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Abstract. In this article we prove that there do not exist non-architecturally singular Stewart Gough Plat-
forms with planar base and platform and no four anchor points collinear, whose singularity set for any
orientation of the platform is a cylindrical surface with rulings parallel to a given fixed direction p in the
space of translations.
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1 Introduction

The geometry of the parallel manipulator is given by the six base anchor points Mi :=
(Ai,Bi,Ci)T in the fixed space and by the six platform anchor points mi := (ai,bi,ci)T in
the moving space. By using Euler Parameters (e0,e1,e2,e3) for the parametrization of the
spherical motion group the coordinates m′

i of the platform anchor points with respect to the
fixed space can be written as m′

i = K−1R·mi + t with

R := (ri j) =

e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 + e0e3) 2(e1e3 − e0e2)
2(e1e2 − e0e3) e2

0 − e2
1 + e2

2 − e2
3 2(e2e3 + e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3

 , (1)

the translation vector t := (t1, t2, t3)T and K := e2
0 + e2

1 + e2
2 + e2

3. Moreover it should be
noted that K is used as homogenizing factor whenever it is suitable.

It is well known (see e.g. [4]) that the set of singular configurations is given by Q :=
det(Q) = 0, where the ith row of the 6×6 matrix Q equals the Plücker coordinates (li, l̂i) :=
(R·mi + t−KMi,Mi× li) of the carrier line of the ith leg.

As we consider only manipulators with planar platform we may suppose Ci = ci = 0
for i = 1, . . . ,6. Moreover it was proven by Karger in [2] that for planar parallel manipu-
lators with no four points on a line we can assume A1 = B1 = B2 = a1 = b1 = b2 = 0 and
A2B3B4B5a2(a4 −a3)coll(3,4,5) 6= 0 with

coll(i, j,k) := ai(b j −bk)+a j(bk −bi)+ak(bi −b j). (2)

Note that coll(i, j,k) = 0 characterizes collinear platform anchor points mi,m j and mk.
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Fig. 1 Non-planar manipulator with cylindrical singularity surface: (a) Axonometric view. (b) Projection
in direction p: The singularity surface (with respect to the barycenter of the platform) is displayed as conic.

2 Preliminary Considerations

The set of Stewart Gough Platforms whose singularity set for any orientation is a cylindri-
cal surface with rulings parallel to a given direction p also contains the set of architecturally
singular manipulators. This is due to the fact that the singularity surface of these manipu-
lators equals the whole space of translations for any orientation.

It can easily be seen from the following example that the above two sets are distinct:
The non-planar manipulator determined by m1 = m2, m3 = m4, m5 = m6 and M1M2 ‖
M3M4 ‖ M5M6 ‖ p has for any orientation of the platform a cylindrical surface with rul-
ings parallel to the direction p without being architecturally singular (see Fig. 1). This
manipulator is in a singular configuration if and only if the three planes [M1,M2,m1],
[M3,M4,m3] and [M5,M6,m5] have a common intersection line.

As the direct kinematics of this manipulator can be put down to that of a 3-dof RPR
parallel manipulator, a rational parametrization of its singularity surface according to [1]
can be given. The singularity surface is a quadratic cylinder due to the (singular) affine
correspondence between the base and the platform (cf. [3]).

Moreover, if M1, . . . ,M6 are coplanar we get an example for a planar parallel manip-
ulator with this property. Now the question arises, whether there exist non-architecturally
singular planar manipulators with no four anchor points on a line possessing such a sin-
gularity surface. In the following section we prove that such manipulators do not exist.

3 The Main Theorem and its Proof

Theorem The set of planar parallel manipulators with no four anchor points on a line
which posses a cylindrical singularity surface with rulings parallel to a given fixed direc-
tion p for any orientation of the platform equals the set of planar architecture singular
manipulators (with no four anchor points on a line).

The analytical proof of this theorem is based on the following idea: We choose a Carte-
sian frame in the base such that one axis ti is parallel to the given direction p. Then
Q = det(Q) = 0 must be independent of ti for all e0, . . . ,e3, t j, tk with j 6= k 6= i 6= j. Our
proof is based on the resulting equations and Theorem 1 of [2].

We have to distinguish between two cases, depending on whether the base of the manip-
ulator is parallel to p or not.
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Base is not parallel to p:
The proof of the case where the base is orthogonal to p is hidden in the proof of Theorem
1 of [2]. For all other cases the proof was given by the author in [5].

Base is parallel to p:
In this case we take as translation vector t := (cosϕt1−sinϕt2,sinϕt1 +cosϕt2, t3)T . After
performing the same elementary operations with the matrix Q as described on page 1154
of [2], we can replace the sixth row of Q by

(r11K1 + r12A2K2,r21K1 + r22A2K2,r31K1 + r32A2K2,

0,r31A2K3 + r32A2K4,−r21A2K3 − r22A2K4)D−1 (3)

with D := A2B3B4B5coll(3,4,5). K1 = K2 = K3 = K4 = 0 are the four conditions given in
[2] which are satisfied iff a planar manipulator (with no four points on a line) is architec-
turally singular. We distinguish between the following two cases:

• M1M2 is parallel to p. The proof of this part can be done by considering only the four
equations (12-15) given in [5].

• M1M2 is not parallel to p. This part of the proof is the primary concern of this pa-
per, because it was to long to be given in [5]. In the cited paper only the two solutions
were given which fulfill all equations resulting from the coefficients of t1 of Q without
contradicting

A2B3B4B5a2(a4 −a3)coll(3,4,5)K2 sinϕ 6= 0. (4)

These two solutions S1 and S2 are

S1 : Ai = Bi cotϕ, A j = B j cotϕ, Ak = A2 +Bk cotϕ, (5)
bk = 0, a2 = ak, ai = K1bi/(K2A2),a j = K1b j/(K2A2), (6)
K3 = 0 and K4 = 0 (7)

S2 : Ai = A2 +Bi cotϕ, A j = A2 +B j cotϕ, Ak = Bk cotϕ, (8)
ai = a2 +biK3/K4, a j = a2 +b jK3/K4, ak = bk = 0, (9)

A2K2 +K4 = 0 and K1 +K3 = 0 (10)

for i, j,k ∈ {3,4,5} and i 6= j 6= k 6= i. In the following we proof that for K2 6= 0 all
coefficients of t1 can only vanish for the above two given solutions. Moreover we prove
that for K2 = 0 all coefficients of t1 only vanish for architecturally singular manipulators,
i.e. K1 = K3 = K4 = 0. The proof is split into the following two cases given in subsection
3.1 and 3.2, respectively.

