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New Performance Indices for 6R Robot Postures

Georg Nawratil∗

Singular postures of 6R robots must be avoided because close to singularities an
exact tracking of the planned end-effector trajectory requires great angular velocities
in the rotary joints. Hence there is an interest in having a distance measure of the
instantaneous configuration to the nearest singularity. This article outlines three new
methods to measure the closeness to such a singularity. The presented measures are
invariant with regard to Euclidean motions and similarities, they have a geometric
meaning, and they can be computed in real-time.

1 Introduction

The purpose of this article is to define new measures for 6R robots which assign to each posture
K a scalar D(K) obeying the following six properties:

1. D(K) ≥ 0 for all K of the configuration space, 4. D(K) is invariant under similarities,
2. D(K) = 0 if and only if K is singular, 5. D(K) has a geometric meaning,
3. D(K) is invariant under Euclidean motions, 6. D(K) is computable in real-time.

Many papers have been written on this topic. However, the two best known and most used
concepts in this direction are probably the condition number and the manipulability. Both are
based on the Jacobian matrix J of the manipulator which is defined by

J =
(

a1 . . . a6

p1× a1 . . . p6× a6

)
, (1)

where ai describes the unit vector along the ith joint axis and pi the position vector of a point
on this axis, and this with regard to a common reference frame. The ith column of the Jacobian
equals the normalized Plücker vector of the arbitrarily directed ith axis. In the following we
denote the moment vector pi× ai by âi and we use the notation of dual vectors:

xi := xi + ε x̂i = (xi, x̂i).
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1.1 Kinematic meaning of the Jacobian and singular postures

If the joint variables θ1,..,θ6 are functions of time t, a constrained motion of the end-effector
system Σ6 against the fixed system Σ0 is determined. Because of the spatial Three-Pole-Theorem
the one-parametric motion Σ6 / Σ0 can be composed of the relative motions Σ1 / Σ0,.., Σ6 / Σ5

and therefore the instantaneous screw q
6|0 = (q6|0, q̂6|0) is computable as

q
6|0 =

6∑
i=1

ai ωi|i−1 = J ·ω with ω = (ω1|0, .., ω6|5)
T and ωi|i−1 =

dθi

dt
. (2)

The rank of J gives the instantaneous degree of freedom (dof ), i.e., the dimension of the vector
space of infinitesimal motions Σ6 / Σ0 which is spanned by the relative rotations. This space
can be considered as the tangent space of the manipulator’s workspace. If the rank drops below
6, then there exists at least one angular velocity ratio R ω 6= o such that the end-effector has
an instantaneous standstill while the joints are still moving. This amounts to the loss of the
instantaneous dof. Therefore we can characterize the singular postures of 6R robots as follows:

Theorem 1. Any posture of a non-redundant manipulator is singular if and only if the deter-
minant of the Jacobian vanishes. Exactly in this case the axes belong to a linear line complex.

A consequence of this theorem is the following: If the manipulator is close to a singularity,
then great angular velocities in the rotary joints can have only low effects on the instantaneous
displacement of the end-effector, insofar as R ω is badly chosen.

1.2 Manipulability

This concept was introduced by Yoshikawa (1985). It is based on Theorem 1, because this
Performance Index equals for non-redundant manipulators nothing else than |det(J )|. This
index meets obviously properties 1 and 2, but also property 3: Let R be an orthogonal matrix
which induces a rotation ρ of the reference frame and let t := (x, y, z)T be the vector of any
translation τ . We only have to prove that the determinant of J is invariant under translations
and rotations: The coordinate transformation of spears can be written as

(a, â)
ρ−→ (Ra,R â) and (a, â) τ−→ (a, â + (t× a)) =⇒ (3)

