—9o+0d)(La— LC+B>+gb, (31)
P,:=pB—La+Lc+ 0, Q2:=(La+0b—dd)(La—Lc—B) — b, (32)
P3:=1—La+0p—0d, Qs:=(gp+La— c)(gb—gd+1)+3|-a, (33)
Psi=1-La—0p+dq, Qs:=(g—Lat+Lc)(Go—09d—1)—Bla. (34)

Note, thatN;N>N3N4 = O is not allowed, as otherwise at least one of the greatesersoof e; and e,
respectively, within the above given resultant based elatidn vanishes. Therefore, these cases have to be
discussed separately (see Sect. 6.1.1). As a consequgQges 0 for j = 1,...,4 has to hold, where all
possible combinatorial cases are discussed within thewall listing. Note, that for this discussion the
assumption®;NoNsNg # 0, La, Le, Op, 94 € R, B € R\ {0} hold in addition to Eq. (30):

1. PL =P, =P; =P, = 0: In this case, we solve the four equations, which ylgld= L = 1 andg, =
0g = —B. Then, we get:
Y1=ei6}(Be] + B + 2e162) (€] + & + BPef + €5 + ABerer)”, (35)
Y2 = ei63(€] + & + B2e1er) (€ + € + 7€t + B + 4Berer)”, (36)
which cannot vanish without contradiction (w.c.).
2. PL=P,=P3=0, P4 # 0: In this case, we solve the three equations, which \ligl¢s L =1—gq — 3
andgp = — . Now, Q4 cannot vanish w.c.
Analogously, it can be shown for the cadés= R = P; = 0, B # 0 with pairwise distinct, j,k €
{1,2,3}, that no solution exists.

3. PP #£0: Thereforte = Q2 =0hasto hold and we can expr@ssandgd from these equations. Now,
Y1270 andY0 can only vanish w.c. fotLa = Lc. Then Y2 YimpliesLe = 0 (= La = gp = gg = 0),
WhICh ylelds a solution to the necessary system of equations

Note, that the casB;P; # 0 can be done analogously. This case also yields the samesolu
4. PP; #£ 0: ThereforeQ1 = Q3 = 0 has to hold and we distinguish the following two cases:
a) La—0gp+9gq # 0: Under this assumption, we can sofye= Q3 = 0 for L, and3. Now, Y(l)’12 and
12 can only vanish w.c. for

I. Op=0qg: Then,Y%]’1 cannot vanish w.c.
ii. La—1—3(gh—09q) =0,La—1+gp—0q9 =0, gy # 9q: The difference of these equations
already yields the contradiction.

b) La = gp—9dq: Now, Q1 impliesgy, = 0. We distinguish two cases:
I. gq # 0: Under this assumption, we can exprgssom Qs. Then,Yil)’12 cannot vanish w.c.
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il. gg =0: Then,Qs impliesL; = 0 and we get again the above solution.
Note, that the casi P, # 0 can be done analogously. This case also yields the sanm@solu
5. PP # 0: ThereforeQ1 = Q4 = 0 has to hold and we distinguish the following two cases:

a) La—gh+0q # 0: Under this assumption, we can so@e= Q4 = 0 for L and. Now, Y>*? and
Yg’lz can only vanish w.c. fog, = gq. Then,Y%l’1 cannot vanish w.c.
b) La = gp —dq: Now, Q1 impliesgy, = 0. We distinguish two cases:
i. gq # O: In this case, we can expre8srom Qs. Then,Y(l)’12 cannot vanish w.c.
ii. gg =0: Then,Q4 impliesL. = 0 and we get again the above solution.

Note, that the casiP; # 0 can be done analogously. This case also yields the sanmesolu

Now it remains to check, if the obtained solutibp= L = gp = g4 = 0 yields an elliptic self-motion.
Therefore, we compute
ng<r7rE) :e(z)_ezlv ng(I_?r%) :e(Z)_eZ, (37)
which impliese3 = €2 = €2, but this contradicts Eq. (30). Therefore, the general dass not yield a solution
to our problem. In the following, we discuss the excludedesd$ NoN3N; = O under the assumptions
La,Lc, 00,04 € R andp € R\ {0}.