3.1 M1M2 is orthogonal to p

We denote the coefficients of t i
1t j

2tk
3 from Q by Qi, j,k. From all Qi, j,k with i > 0 we can factor

out K. From Q1,0,0 we can even factor out K2.
For this case we set ϕ = π/2 and eliminate t1 from Q. Now we can additionally factor

out (e0e1 − e2e3) of Q2, j,k. We denote the coefficient of ea
0eb

1ec
2ed

3 of Qi, j,k by Pi, j,k
a,b,c,d and

compute the following 15 polynomials:

P1[18] := P1,1,1
2,2,0,0 P2[42] := P2,0,1

1,0,1,0 P3[12] := P1,1,0
3,3,0,0 (11)

P4[42] := P2,0,0
2,0,2,0 P5[72] := P2,0,0

2,1,1,0 (12)
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P6[36] := P1,0,0
3,2,1,0 −P1,0,0

2,3,0,1 −P1,0,0
1,0,3,2 +P1,0,0

0,1,2,3 (13)

P7[42] := P1,0,1
4,1,1,0 −P1,0,1

1,4,0,1 −P1,0,1
1,0,4,1 +P1,0,1

0,1,1,4 (14)

P8[30] := P1,0,1
4,2,0,0 +P1,0,1

2,4,0,0 +P1,0,1
0,0,4,2 +P1,0,1

0,0,2,4 (15)

P9[30] := P1,0,1
4,2,0,0 +P1,0,1

2,4,0,0 −P1,0,1
0,0,4,2 −P1,0,1

0,0,2,4 (16)

P10[18] := P1,1,1
2,1,1,0 −P1,1,1

1,2,0,1 P11[42] := P1,0,1
3,1,1,1 +P1,0,1

1,3,1,1 (17)

P12[36] := P1,1,0
3,2,1,0 −P1,1,0

2,3,0,1 P13[24] := P1,1,0
3,1,2,0 −P1,1,0

2,0,3,1 (18)

P14[12] := P1,0,0
3,3,0,0 +P1,0,0

0,0,3,3 P15[24] := P1,0,0
2,1,2,1 −P1,0,0

1,2,1,2 (19)

It should be noted that the number in the square brackets denotes the number of terms in
the expression. In the first step we compute the resultant of P3 and P14 with respect to A3
which yields

a2
2b3b4b5B3B4B5K2coll(3,4,5)[K2(A4B5 −A5B4)+K4(B5 −B4)]. (20)

Therefore we have to distinguish between the following three cases:

Case I) K2 = 0

We set K2 equal to zero and compute P1 and P10 which factor into K1F1[6] and K1F10[6],
respectively.

Part [A] K1 6= 0: The resultant of F1 and F10 with respect to B3 yields

b3B4B5coll(3,4,5)(b4B5 −b5B4). (21)

(i) b3 = 0 implies b4b5 6= 0. From P1 = 0 we get B4 = B5. Substituting this into P10 yields
K1B3B5coll(3,4,5) and therefore a contradiction.
(ii) So we set b5 = b4B5/B4 and plug this into P1 and P10 which yields:

K1B5b4 (B4 −B5)(B4b3 −B3b4) and K1B5 (a4 −a5)(B4b3 −B3b4) . (22)

If we set a4 = a5 and B4 = B5 we get b4 = b5 and therefore coll(3,4,5) = 0, a contradiction.
For b4 = B4b3/B3 the polynomial P14 factors into a2b3B4B5K4coll(3,4,5) which implies
K4 = 0. Now P8, which splits into b3B4B5K1coll(3,4,5), yields a contradiction.

Part [B] K1 = 0: We compute

P3 = a2K4F1, P8 = a2K4F10, P11 = a2K3F1, P13 = a2K3F10, (23)

which implies that K3 = K4 = 0 or F1 = F10 = 0 must hold. We assume K3 6= 0 and K4 6= 0
and consider again the resultant of F1 and F10 with respect to B3 given in Equ. (21).
(i) For b3 = 0 we get B4 = B5 from P3 = 0. Substituting this into P8 and P13 yields
a2B3B5K4coll(3,4,5) and a2B3B5K3coll(3,4,5).
(ii) If we plug b5 = b4B5/B4 into P3 = 0, P8 = 0, P11 = 0 and P13 = 0 we see that these
equations can only vanish for b4 = B4b3/B3 or a4 = a5 and B4 = B5. The later contradicts
again coll(3,4,5) 6= 0. Therefore we set b4 = B4b3/B3 and substitute this into P14 and P15
which yields a2b3B3B5K4coll(3,4,5) and a2b3B3B5K3coll(3,4,5), respectively.
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Case II) bi = 0, K2 6= 0

Without loss of generality we can say b3 = 0, which implies b4b5 6= 0. Now P3 factors into
a2B3b4b5[K2(A4B5 −A5B4)+K4(B5 −B4)]. From the last factor we compute A5. Now the
resultant of P8 and P1 with respect to A3 yields K2a2B3B4B5coll(3,4,5)R1 with

R1 := K2A2(a4b5B5 −a5b4B4)+K1b4b5(B4 −B5)+K4a2(b5B5 −b4B4). (24)

From R1 = 0 we compute a5. Then P1 simplifies to

B5 (b4 −b5) [K2B4(a2A3 −a3A2)−a2B3(K4 +K2A4)] . (25)

If b4 = b5 the equation P9 = 0 can only vanish (w.c.) for A4 =−K4/K2. Now P8 = 0 implies
a3 = a2A3/A2 and P10 = 0 yields a contradiction.