J ρ−→
(
R 03

03 R

)
J := Jρ and J τ−→

(
I3 03

T I3

)
J := Jτ with T =

(
0 z −y

−z 0 x
y −x 0

)

where I3 is the 3×3-unit matrix. The invariance of |det(J )| follows immediately from det(R) =
det(I3) = 1 and hence det(Jρ) = det(Jτ ) = det(J ). However, this measure does not fulfill
property 4, because the determinant is multiplied with µ3 if µ is the scaling factor. |det(J )| can
be interpreted as follows:

In the vector space R6 of instantaneous screws the subset of all q
6|0, with |ωi|i−1| ≤ 1 for

i = 1, .., 6, is by (2) a parallelepiped, which has the volume 26 · |det(J )|. Therefore the given
index is proportional to this volume.
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1.3 Condition Number CDN

According to Salisbury and Craig (1982) the condition number is the positive square root of the
ratio of the maximal and minimal eigenvalue of the square matrix J TJ . CDN−1 lies in the
interval [0, 1], and 0 characterizes singular configurations. Postures with the maximum value
1 are called isotropic. It should be still noted that the CDN originally has been introduced
to indicate numerically how well the numerical procedure of inverting a matrix is conditioned.
CDN−1 trivially fulfills the properties 1 and 2, but not 3 and 4. Changing the viewpoint allows
us to pinpoint the lacking invariances. The latter can be concluded as follows:

1.3.1 Interpretation and variance of the CDN

We start with the following optimization problem: We search for the minimum resp. the maxi-
mum of the quadratic objective function ζ̂(ω) under the quadratic side condition ν̂(ω) with

ν̂(ω) : ωT ω = ωTI6 ω = 1 and ζ̂(ω) : qT
6|0 q

6|0 = ωTN ω whereas N = J TJ .

Then the solutions are the minimal resp. the maximal eigenvalue of J TJ (compare subsection
2.1). Thus the CDN is the positive square root of the ratio of the maximum and the minimum
of the sum qT

6|0 q
6|0 under the side condition that the sum of the squared angular velocities is

equal to 1. As the objective function is no geometric invariant of a screw, this measure is not
invariant under Euclidean motions and similarities. However, the objective function is invariant
under rotations around the origin U of the reference frame, because of

qT
6|0q6|0 = q2

6|0 + q̂2
6|0 = ω2

6|0 +
[
ω̂2

6|0 + ω2
6|0 Up

2
]
, (4)

with ω6|0 denoting the angular velocity and ω̂6|0 the translatory velocity of the screw q
6|0. Up

is the perpendicular distance between the origin U and the screw axis p. Therefore the CDN
only depends on the choice of the origin U , apart from the scaling factor. In practice U is not
selected arbitrarily, but placed in the center of interest, the tool center point.

To overcome the dimensional inhomogeneity of the objective function, Tandirci et al. (1992)
presented the method of characteristic length L. The last three rows of the Jacobian that have
units of length are divided by L which is equivalent to the division of q̂2 by L2 in (4). L is
chosen such that it minimizes the CDN , which depends on the unknowns θ2, .., θ6 and L.

Gosselin (1990) tried to cope the problem of dimensional inhomogeneity as follows: He de-
scribed the global velocity of the end-effector instead of q

6|0 by the velocity of three points which
are supposed to be noncollinear. In this way the desired quality was achieved. Nevertheless,
the choice of the three points is arbitrary, and the CDN is not invariant under changes of these
three reference points.

Remark. Summarizing, one can say that both measures have deficiencies. But this does not
question their usefulness, because they are very simply computable. On the other hand, any
geometrical meaning of a quality measure seems to be important, and this was the main reason
to search for a new measure. It should also be mentioned, that the manipulability and the
condition number are used as an index which describes the dexterity of a robot on the one hand
and the closeness to the singularity on the other. They share these properties with the following
measure M(K) which is introduced next.
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2 The new measure M(K)

Some authors (see Angeles and Lopez-Cajun (1992); Tandirci et al. (1992)) prefer to use the
CDN−1 instead of the manipulability, because this measure depends on the tool center point,
as shown above. Basically, one is not interested in the manipulation of a single point, but in
that of a complete object O, which can be a welding tool or a load to be transported. More
generally, O can also be defined as an ellipsoid of interest attached to the end-effector system
Σ6. Starting from this point of view we develop the measure M(K).