6.1.1. Excluded cas®&; =0
Under consideration af, = 3 — La + L, computations similar to those at the beginning of Sect.efdyi
Y1527 of degree 11 irej, e, andY2[708 of degree 12 ire;, e2. Then, we get

VI =No(La—Le—B)%, V370 =NaB(gg—1+2la—Lc—B)> (38)

As N>N3 = 0 is not allowed, due to the elimination process, we havedoutis these cases again separately.
Therefore, we can assume w.l.olpN3 # 0. As a consequence, the remaining factors of Eq. (38) can be
solved forL5 andL.. Then,Yilf0 cannot vanish w.c. Hence, we remain with the discussidspbls = O:
1. N2 = 0: In this case, we have; = L.. We end up withYy[53] of degree 10 ire;, &2 and Y2[101] of
degree 12 ire;, 2. Now, already{io’o = B3 yields the contradiction.

2. N3 = 0: Now, we haveyg = 3+ L —1—2L,. We end up withy3[105 andY>[113 of degree 11 irg
andey. Then,Y}l’O = (2 yields the contradiction.
The other excluded casbk= 0 fori € {2,3,4} can be discussed in a fashion similar to that above in Sect.

6.1.1. They also yield no solution. Therefore, we are orfiymith the discussion of the special cases where
Eg. (30) does not hold fdta, L¢,gp, 94 € R andp € R\ {0}.

6.2. Case study of the special cases

According to the reasoning given in the penultimate paratyiE the proof of Theorem 2, we can assume
thateg = e3 = 0 ande; = &, = 0 do not hold. Moreover, due tcsz . e1& — epe3 = 0, we only have to
distinguish the following four cases, if at least aequals zero:

e=e=0 e=e=0 eg=e6=0 ea=e=0 (39)

But in all these casesoriz = 0 holds, which contradicts the assumption of Sect. 5.2. dtbez, we can
assume for the remaining discuss®i4 0 withi =0, ..., 3.
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6.2.1. Special case = €
Under consideration off, we have to distinguish the following two cases:

1. ep = e ande; = e3: W.l.o.g., we can computh, ..., f3 from the system of equationf3; , Qt, I'I%,(D.
Then, the coefficient oé‘l‘ of =1 equalsB, which cannot vanish w.c.

2. eg = —e; ande, = —e3: The argumentation of item 1 also holds in this case.

6.2.2. Special case; = €3
Under consideration off, we have to distinguish the following two cases:

1. &g = & ande; = e3: W.l.0.g., we can computé, ..., f3 from the system of equatiorn:, ng, I'I%,CD.
Then, the coefficient oé‘l‘ of =, equals 1, which yields the contradiction.

2. eg = —e ande; = —e3: Similarly, the contradiction applies here as well.

6.2.3. Remaining special cases
1. epe; — e1e3 = 0: This condition yields together with the angle constraifatthe following two cases:

=€ A &= and e=-€ A €=-6 (40)
These are exactly the same cases already discussed in 2¢€kt. 6

2. epge; — exe3 = 0: This condition yields together with the angle constraif_qtthe following two cases:
=€ A e=e and e=-& A e=-6 (41)

These are exactly the same cases already discussed in ezt. 6
This closes the proof of Theorem 3. O

Remark 4 In view of Remark 2, it should be noted, that with the altemeamethod presented, the cor-
responding expressions &% and Y> given in Egs. (28) and (29) for non-orthogonal elliptic selbtions
(y # 0), can be computed without major difficulties. Each of theseawpressions, which additionally de-
pend on the variablg, has 8259 terms and implies again 13 equations (cf. pardyedfer Eq. (29)). ©

7. CONJECTURE AND CONCLUSION

We proved that non-architecturally singular planar priyecSG platforms with orthogonal elliptic self-
motions do not exist (cf. Definitions 1 and 2, Theorem 3). Mwez, we conjecture the following'Non-
architecturally singular planar projective SG platformélwvnon-orthogonal elliptic self-motions do not ex-
ist”.

In this context it should be noted, that we were recently &blprove this conjecture in [15], based on
Theorem 3. On one side, this result is a bit frustrating froenkinematican’s point of view, as one-parametric
self-motions, which have everywhere two instantaneous ¢f Theorems 1 and 2), would have been of
theoretical interest. But on the other side, this resultsisful to designers who may be sure that a planar
projective SG manipulator, where the projectivity is noraffi, can never have self-motion (cf. last paragraph
before Theorem 1).
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