Therefore we set a3 = a2[K2(A3B4 −A4B3)−K4B3]/(K2A2B4). Now P10 = 0 can only
vanish (w.c.) for K2A2a4 −K1b4 + K4a2 = 0. From this equation we compute a4. P9 = 0
implies A4 = −K4/K2. Then P7 factors into a2B3(K2A3 + K4)F7[8]/(K2

2 A2). As K2A3 +
K4 = 0 yield coll(3,4,5) = 0 we set F7 equal to zero:

Part [A] K1K4 −K2K3A2 6= 0: Under this assumption we can compute b4 from F7 = 0.
P12 = 0 splits into several factor, where only one does not lead to a direct contradiction.
From this factor we compute

b5 = a2[K2
2 A3B5(A2 −A3)+K4B3(K2A2 +K4)]/[B3(K1K4 −K2K3A2)]. (26)

Finally P6 = 0 yields a contradiction.

Part [B] K1K4 −K2K3A2 = 0:
(i) Assuming K3 6= 0 we can compute A2. Now F7 factors into a2K2

4 (B5−B4)(K1 +K3)/K3.

• Firstly we consider the case K1 =−K3. Now P12 = 0 implies A3 = 0 and we get solution
S2 for cosϕ = 0 and k = 3.

• B4 = B5,K1 +K3 6= 0: From P12 = 0 we compute B3 as

B3 = K2A3B4(K2K3A3 −K1K4)/(K2
4 (K1 +K3)). (27)

Plugging this into P6 = 0 yields the contradiction.

(ii) Assuming K3 = 0 yields K1K4 = 0.

• We start with K4 = 0. P12 = 0 can only vanish (w.c.) for A2 = A3 which yields solution
S1 for cosϕ = 0 and k = 3.

• K1 = 0,K4 6= 0: We compute P13 which factors into

a3
2K4B3(K2A2 +K4)(K2A3 +K4)(B4 −B5)/(K2

2 A2
2). (28)

K2A3 +K4 = 0 contradicts coll(3,4,5) 6= 0.
(α) For A2 =−K4/K2 we get from P12 = 0 the condition A3 = 0. We get solution S2 for
cosϕ = 0 and k = 3 with the additional condition K1 = 0.
(β ) B4 = B5,K4 + K2A2 6= 0: Now P6 = 0 can only vanish (w.c.) for A3 = (K2A2(B5 −
B3)−K4B3)/(B5K2) or A3 = 0. For both cases we get a contradiction from P12 = 0.

Case III) K2(A4B5 −A5B4)+K4(B5 −B4) = 0, b3b4b5K2 6= 0

From the above condition and P3 = 0 we compute A3 and A4 as

Ai = [K2BiA5 +K4(Bi −B5)]/(K2B5) for i = 3,4. (29)
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In the next step we calculate the resultant of P1 and P10 with respect to a2 which yields
B3B4B5coll(3,4,5)K4R2[12].

Part [A] K4 = 0: Now P9 equals K2A2B3B4A5coll(3,4,5) which implies A5 = 0. Then P2
simplifies to A2K3F2 with

F2 := B3(a5b4 −a4b5)+B4(a3b5 −a5b3)+B5(a4b3 −a3b4). (30)

(i) F2 = 0:

• If we assume b4B5−b5B4 6= 0 we can compute a3 from F2. Now the polynomials P4 and
P5 factors into

K3A2(a4b5 −a5b4)F4[8] and K3A2(a4b5 −a5b4)F5[6], (31)

respectively. The factor a4b5 −a5b4 = 0 implies coll(3,4,5) = 0.
(α) Therefore we assume K3 6= 0 and compute the resultant of F4 and F5 with respect to
B3, which yields

b3B4B5(B4 −B5)(b3 −b4)(b4B5 −b5B4)(b5 −b3)(a4b5 −a5b4). (32)

For the cases B4 = B5 or b3 = bi for i = 4,5 equation F5 = 0 yields a contradiction. The
last factor of Equ. (32) implies coll(3,4,5) = 0.
(β ) K3 = 0 : Now the P1 and P10 factors into F5C and F4C with

C := K2A2(a4B5 −a5B4)−K1(b4B5 −b5B4). (33)

For C = 0 we compute a4 from this equation and plug the obtained expression into
P8 = 0, which already yields a contradiction.
Therefore we consider again the resultant of F4 and F5 with respect to B3 given in Equ.
(32). For all possible cases (B4 = B5 or b3 = bi for i = 4,5) the equation P1 = 0 can only
vanish (w.c.) for C = 0.

• We proceed with b4 = B4b5/B5. Now the polynomial F2 equals

(a4B5 −a5B4)(b3B5 −b5B3)/B5. (34)

(α) a4 = B4a5/B5: P5 = 0 can only vanish (w.c.) for K3 = 0. Then P8 = 0 implies
a5 = K1b5/(K2A2). P1 = 0 yields a contradiction.
(β ) b3 = b5B3/B5: Now we consider P1 = A2K2b5F1[6]/B5 and P10 = K2A2F10[6]. The
resultant of F1 and F10 with respect to a3 yields

B3(B3 −B4)(B3 −B5)(a4B5 −a5B4). (35)

For B3 = Bi for i = 4,5 the equation P1 = 0 yields the contradiction. If we set a4 =
B4a5/B5 the equation P5 = 0 implies K3 = 0. Now P8 equals B3B4coll(3,4,5)(K1b5 −
a5K2A2). From the last factor we compute a5 and plug this into P1 = 0 which yields the
contradiction.

(ii) K3 = 0,F2 6= 0 : Computing the resultant of P1 and P10 with respect to A2 yields
K1K2B3B4B5coll(3,4,5)F2. This implies K1 = 0.

• Assuming b4 6= b5 we can compute a3 from P1 = 0. Now P10 splits up into K2A2B3(a4B5−
a5B4)coll(3,4,5)/(b4 −b5). Plugging a4 = B4a5/B5 into P8 = 0 yields a contradiction.