2.1 Basic idea of M(K)

First of all it should be mentioned that M(K) is based on a method, which has its origin in the
registration problem with known correspondences.1 We represent the object O of interest by
a finite number of points Pi (i = 1, .., N). By means of this point cloud it is possible to define
the distance between any two positions of the object, namely O(0) and O(t), as follows:

d(O(0),O(t))2 :=
N∑

i=1

‖Pi(0)−Pi(t)‖2.

This introduces an object-oriented metric in the work space. Because of a well known result
from mechanics, we can restrict ourselves to six vertices Vi := (vi

1, v
i
2, v

i
3), i = 1, .., 6, of the

inertia ellipsoid of O. The first order Taylor approximation of posture O(t) yields:

d(O(0),O(t))2 =
6∑

i=1

‖Vi(0)−Vi(t)‖2 ≈
6∑

i=1

‖vF (Vi(0)) ‖2 where vF (P) = q̂6|0+(q6|0×P)

denotes the velocity vector of point P ∈ Σ6. On the other hand at any singular posture there
is at least one R ω 6= o with q

6|0 = o, i.e. vF (P) = o for all P ∈ Σ6. Hence, we can define a
kind of distance of K to a close singularity by solving the following minimization problem: We
search for the instantaneous screw q

6|0, which minimizes the objective function

ζ(ω):
6∑

i=1

‖vF (Vi(0)) ‖2 with vF (Vi) =
6∑

j=1

âj ωj|j−1 + (
6∑

j=1

aj ωj|j−1×Vi)

under the side condition
ν(ω): ωT ω = ωT I6 ω = 1. (5)

A preliminary condition is that the inertia ellipsoid must not degenerate to a single line segment,
because ζ(ω) depends on the distances of Vi from the instantaneous screw axis p6|0 and on ω6|0
and ω̂6|0 according to

6∑
i=1

‖vF (Vi(0)) ‖2 = ω2
6|0

6∑
i=1

p6|0Vi
2 + 6 ω̂2

6|0. (6)

1Let two postures of any object be given, each represented by a finite point cloud X resp. Y, of corresponding
points xi ∈ X and yi ∈ Y. Now a Euclidean motion is required, which brings each xi as close as possible to
yi. For further information on this topic see Hofer et al. (2004).
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ζ(ω) is a quadratic form with the unkowns ωi|i−1, and so we can rewrite the objective function
as ζ(ω) = ωT Z ω, where Z is given by

Z =
6∑

i=1

J T

(
VT

i Vi VT
i

Vi I3

)
J with Vi :=

(
0 vi

3 −vi
2

−vi
3 0 vi

1

vi
2 −vi

1 0

)
and Vi := (vi

1, v
i
2, v

i
3).

We solve the minimization problem by introducing a Lagrange multiplier λ. Then the ap-
proach simplifies in consideration of ∇ζ = 2Z ω and ∇ν = 2 I6 ω, to the eigenvalue problem
(Z − λ I6) ω = o. This system of linear equations has a nontrivial solution, if and only if the
determinant of (Z − λ I6) vanishes. The characteristic polynomial in λ is of degree ≤ 6. Every
eigenvalue λi of Z is linked with an eigenvector ωi. From

Z ωi = λi I6 ωi and ωT
i I6 ωi = 1 follows ζ(ωi) = ωT

i Z ωi = λiω
T
i I6 ωi = λi.