• b4 = b5: Now P1 factors into K2A2B3(b3 − b5)(a4B5 − a5B4). As b3 = b5 contradicts
coll(3,4,5) 6= 0 we set a4 = B4a5/B5. P10 = 0 can only vanish (w.c.) for a3 = B3a5/B5.
Again P8 = 0 yields a contradiction.
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Part [B] R2 = 0,K4 6= 0:
(i) If we assume B4 6= B5 we can compute a3 from R2 = 0. Now P1 splits up into the two
factors C and F1 with

C := K4a2(B4 −B5)+K1(b4B5 −b5B4)+K2A2(a5B4 −a4B5) (36)
F1 := b3B3(B4 −B5)+b4B4(B5 −B3)+b5B5(B3 −B4). (37)

If we compute a2 from C = 0, the resulting equation P8 = 0 cannot vanish without contra-
diction. If we compute b3 from F1 = 0 the polynomial P10 splits up into four factors. Three
of them yield coll(3,4,5) = 0 and the fourth factor equals C.
(ii) We get R2 = (B3−B5)[K2A2(a5−a4)+K1(b4−b5)] for the remaining case B4 = B5. If
B3 = B5 the equation P8 = 0 yields a contradiction. Therefore we compute a4 from the sec-
ond factor. Now P15 factors into a2B5coll(3,4,5)(B3 −B5)(K1b5 −K2A2a5). This implies
a5 = K1b5/(K2A2) and finally P8 = 0 yields the contradiction. �

3.2 M1M2 is not orthogonal to p

Due to the above studied cases we can assume cosϕ 6= 0 and sinϕ 6= 0 when eliminating t1
from Q. For the proof of this part we need the following 20 polynomials:

P1[12] := (P1,0,0
3,3,0,0 +P1,0,0

0,0,3,3)/(a2 sinϕ) P3[78] := P1,0,1
0,4,0,2 −P1,0,1

2,0,4,0 (38)

P2[36] := (P1,0,0
3,0,3,0 −P1,0,0

0,3,0,3)/(a2 cosϕ) P4[66] := P1,0,1
4,0,2,0 −P1,0,1

2,0,4,0 (39)

P5[30] := (P1,0,1
4,2,0,0 +P1,0,1

0,0,4,2)/sinϕ P7[36] := P1,0,1
4,2,0,0 −P1,0,1

0,0,2,4 (40)

P6[66] := (P1,0,1
4,0,2,0 +P1,0,1

0,4,0,2)/cosϕ P8[42] := P1,0,1
0,0,4,2 −P1,0,1

0,0,2,4 (41)

P9[18] := (P1,0,2
3,1,0,0 +P1,0,2

1,3,0,0)/sinϕ P11[108] := P1,0,1
3,1,1,1 −P1,0,1

1,3,1,1 (42)

P10[18] := (P1,0,2
2,0,1,1 −P1,0,2

1,1,2,0)/cosϕ P12[102] := P1,0,1
3,1,1,0 −P1,0,1

1,4,0,1 (43)

P13[24] := (P1,0,0
3,2,1,0 −P1,0,0

0,1,2,3 −P1,0,0
2,3,0,1 +P1,0,0

1,0,3,2)/(a2 sinϕ) (44)

P14[42] := (P1,0,0
3,2,1,0 +P1,0,0

0,1,2,3 +P1,0,0
2,3,0,1 +P1,0,0

1,0,3,2)/A2 (45)

P15[48] := P1,0,0
3,2,1,0 +P1,0,0

0,1,2,3 −P1,0,0
2,3,0,1 −P1,0,0

1,0,3,2 (46)

P16[36] := P1,0,0
3,1,2,0 −P1,0,0

0,2,1,3 −P1,0,0
2,0,3,1 +P1,0,0

1,3,0,2 (47)

P17[66] := P1,0,1
4,1,1,0 +P1,0,1

1,4,0,1 +P1,0,1
1,0,4,1 +P1,0,1

0,1,1,4 (48)

P18[54] := P1,0,1
4,1,1,0 −P1,0,1

1,4,0,1 +P1,0,1
1,0,4,1 −P1,0,1

0,1,1,4 (49)

P19[48] := P1,0,1
3,2,0,1 −P1,0,1

2,3,1,0 −P1,0,1
0,1,3,2 +P1,0,1

1,0,2,3 (50)

P20[150] := P1,0,1
3,2,0,1 +P1,0,1

2,3,1,0 −P1,0,1
0,1,3,2 −P1,0,1

1,0,2,3 (51)

Firstly we compute the resultant of P9 and P10 with respect to A5, which yields the expres-
sion a2B3B4B5K2coll(3,4,5)R1 with

R1 := K2B3(A2a4 −A4a2)+K2B4(A3a2 −A2a3)+K1(b3B4 −b4B3). (52)

In the following section we show that for K2 = 0 the equations Pi = 0 for i = 1, . . . ,20 can
only be fulfilled for K1 = K3 = K4 = 0.
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3.2.1 K2 = 0

Now the polynomials P9 and P10 factors into K1F9 and K1F10 with

F9 := B3B4b5(a4 −a3)+B4B5b3(a5 −a4)+B3B5b4(a3 −a5) (53)
F10 := B3B4b5(b4 −b3)+B4B5b3(b5 −b4)+B3B5b4(b3 −b5). (54)

(i) K1 6= 0: We compute the resultant of F9 and F10 with respect to B3 which yields
b3B4B5(b4B5 − b5B4)coll(3,4,5). We start with b3 = 0. Now F10 = 0 implies B4 = B5
and F9 equals K1B3B5coll(3,4,5).

Therefore we set b4 = B4b5/B5. Now F9 splits up into B4(a4 −a5)(b3B5 −b5B3). If we
set b3 = B3b5/B5 the equation P5 = 0 yields the contradiction. For a4 = a5 the equation
F10 = 0 implies b3 = B3b5/B5, which yields via P5 = 0 the contradiction.
(ii) K1 = 0,K4 6= 0: Now P5 equals K4a2F9. Moreover from P1 also K4 factors out. We
compute the resultant of F9 and F1 := P1/K4 with respect to B3 which yields

b3B4B5coll(3,4,5)(a4b5B4 −a5b4B5). (55)

• For b3 = 0 we get P1 = K4a3b4b5(B4 −B5).
(α) For a3 = 0 the equation P5 = 0 implies b5 = b4a5B5/(a4B4). Now P14 = 0 and
P8 = 0 yield A3 = B3 = 0, a contradiction.
(β ) For B4 = B5 we get the contradiction from P5 = 0.

• Now we set a4b5B4 −a5b4B5 = 0.
(α) We assume bi = 0 which yields ai = 0 for i, j ∈ {4,5} and i 6= j. Then equation
P5 = 0 can only vanish (w.c.) for a3 = a jb3B4/(b jB3). The equations P14 = 0 and P8 = 0
yield Ai = Bi = 0, a contradiction.
(β ) For b4b5 6= 0 we can compute a4. Now the polynomial P1 factorize into K4b4(B4 −
B5)(a3b5B3 − a5b3B5). For a3 = b3a5B5/(B3b5) we get P15 = a5B5K4F15/(b5B3B4)
(a5 = 0 implies a3 = a4 = 0 a contradiction) and P8 = K4F8/(B3B4). Computing
F8 − 2F15 = 0 yields the contradiction. For B4 = B5 the condition P5 = 0 also implies
a3 = b3a5B5/(B3b5) and we can constuct the same contradiction as before.

(iii) K1 = 0,K4 = 0,K3 6= 0 : Now the polynomials P18 and P15 split into K3a2 sinϕF9 and
K3A2 sinϕF1. We consider again the resultant which is given in Equ. (55).

• For b3 = 0 the polynomial F1 splits into a3b4b5(B4 −B5). As for B4 = B5 the equation
F9 = 0 yields a contradiction, we set a3 = 0. Now F9 = 0 implies b5 = b4a5B5/(a4B4).
From P6 = 0 we get A4 = A5. P17 = 0 yields the contradiction.

• Now we set a4b5B4 −a5b4B5 = 0:
(α) We assume bi = 0 which yields ai = 0 for i, j ∈ {4,5} and i 6= j. Now P18 = 0
implies a3 = a jb3B4/(b jB3). Then P6 = 0 can only vanish (w.c.) for A3 = A j. Finally
P17 = 0 yields the contradiction.
(β ) b4b5 6= 0 We compute a4 and factorize P2 and F1 which yield

K3b4(A4 −A5)(a3b5B3 −a5b3B5) and b4(B4 −B5)(a3b5B3 −a5b3B5). (56)

For A4 = A5 and B4 = B5 the equation P6 = 0 can only vanish (w.c.) for A3 = A5. Now
P17 = 0 implies B3 = B5, a contradiction. Therefore we set a3 = b3a5B5/(B3b5). P6
factors into K3a2F6 with

F6 := b3b4B5(A3 −A4)+b3b5B4(A5 −A3)+b4b5B3(A4 −A5). (57)

Assuming B4b3 −b4B3 6= 0 we can compute A5 from F6 = 0. Plugging this into P17 = 0
yields the contradiction. For b3 = b4B3/B4 the equation P6 = 0 implies A3 = A4. Again
P17 = 0 yields the contradiction. Hence, we can assume K2 6= 0 for the rest of the proof.
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3.2.2 R1 = 0,K2 6= 0

We proceed by setting R1 of Equ. (52) equal to zero. We compute A3 from R1 = 0 and plug
this into P9 which splits into B3(a3 −a4)F9 with

F9 := K2B4(A5a2 −A2a5)+K2B5(A2a4 −A4a2)+K1(b5B4 −b4B5). (58)

From F9 = 0 we can compute A5. Now the resultant of P1 and P5 with respect to A2 simpli-
fies to K2B3B4B5coll(3,4,5)R2[12]/a2.

Case I) a3b4b5[K4a2(a4 −a5)+K1(b4a5 −b5a4)] 6= 0

Under this assumption we can compute B3 from R2 = 0.

Part [A] Assuming a4a5(b4B5 − b5B4) 6= 0 we can compute A2 from the common factor
of P1 and P5. Now P8 = B3B5coll(3,4,5)F8[8] and P7 = B3B5coll(3,4,5)F7[27]. F7 = 0 and
F8 = 0 are homogeneous linear equations in the unknowns sinϕ and cosϕ . So we compute
the determinant of the coefficient-matrix which yields K2(b4B5−b5B4)B4a2a5D[21]. From
D[21] = 0 we can compute A4. Now we get F7 = F8 = a4a5(b4B5−b5B4)C[8]. From C = 0
we compute B4 and plug the expression into P11, which splits into coll(3,4,5)F11. The
factor F11 is quadratic in the unknown B5. Therefore we obtain two solutions for

B5 =
2[K1(aib5 −bia5)+K4a2(a5 −ai)]K1b5 sinϕ

(K4a2 −K1bi)K2a2a5 cosϕ
(59)

with i = 3,4. If we plug B5 into Bi we get Bi = 0, a contradiction.

Part [B] ai = 0 for i, j ∈ {4,5} and i 6= j. We compute P5 which splits into B jb3F5[8]. As
b3 = 0 yields B3 = 0 we can assume b3 6= 0.
(i) Assuming d := K4(a3 −a j)(biB j −b jBi) 6= 0 we can compute

a2 = K1[Bib j(a jb3 −a3b j)+b2
i B j(a3 −a j)]/d (60)

from F5 = 0. Plugging this into P1 = 0 yields the contradiction.
(ii) K4 = 0: Now P1 equals b3biB jK1(a3b j −a jb3)(biB j −b jBi)/(a2b2). For both possible
cases (i.e. a3 = b3a j/b j and bi = b jBi/B j) the equation P5 = 0 yields the contradiction.
(iii) B j = b jBi/bi,K4 6= 0: Now P5 = 0 implies K1 = 0 and P1 = 0 yields the contradiction.
(iv) a3 = a j: Again P5 = 0 yields K1 = 0 and P1 = 0 the contradiction.