Therefore the eigenvalue λi mirrors the objective function value ζ(ωi) and so the smallest eigen-
value λmin corresponds to the required solution. Due to (5) and (6) the following inequality
holds:

λmin ≤
6∑

i=1

p6|5Vi
2 =: U . . . const. (7)

2.2 Definition of M(K)

Now we define the distance of the configuration K to the closest singularity as

M(K) := +
√

λminU−1 with M(K) ∈ [0, 1] because of (7).

The measure M(K) is well defined, because Z is in the non-singular case positive definite and
in the singular case positive semidefinite. The defined measure is also invariant with regard
to similarities because M(K) is defined as a ratio. All other claimed properties are trivially
fulfilled.

If M(K) is very small the angular velocity ratio of R ωmin should be avoided because it has
low effects on the instantaneous displacement of O.

2.3 Weighted measure M̂(K)

We can replace the unit matrix I6 in (5) by a weighting matrix D := diag(d1, .., d6). How should
such weights di be defined? The following choices seem to make sense:

We set di = Ii/2, where Ii > 0 denotes estimates for the mass moment of inertia of the union
of the bodies Σi, ..,Σ6, about the axis ai. The only difference in the computation is that we
require the smallest general eigenvalue λ̂min. Due to the weighted side condition and (6) the
following inequality holds:

λ̂min ≤ 2I−1
6

6∑
i=1

p6|5Vi
2 =: Û . . . const. =⇒ M̂(K) := +

√
λ̂minÛ−1 ∈ [0, 1] . (8)

The disadvantage of such weights is that one quits the pure kinematic point of view: Robots
which only differ in the mass distribution, would give rise to different distances in the same
configuration K.
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3 The distance measures D1(K) and D2(K)

It does not make sense to use a purely line geometrical point of view by paying only attention to
the instantaneous postures of the six rotary axes. And exactly this is the case if one considers
the instantaneous Jacobian only. Of course, it is always possible to find singular postures close
to a given configuration. Let’s assume that C is the linear complex spanned by the first five
axes. All lines of C intersecting the sixth axis form in the non-singular case of C a hyperbolic
linear congruence. Every replacement of a6 by an arbitrary line l of this congruence gives a
singular configuration. But which l is the closest to a6? How should a distance between the
given posture and a close singular one be defined which allows to distinguish between better and
worse configurations? Of course, it is obvious using distances and angles of a6 to the second axis
of the hyperbolic line congruence, but which function of angle and distance gives a meaningful
positive measure, which is invariant under scaling and works in all cases?

Therefore, a reasonable way to come up with a geometrically explicable distance measure is to
take the possible variability of the rotary axes into consideration. For a serial robot with fixed
a1 the second axis admits only a one-parametric movement against the frame, and its position
influences that of the axes a3, a4, et cetera. This concept is advantagous also since for serial
robots the direct kinematics is simple to compute.

3.1 Basic idea of D1(K) and D2(K)

Let’s assume, the robot is abruptly stopped when it moves through any configuration K with
the instantaneous angular velocity vector ω. Then it overdrives the posture K, whereas each
axis ai+1 moves according to the instantaneous screw (qi|0, q̂i|0) of the motion of Σi/Σ0 with

q
i|0 = (qi|0, q̂i|0) =

i∑
j=1

aj ωj|j−1 for i = 1, .., 5. (9)

Now let for i = 1, .., 5 the instantaneous rotation about ai with velocity ωi|i−1 operate for a
certain time δi ∈ R+. Then the finite rotation about ai through the angle ∆i = δi ωi|i−1 is
performed. How must the rotation angles be chosen to reach the closest singularity?

Since a rotation of the robot about the first axis a1 has no influence on the distance to the
closest singular posture, we may assume ω1|0 = 0. Depending on the minimization condition
which the angular velocities have to fulfill, we will get two different distance measures D1(K)
and D2(K) for serial robots between the actual posture K and the closest singularity. Both
distances serve as performance index of K.