Part [C] b4 = b5B4/B5,a4a5 6= 0: P5 = 0 implies K1 = 0 and P1 = 0 yields the contradiction.

Case II) K4a2(a4 −a5)+K1(b4a5 −b5a4) = 0

We do this case without the assumption a3 − a4 6= 0, such that a later reindexing can be
done without loss of generality.

Part [A] Assuming K4(a4 − a5) 6= 0 we can compute a2. Now the factor R2 simplifies to
K1a4a5b3(b4B5 −b5B4)coll(3,4,5).
(i) For b3 = 0 we compute A2 from P5 = 0 which yields A2 = K1(b4 − b5)/[K2(a4 − a5)].
Now P7 = 0 can only vanish (w.c.) for

B4 = (K4 +A4K2)sinϕ/(K2 cosϕ). (61)

We compute P3 which splits up into coll(3,4,5)K1B3F3[18].
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• Assuming K1(b4a5 − b5a4) + K3b4(a5 − a4) + K4a4(a4 − a5) 6= 0 we can compute B5
from F3 = 0. Now P2 = 0 can only vanish (w.c.) for a3 = 0 and a factor F2[14] = 0.
As for a3 = 0 the equation P20 = 0 yields a contradiction, we compute B3 from F2 = 0.
Again P20 = 0 yields a contradiction.

• K1(b4a5 −b5a4)+K3b4(a5 −a4)+K4a4(a4 −a5) = 0:
(α) We can compute b5 from this equation for a4 6= 0. Now F3 = 0 can only vanish
(w.c.) for K1 = −K3. Then P2 = 0 implies a3 = 0. This yields solution S2 for k = 3.
(β ) For a4 = 0 we get b4a5(K1 + K3) = 0 which implies K1 = −K3. P3 = 0 can only
vanish (w.c.) for b4 = (K1b5 +K4a5)/K1. P18 = 0 implies a3 = 0. We get solution S2 for
k = 3 with the additional condition a4 = 0.

(ii) ai = 0,b3 6= 0 for i, j ∈ {4,5} and i 6= j. As P5 = 0 yields a contradiction if we set
a3 = 0 or b3 = b jB3/B j, we can assume a3(b jB3 − b3B j) 6= 0. Now we can compute A2
from P5 = 0. P8 = 0 can only vanish (w.c.) for b j = 0 and a second factor F8 = 0.

• For b j = 0 we compute B4 from the only factor of P7 = 0 which does not yield a contra-
diction.
(α) Assuming K1 + K3 6= 0 we can compute B3 from the only factor of P3 = 0 which
does not yield a contradiction. From the factor of P13 = 0 which does not yield a contra-
diction we compute B5. Then P6 = 0 yields the contradiction.
(β ) For K1 = −K3 we compute b3 from F3 = 0. Plugging this into P13 = 0 yields the
contradiction.

• F8 = 0,b j 6= 0: We compute A4 from F8 = 0. Then P11 = 0 yields the contradiction.

(iii) b4 = b5B4/B5,a4a5b3 6= 0: As P5 = 0 yields a contradiction if we set a3 = 0 or b5 =
b3B5/B3, we can assume a3(b5B3 − b3B5) 6= 0. Now we can compute A2 from P5 = 0.
We compute A4 from the only non-contradicting factor of P8 = 0. Finally P11 = 0 yields a
contradiction.

Part [B1] K4 = 0 and K1 = 0:
(i) Assuming B4a5b5(a4b3 − a3b4) + B5a4b4(a3b5 − a5b3) 6= 0 we can compute B3 from
P1 = 0. Now P5 = 0 can only vanish (w.c.) for (B4b5 −B5b4) = 0 or ai = 0 with i = 4,5.

• For ai = 0 (i, j ∈ {4,5}, i 6= j) we compute P16 = 0, which can only vanish (w.c.) for
K3 = 0 or F16 = 0. As P8 = 0 yields a contradiction if we compute B4 from F16 = 0, we
set K3 = 0. Now P19 = 0 implies a3 = [a2(b j −b3)+a jb3]/b j. P14 = 0 can only vanish
(w.c.) for F16 = 0.

• b4 = B4b5/B5: P7 = 0 can only vanish (w.c.) for A4 =(sinϕA2a4 +cosϕB4a2)/(a2 sinϕ).
P8 = 0 yields the contradiction.

(ii) B4a5b5(a4b3 −a3b4)+B5a4b4(a3b5 −a5b3) = 0:

• Assuming b4b5(a4B5 − a5B4) 6= 0 we can compute a3. Now P1 = 0 vanish (w.c.) for
b3 = 0, b5B4 −B5b4 = 0 or ai = 0 with i = 4,5.
(α) ai = 0: From P7 = 0 we get B4. P8 = 0 yields a contradiction.
(β ) b3 = 0,a4a5 6= 0: We get a4 = a2(sinϕA4−cosϕB4)/(A2 sinϕ) from P15 = 0. Now
P5 = 0 can vanish (w.c.) for B4 = sinϕA4/cosϕ or b4 = b5B4/B5. For both cases P8 = 0
yields the contradiction.
(γ) b4 = b5B4/B5,b3a4a5 6= 0: Now P7 = 0 implies a4 of (β ). Plugging this into P8 = 0
yields the contradiction.

• bi = 0 (i = 4,5): Equ. (ii) can only vanish (w.c.) for a4 = 0 or a5 = 0.
(α) For ai = 0 we compute B4 from P15 = 0. Now P5 = 0 only vanish (w.c.) for a3 = 0,
a j = 0 or b3 = b jB3/B j. For all three cases equation P8 = 0 yields the contradiction.
(β ) a j = 0,ai 6= 0: P5 = 0 can only vanish (w.c.) for a3 = 0. From the only non-
contradicting factor of P7 = 0 we compute B4. Now P15 = 0 can only vanish (w.c.) for
K3 = 0 or B3 = B j. For K3 = 0 the equation P6 = 0 implies a2 = ai. This yields solution
S1 for k = i with the additional condition K1 = 0. For B3 = B j and K3 6= 0 the equation
P4 = 0 yields the contradiction.
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• a4 = a5B4/B5,b4b5 6= 0:
(α) Assuming b5B4 − b4B5 6= 0 we can compute a5 from P5 = 0. Now P1 = 0 implies
b4 = [B3b5 +b3(B4−B5)]/B3. P7 = 0 implies B4 = sinϕA4/cosϕ and P8 = 0 yields the
contradiction.
(β ) b4 = b5B4/B5: Now P5 = 0 can only vanish for a3 = 0 or b3 = B3b5/B5. In both
cases we compute A2 from the only non-contradicting factor of P7 = 0. P8 = 0 yields the
contradiction.

Part [B2] K4 = 0 and b4a5 −b5a4 = 0,K1 6= 0:
(i) With a5 6= 0 we can set b4 = b5a4/a5. Now P1 = 0 vanishes without contradiction for
a4 = 0, a4B5 −B4a5 = 0 or K1b5 −K2A2a5 = 0.

• a4 = 0: As P5 = 0 yields a contradiction if we set a3 = 0 or b3 = b5B3/B5, we can
assume a3(b3B5 −b5B3) 6= 0. Now we can compute A2 from P5 = 0. P7 = 0 implies A4.
P14 = 0 yields a contradiction.

• B4 = a4B5/a5,a4 6= 0: For the same reason as above we can again assume a3(b3B5 −
b5B3) 6= 0 and compute A2 from P5 = 0. From the only non-contradicting factor of
P15 = 0 we compute B5 = (K2A4a2a5 −K3a4b5)sinϕ/(K2a2a4 cosϕ). P8 = 0 can only
vanish without contradiction for b3 = 0 or F8[8] = 0.
(α) P7 = 0 implies K3 = 0 for b3 = 0. Then P6 = 0 implies a2 = a3 which corresponds
with solution S1 for k = 3 with the additional condition B4 = a4B5/a5.
(β ) Now we can assume b3 6= 0 for the case F8 = 0. We can compute B3 from F8 = 0.
Plugging this into P2 = 0 yields the contradiction.

• K1b5−K2A2a5 = 0,a4(a4B5−B4a5) 6= 0: We set A2 = K1b5/(K2a5) and compute P5 = 0
which yields b3 = 0. From P7 = 0 we get B4 = sinϕA4/cosϕ and plug this into P2 = 0,
which can only vanish (w.c.) for K3 = 0 or B5 = A4 sinϕ/cosϕ , respectively.
(α) For K3 = 0 we obtain from P6 = 0 the condition a2 = a3, which corresponds with
solution S1 for k = 3.
(β ) Now we can assume K3 6= 0 and set B5 = A4 sinϕ/cosϕ . Again P6 = 0 implies
a2 = a3, but now P4 = 0 yields a contradiction.

(ii) Assuming a5 = 0 yields b5 = 0 or a4 = 0.

• b5 = 0: We obtain B4 = [K2(a2A4−a4A2)+K1b4]sinϕ/(a2K2 cosϕ) from P15 = 0. Now
P7 = 0 can only vanish for K1bi −K2A2ai = 0 with i = 3,4 or F7[4] = 0. If we set
ai = K1bi/(K2A2) the equation P8 = 0 yields the contradiction. Therefore we compute
B3 from F7 = 0 which yields B3 = b3[K2(A4a2 −A2a4)+ K1b4)]sinϕ/(a2b4K2 cosϕ).
Plugging this into P5 = 0 yields the contradiction.

• a4 = 0,b5 6= 0: Now P1 = 0 can only vanish (w.c.) for b4 = 0 or b5 = b4B5/B4. For both
cases P5 = 0 yields the contradiction.

Part [C] a4 = a5,K4 6= 0
Now the condition of case II can only vanish (w.c) for K1 = 0 and a4 = 0.
(i) K1 = 0: P5 = 0 can only vanish (w.c.) for a4 = −a2K4/(A2K2) or b4 = B4b5/B5.

• a4 =−a2K4/(A2K2): We get B4 = (K2A4 +K4)sinϕ/(K2 cosϕ) from P7 = 0. Now P8 =
0 can only vanish (w.c.) for b3 = 0.
(α) K3 6= 0: We can compute b4 from the only non-contradicting factor F4[9] = 0 of
P4 = 0. Moreover if we assume a3(a2 − a3) 6= 0 we can compute B5 from F6[5] = 0,
which is the only factor of P6 = 0, which does not yield a direct contradiction. Plugging
this into P2 = 0 yields the contradiction. For both remaining cases (a3 = 0 and a2 = a3)
the equation F6 = 0 already yields the contradiction.
(β ) K3 = 0: Now F4 = 0 can only vanish (w.c.) for A2 =−K4/K2 or B5 = sinϕ(K2A4 +
K4)/(K2 cosϕ). For A2 = −K4/K2 the equation P6 = 0 implies a3 = 0, which yields
solution S2 for k = 3 with the additional condition K1 = K3 = 0. Now we can assume
A2 6=−K4/K2 and set B5 = sinϕ(K2A4 +K4)/(K2 cosϕ). From P6 = 0 we can compute
B3. Plugging this into P2 = 0 yields the contradiction.
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• b4 = B4b5/B5,a4 6= −a2K4/(A2K2): We get B4 = (a2A4 − a4A2)sinϕ/(a2 cosϕ) from
P7 = 0. Now P4 = 0 can only vanish (w.c.) for a4 = 0 or a4 = a2. For both cases we com-
pute B3 from the non-contradicting factor of P18 = 0 and plug the obtained expression
into P1 = 0 which yields the contradiction.