3.2 Linearized approximation of direct kinematics

We start from the posture K(θ1, .., θ6) =: K(θ) of the configuration space, and look for a singular
K(θ1, θ2 + ∆2, .., θ5 + ∆5, θ6) =: K(δ), where ∆i should be kept as small as possible. Our two
measures are based on a linearized approximation of this problem to reduce the computational
costs. This is sufficient for the definition of a distance measure for the following reasons: On the
one hand the approximation is sufficiently close to a singularity. On the other hand, the exact
value is not interesting as long as it is larger than a critical distance, which must be predefined.2

2Experiments will prove which value of Di(K) for given robots can be seen as a sufficient distance to any
singularity.
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Then the manipulator is not in an imminent closeness of a singular posture.
In order to compute the closest singularity we need an approximation of the axes a2, ..,a6,

because the singularity is only determined by the instantaneous postures of the joint axes. As
ai depends on the angles θj + ∆j , j = 2, .., i− 1, we obtain by Taylor’s formula

ai(δ) = ai(θ2 + ∆2, .., θi−1 + ∆i−1) ≈ ai(θ2, .., θi−1) +
i−1∑
j=2

∆j
∂ ai(θ2, .., θi−1)

∂θj
=: bi(δ)

where ∂ ai(θ)/∂θj expresses the instantaneous change of ai(θ) under the rotation about aj(θ)
with angular velocity ωj|j−1 = 1. The screw associated to this rotation is aj , which implies

∂ ai(θ)
∂θj

= aj(θ)× ai(θ).

Therefore we get: bi(δ) = ai(θ2, .., θi−1) +
i−1∑
j=2

∆j (aj× ai) with

the real part bi(δ) = ai(θ) +
i−1∑
j=2

∆j
∂ ai(θ)

∂θj
= ai(θ) +

i−1∑
j=2

∆j (aj× ai) and

the dual part b̂i(δ) = âi(θ) +
i−1∑
j=2

∆j
∂ âi(θ)

∂θj
= âi(θ) +

i−1∑
j=2

∆j [(âj× ai) + (aj× âi)] .

Note that the approximation bi(δ) of ai(δ), in general, does not satisfy the Plücker condition
bi(δ)·b̂i(δ) = 0 and the normalization condition bi(δ)·bi(δ) = 1. But for small ∆i our approxi-
mation meets also these conditions approximativly:

bi(δ)·bi(δ) = ai ·ai +
i−1∑
j=2

∆j
∂(ai ·ai)

∂θj
+

1
2

i−1∑
j,k=2

∆j∆k
∂2(ai ·ai)
∂θj ∂θk

≈ 1

because the partial derivative of ai ·ai = 1 yields
∂(ai ·ai)

∂θj
= 2ai

∂ai

∂θj
= 0.

Therefore the approximation of the determinant J (δ) := J (θ2 + ∆2, .., θ5 + ∆5) can be written
as:

det [J (δ)] = det [a1,a2,a3(θ2 + ∆2), ..,a6(θ2 + ∆2, .., θ5 + ∆5)] ≈ . . .

≈ det [J (θ2, .., θ5)] +
5∑

j=2

∂ det(J )
∂θj

∆j with
∂ det(J )

∂θj
∆j =

6∑
k=j+1

det(a1, ..,
∂ak

∂θj
∆j , ..).

We set det [J (δ)] = 0 in order to reach a close singularity, and rewrite this equation by

det(J ) + ∆2 ·
6∑

j=3

det(J2,j) + ∆3 ·
6∑

j=4

det(J3,j) + ∆4 ·
6∑

j=5

det(J4,j) + ∆5 ·det(J5,6) = 0 (10)

where Ji,j denotes the matrix, where the jth column of the Jacobian matrix is replaced by

ai× aj = (ai× aj , âi× aj + ai× âj).
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3.3 Definition of D1(K) and D2(K)

All quadrupels (∆2, ..,∆5), which solve the inhomogenous linear equation (10), are located in
a hyperplane H of the vector space VK spanned by θ2, .., θ5. The variables ∆i serve as local
coordinates in VK with origin Ko := K(θ). The zero vector is a solution of (10), if and only if
H passes through Ko, which means det(J ) = 0 (see figure 1).