(ii) a4 = 0,K1 6= 0: As P5 = 0 yields the contradiction if we set b4 = b5B4/B5, we can
assume b4B5 − b5B4 6= 0. Now we can compute a2 from P5 = 0. P1 = 0 can only vanish
(w.c.) for bi = 0 (i, j ∈ {4,5}, i 6= j). Then P14 = 0 can only vanish (w.c.) for K1(b j −b3)+
A2a3K2 = 0 and a second factor F14 = 0.

• If we solve F14 = 0 for B4 we get from P4 = 0 the condition K1 = −K3. From P3 = 0
we compute b3 and plug the obtained expression into P17 = 0, which can only vanish
(w.c.) for A2 = −K4/K2. This corresponds with solution S2 for k = i with the additional
condition a j = 0.

• A2 = K1(b3 − b j)/(K2a3),F14 6= 0: From P18 = 0 we get K1 = −K3. P7 = 0 yields the
contradiction.

Case III) bi = 0 for i = 4,5

For bi = 0 the factor R2 simplifies to

R2 := b3b jaiBi[K4a2(a3 −a j)+K1(b3a j −b ja3)] (62)

with i, j ∈ {4,5} and i 6= j. Therefore the two possibilities are ai = 0 or K4a2(a3 − a j)+
K1(b3a j−b ja3) = 0. The later was already done in case II just for another indexing. There-
fore we obtain the same solutions as in case II just for another index k.

The remaining discussion of ai = 0 can be done under the assumption K4a2(a4 − a5) +
K1(b4a5 − b5a4) 6= 0 due to case II. If we consider P15 = 0 and P16 = 0 we see that these
equations can only vanish (w.c.) for K1 =−K3 and A2 =−K4/K2 or for the common factor
G = 0.

Part [A] G = 0: From this equation we compute B4.
(i) K1 6= 0: We can compute b3 from P8 = 0. From P5 = 0 we get a j.

• Assuming K2A2(a2K4 +b jK3)−K4(K1b j −a2K4) 6= 0 we can compute B3 from P6 = 0.
P4 = 0 yields the contradiction.

• K2A2(a2K4 +b jK3)−K4(K1b j −a2K4) = 0:
(α) Assuming A2K2 +K4 6= 0 we can compute a2. P3 = 0 yields the contradiction.
(β ) A2 = −K4/K2 implies K1 = −K3. We get solution S2 for k = i.

(ii) K1 = 0: Now we can compute a3 from P8 = 0. From P5 = 0 we get a2 = −K2A2a j/K4.

• K3 6= 0: We compute a j from P4 = 0. Then P6 = 0 yields a contradiction.
• K3 = 0: Now P4 = 0 can only vanish for A2 =−K4/K2, which yield solution S2 for k = i

with the additional condition K1 = K3 = 0, or B3 = B j. For the later P20 = 0 yields the
contradiction under the assumption A2 6= −K4/K2.

Part [B] K1 = −K3,A2 = −K4/K2,G 6= 0:
(i) Assuming b3a jB j −b jB3a3 6= 0 we can compute a2 from P5 = 0. Now P8 = 0 can only
vanish (w.c.) for K3(b j −b3)−K4(a j −a3) = 0 or a second factor F8 = 0.

• a j = (K3(b j − b3)+ K4a3)/K4: Now P12 = 0 yields K3 = 0. Then the equation P7 = 0
yields the contradiction.

• F8 = 0,K3(b j − b3)−K4(a j − a3) 6= 0: From F8 = 0 we compute A4. P4 = 0 implies
a3 = 0 and P6 = 0 yields the contradiction.

(ii) a3 = b3a jB j/(b jB3): From P5 = 0 we compute B j = b jB3[K3(b3−b j)+K4a j]/(K4a jb3).
Now P14 = 0 implies a2 = (a jK4 −b jK3)/K4. P7 = 0 yields the contradiction.
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Case IV) a3 = 0,N := b4b5[K4a2(a4 −a5)+K1(b4a5 −b5a4)] 6= 0

Now R2 splits up into a4a5b3(K1b3 −K4a2)(b4B5 −b5B4).

Part [A] b3 = 0: As P5 = 0 yields a contradiction if we set a5 = 0 or b4 = b5B4/B5 we can
assume a5(b4B5−b5B4) 6= 0. Now we can compute A2 from P5 = 0. P14 and P8 factors into
Ncoll(3,4,5)B3B5F14[8] and Ncoll(3,4,5)B3B5F8[8]. Computing F8 −2F14 = 0 yields the
equation a2a5B4K2(b4B5 −b5B4)cosϕ = 0 and therefore a contradiction.

Part [B] a5 = 0,b3 6= 0: Assuming K1b3 −K4a2 6= 0 we can compute B5 from P5 = 0.
P1 = 0 yields the contradiction. Therefore we assume K4 6= 0 and set a2 = K1b3/K4. P5 = 0
implies b3 = b4 and P1 = 0 yields the contradiction. For K4 = 0 we get K1b3 which is a
contradiction.

Part [C] b4 = b3B4/B5,a5b3 6= 0: We can solve P5 = 0 for B3. P1 = 0 yields the contradiction.

Part [D] K1b3 −K4a2 = 0,b3a5(b4B5 − b5B4) 6= 0: We can assume K4 6= 0 otherwise we
get a contradiction. So we can set a2 = K1b3/K4. From P5 = 0 we can compute A2. Then
we compute A4 from the only factor of P8 = 0 which does not yield a direct contradiction.
Now we can compute B4 from P7 = 0. P11 = 0 yields the contradiction. End of all cases.

The close of the proof was already done by the author in [5], by showing that the solutions
S1 and S2 imply contradictions for the choice of M6 and m6, respectively. This finishes the
proof of the given Theorem. �

4 Conclusion

We proved that there do not exist non-architecturally singular Stewart Gough Platforms
with planar base and platform and no four anchor points collinear which possess a cylin-
drical singularity surface with rulings parallel to a given fixed direction p in the space of
translations.

A complete list of planar parallel manipulators with such a singularity surface is in
preparation [6].
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