3.3.1 Method 1 ⇒ D1(K) := ∆L

We solve equation (10) under the side condition |∆i| ≤ ∆L for i = 2, .., 5, and ∆L should be
minimal. We get the required quadrupel (∆2, ..,∆5) as the nonempty intersection of H and the
smallest hypercube centered in the origin Ko and with edges parallel to the axes. This nonempty
set always contains a vertex L = (l2, .., l5) of the hypercube (see figure 1) with

li = sgn

(
det(J )· ∂ det(J )

∂θi

)
∆L and ∆L =

|det(J )|∑5
j=2 |

∂ det(J )
∂θj

|
. (11)

Theorem 2. D1(K) equals approximately the smallest angle ∆L (11) through which one has to
rotate simultaneously all joints Σj+1 about aj (j = 2, .., 5) with the orientation sgn(lj) to pass
through a singular posture.

It can happen that the smallest nonempty intersection of the hypercube and H is one-, two- or
three-dimensional, because H can touch the hypercube along an edge, a plane or a hyperplane.
These exeptional cases manifest themselves in the above formulas as follows: Depending on the
dimension of the intersection some li’s vanish because the ith coordinate of the normal vector of
H is equal to zero. So the distance to the singularity does not depend on the respective ∆i’s.

3.3.2 Method 2 ⇒ D2(K) := ∆Q

As an alternative, we optimize equation (10) such that the sum of the squares of the angles
is minimal. That means, that we are searching for the point Q = (q2, .., q5) ∈ H, for which
q2
2 + q2

3 + q2
4 + q2

5 = ∆2
Q is minimal. This side condition seems to be legitimate under the point

of view, that all ∆i should be as small as possible, because of 0 ≤ |qi| ≤ 3
2∆L.3 This relation

can be proved as follows: Without loss of generality, we assume that L is located in the positive
sector, to say, l2 = .. = l5 = ∆L. Due to Thales’ theorem the foot-points F = (f2, f3, f4, f5) of
the perpendiculars drawn from the origin to all possible hyperplanes through L are lying on the
hypersphere

Λ :
5∑

i=2

(
fi −

∆L

2

)2

= ∆2
L.

The maximum of fi is: fi =
3
2
∆L when fj =

∆L

2
for j ∈ {2, 3, 4, 5}\{i} . �

Q is the point of contact between H and the hypershere S, centered in Ko (see figure 1), with

qi =
−det(J )∑5

j=2

(
∂ det(J )

∂θj

)2 ·
∂ det(J )

∂θi
=⇒ ∆Q =

|det(J )|

+

√∑5
j=2

(
∂ det(J )

∂θj

)2
. (12)

3An optimization, which minimizes the sum of the absolute values of the swept angles, does not make sense,
because in the worst case one has to assume a factor of 4 instead of 3/2.
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Theorem 3. D2(K) equals approximately the shortest time ∆Q (12) which is required to reach
the next singularity, provided the sum of the squared angular velocities is bounded by 1. The
following relationship holds:

∆L ≤ ∆Q ≤ 2∆L.

Proof of the inequality: We have ∆L = ∆Q when H touches the hypercube along a hyperplane.
And for L = Q the upper bound is reached. �

By this method we obtain not only the desired distance measure, but also the worst instan-
taneous angular velocity ratio ω− := R+(q2, q3, q4, q5) i.e., the direction towards the closest
singularity.4 We can even evaluate any instantaneous angular velocity ratio ωo at the given
non-singular posture Ko. An adequate measure for this seems to be the angle

ε := ^(ω−,ωo)−
π

2
with ^(ω−,ωo) ∈ [0, π] and ε ∈

[
−π

2
,
π

2

]
. (13)

For ε = −π
2 , one is moving directly to the singularity which is approximated by H. ε = π

2 defines
the best direction to avoid the singularity, and for ε = 0 one is moving equidistantly to it.

3.4 Discussion of the special cases

(a) How can we interpret equation (10), if all coefficients of ∆i (i = 2, .., 5) are equal to zero
and det(J ) = 0? In such a case the manipulator is in a singular posture of higher order, because
all four partial derivatives

∂

∂θi
det(J )

∣∣∣
Ko

=
6∑

j=i+1

det(Ji,j), i = 2, .., 5,

vanish. Then D1(K) = D2(K) = 0 (⇔ L = Q = o) as (10) holds for any (∆2, ..,∆5) ∈ R4.

Remark. 6R robots with generic dimensions do not possess higher-order singularities, because
the four unknowns θ2, .., θ5 have to fulfill five equations, namely the four partial derivatives and
the Jacobian’s determinant are simultaneously equal to zero.

(b) A problem occurs if the four partial derivatives of the Jacobian’s determinant vanish but
det(J ) 6= 0. Then equation (10) can never be fulfilled. As a result of the last remark every 6R
manipulator has at least such a posture. For a better understanding of this case we start with
visualizing the relationship between manipulability, ∆L, ∆Q and ω−:

We look at the graph of the function m(K) := |det(J )| over the space VK, i.e., the map:

ι : (θ2, .., θ5) 7→ (θ2, .., θ5, |det(J )|).

The normal vector no at each point Ko of the hypersurface ι(VK) is given by

no = (α
∂ det(J )

∂θ2
, α

∂ det(J )
∂θ3

, α
∂ det(J )

∂θ4
, α

∂ det(J )
∂θ5

, 1) with α := −sgn [det(J )] .

4With method 1 we were only able to give evidence about the worst instantaneous rotational direction of the
joints by the vector (sgn(l2), sgn(l3), sgn(l4), sgn(l5)) resulting from L.
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Q

L

HKo

∆j

∆i

m(K)

ι(Ko)

no

‖ grad [m(Ko)] ‖

ι(VK)

VK

S

m(K) = 0

To

θi

θj

Figure 1: The graph of |det(J )| over VK

If we project no orthogonally onto VK, we obtain
the negative gradient of m(K), which points into
the direction of the steepest descent. Thus our
above defined ω− corresponds to −grad [m(K)].
Moreover, the intersection of the tangent space
To at the point ι(Ko) with VK is equal to the 3-
space H. Hence D1(K) and D2(K) can be seen
as distances. KoL and KoQ (see figure 1) re-
spectivly as explained above. Q is located on
the slope line of To. Now we are able to inter-
pret case (b) as follows:
If all four partial derivatives of the Jacobian’s
determinant vanish, grad [m(Ko)] = o and so
no⊥VK, which is equivalent to To ‖ VK. Conse-
quently, H is the ideal hyperplane of VK. Ko has
the maximal distance D1(Ko) = D2(Ko) = ∞,
because Q and L are ideal points.

In cases (a) and (b) the special configuration Ko is a stationary point of the vector field
−grad [m(Ko)]. As a consequence ε is not defined in case (b). In order to evaluate ωo of Ko,
we have to look at the derivatives of order 2, thus the curvature of ι(VK) at ι(Ko). So we can
define ω− in Ko by the direction κ of the principal curvature with the smallest absolute value:

ω− := ±κ =⇒ ^(ω−,ωo) ∈
[
0,

π

2

]
=⇒ ε ∈

[
−π

2
, 0
]
.

3.5 Does Di(K) (i = 1, 2) fulfill the six properties 1.− 6. ?

D1(K) and D2(K) trivially fulfill the properties 1 and 2, and also the fifth, because the two new
distance measures were the result of a geometric reasoning. Now we look at equation (10) to
show the remaining properties: The equation’s coefficients det(Ji,j) are for the same reasons as
the Jacobian’s determinant invariant with respect to Euclidean motions (see (3)). Furthermore
this equation is invariant under similarities, because if we change the scaling by the factor λ the
whole equation is multiplied by λ3. Due to the used approximation of direct kinematics, ∆L

and ∆Q are computable in real-time, which is an important criterion for practical applications.

10
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3.6 Weighted measures D̂1(K) and D̂2(K)

Obviously equation (10) can also be written as:

det(J ) + ω2|1

6∑
j=3

det(J2,j) + ω3|2

6∑
j=4

det(J3,j) + ω4|3

6∑
j=5

det(J4,j) + ω5|4 det(J5,6) = 0. (14)

We can replace the respective side condition by a weighted counterpart based on the rotationary
energy, where the mass moments of inertia Ii > 0 are as defined as in subsection 2.3. Of course,
the posture of the end-effector has some influence on D̂i(K) because of the mass distribution.

• Weighted measure D̂2(K) := EQ : Now we want to optimize equation (14) such that the
sum of the needed rotationary energy is minimal, i.e.,

ω2
2|1I2/2 + ω2

3|2I3/2 + ω2
4|3I4/2 + ω2

5|4I5/2 = E → min. (15)

All quadrupels (ω2|1, .., ω5|4) which solve (15) for a fixed E ∈ R+ are located on a hyperellipsoid,
centered in Ko. Obviously equation (15) is minimal if the hyperellipsoid touches the hyperplane
H given by (14). So the coordinates of the point of contact Q yield the required EQ.

• Weighted measure D̂1(K) := E2
L : We solve (14) under the condition |ωi|i−1

√
Ii/2| ≤ EL,

and EL should be minimal. We get the required quadrupel (ω2|1, .., ω5|4) as the nonempty
intersection of H and the smallest hyperbox centered in Ko with edges parallel to the coordinate
axes. The hyperbox is determined by the following ratio of its edge lengths ei:

e2 : e3 : e4 : e5 =
√

2/I2 :
√

2/I3 :
√

2/I4 :
√

2/I5.

The nonempty set always contains the vertex L of the hyperbox, which coordinates yield the
required EL. So the measure D̂1(K) equals approximately the smallest rotationary energy E2

L,
which is needed in every rotary joint j (j = 2, .., 5) to pass through a singular posture.

4 Example

.

x

y
z

Figure 2: Initial position
of the IRB 2000 robot
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Figure 3: Graphs of manipulability, CDN−1, Di(K), M(K) and ε
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We take the industrial robot ABB IRB 2000 as a particular example (see figure 2). We look
at the constrained motion which is determined by:

θ1 = 0, θ2 = t
21π

18
− 11π

18
, θ3 = t2

2π

3
− π

3
, θ4 = tπ − π

2
, θ5 = t

4π

3
− 2π

3
, θ6 = 0.

For t ∈ [a, b] the manipulability, CDN−1, Di(K) and M(K) are displayed in figure 3, where K(a)
and K(b) are singular configurations. CDN−1 is computed by the concept of Gosselin (1990).
The used reference points Pi (i = 1, 2, 3) resp. the tool center point Po have the following
coordinates in the initial position:

Po := (835, 0, 1150) P1 := (935, 0, 1150) P2 := (785, 50
√

3, 1150) P3 := (785,−50
√

3, 1150).

The inertia ellipsoid of O, which is required for M(K) is a sphere of radius 100 centered in Po.

5 Conclusion

In this article we presented three new measures D1(K), D2(K) and M(K) which reflect the
distance of the instantaneous configuration K to the nearest singularity. Therefore they can be
seen as performance indices which obey the initially stated six conditions. The distance measures
Di(K) take the possible variation of the rotary axes into account, because they are based on
a linearized approximation of direct kinematics. M(K) depends on the object to manipulate
because it is based on an object-oriented metric in the work space.

A similar approach for measures on parallel manipulators is in preparation.
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