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1. Planar Symmetric Rolling

During the constrained motion of a pla-
nar mechanism the instantaneous pole P
traces the so-called fixed/moving polode
in the fixed/moving system.

It is well known that this motion can
also be generated by the rolling of the
moving polode ϕ along the fixed polode
ϕ0 without sliding.

If the polodes are symmetric with respect
to the pole tangent t, then the motion is
called planar symmetric rolling.
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1. Planar Symmetric Rolling

In 1826, this motion was first studied by
Quetelet [1], who pointed out that:

The path x of a point X under this special
planar motion can be generated by the
reflexion of a point X0 of the fixed system
on each tangent of ϕ0.

This can also be reformulated as follows:

x can be obtained by a central dilation
with center X0 and scale factor 2 (i.e.,
central doubling) of X0’s pedal-curve f
with respect to ϕ0.
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1. Spherical Symmetric Rolling

The spherical counterpart of this motion
is called spherical symmetric rolling and
was extensively studied by Tölke [2].

The spherical version of the above given
characterization also holds true for the
spherical symmetric rolling.

From another perspective, a planar/sphe-
rical symmetric rolling is generated by re-
flecting the fixed system in a 1-parametric
continuous set of lines/great circles.
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1. Spatial Generalization of Symmetric Rollings

The latter point of view is of importance for the spatial generalization of symmetric
rollings, which can be done in multiple ways:

1. Darboux [5] noted a 2-parametric spatial motion, which is generated by the
rolling of a moving surface Φ on an indirect congruent fixed surface Φ0.

It also holds that the path-surface of a point X can be generated by the reflexion
of a point X0 of the fixed system on each tangent-plane of Φ0; i.e. the path-
surface can be obtained by a central doubling of X0’s pedal-surface with respect
to Φ0’s tangent-planes.
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1. Spatial Generalization of Symmetric Rollings

2. Krames [6] considered line-symmetric
motions as the 1-parametric spatial
analogue. These motions are obtained
by reflecting the moving system in a
1-parametric set of lines forming the
so-called basic surface Γ.

The path x of a point X under a line-
symmetric motion can be generated
by the reflexion of a point X0 on each
generator g of Γ; i.e. x can be obtained
by a central doubling of X0’s pedal-
curve f with respect to Γ’s rulings.
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1. Spatial Generalization of Symmetric Rollings

However, it should be pointed out that
Γ differs from the fixed axode Φ0,
which is generated by Γ’s central tan-
gents (i.e. common normals of infini-
tesimal neighboring lines of Γ).

Φ0 and the moving axode Φ are at
each time instant symmetric with re-
spect to the axis p of the instanta-
neous screw, which is in general not
an instantaneous rotation.
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1. Spatial Generalization of Symmetric Rollings

3. It is astonishing that neither Tölke [2]
nor Krames [6] mentioned the more
apparent generalization by reflecting
the fixed system in a 1-parametric con-
tinuous set of planes.

Less attention was paid to these so-
called plane-symmetric motions in
the literature until now. The basic
properties of this motion type were
reported by Bottema and Roth [8].
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1. Plane-Symmetric Motion

Given is a 1-parametric continuous set
of planes τ(t) with time t. By reflecting
the fixed frame F0 on the plane τ(t), we
obtain the pose Ft

0.

Two infinitesimal neighboring poses Ft
0

and F
t+∆t
0 can be transformed into each

other by a reflexion on τ(t) followed by a
further reflexion on τ(t+∆t).

This is a pure rotation about the line p
of intersection of τ(t) and τ(t+∆t).
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1. Plane-Symmetric Motion

The axis p of this instantaneous rotation
is a torsal ruling of the surface enveloped
by the given 1-parametric set of planes.

Therefore the fixed axode Φ0 is a de-
velopable surface and the corresponding
moving axode Φ is obtained by reflecting
Φ0 in Φ0’s tangent-plane τ along p.

The path x of a point X under a plane-
symmetric motion can be generated by
the reflexion of a point X0 on each
tangent-plane τ of Φ0
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1. Plane-Symmetric Motion

This can also be reformulated as follows:

x can be obtained by a central doubling
of X0’s pedal-curve f with respect to Φ’s
tangent-planes.

Due to these properties, the plane-
symmetric motion is the straightfor-
ward spatial counterpart of the pla-
nar/spherical symmetric rolling.

Therefore the plane-symmetric motion is
also called spatial symmetric rolling.
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2. Basics on Hexapods and Self-Motions

A hexapod consists of a moving platform Σ
and the fixed base Σ0, which are linked with
six legs anchored via spherical joints.

The geometry of a hexapod is given by the
six base anchor points Mi ∈ Σ0 and by the
six platform points mi ∈ Σ.

For fixed leg lengths a hexapod is in general
rigid. But, in some particular cases the he-
xapod can perform an n-parametric motion
(n > 0), which is called self-motion.
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2. Basics on Hexapods and Self-Motions

All self-motions are solutions to the problem
posed by the French Academy of Science for
the Prix Vaillant (1904), also known as

Borel–Bricard problem (still unsolved)

Determine and study all displacements of a
rigid body in which distinct points of the
body move on spherical paths.

Clearly, in each pose of a self-motion the
hexapod has to be infinitesimal flexible.
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2. Basics on Hexapods and Self-Motions

A hexapod is singular (infinitesimal flexible,
shaky), if and only if, the carrier lines of the
six legs belong to a linear line complex.

A hexapod is called architecturally singular

if the six legs belong in each relative pose of
the platform with respect to the base to a
linear line complex.

These special solutions to the Borel–Bricard
problem are already well studied (review on
this topic is given in [15]).
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2. Basics on Hexapods and Self-Motions

The approaches for the determination of non-architecturally singular hexapods
recorded in the literature, can roughly be divided into the following two groups:

1. Assumptions on the geometry of the
platform and base; e.g.,

⋆ linear mapping between platform
and base [16–22],

⋆ symmetry properties of platform
and base [20–24] (cf. Figure),

⋆ special topology (e.g. octahedral
structure [25]),

or a combination of these assumpti-
ons (e.g. [20–22]).
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2. Basics on Hexapods and Self-Motions

2. Assumptions on the self-motion; e.g.,

⋆ line-symmetric self-motion [9],
⋆ type II Darboux–Mannheim self-
motion [26],

⋆ Schoenflies self-motion [27],
⋆ translational self-motion [28],
⋆ self-motion of maximal degree [29]
(cf. Figure),

or more generally characterizations
like linear relations between directi-

on cosines [30–33].
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These assumptions are done to reduce the complexity of the problem, as one has
to deal with 29 design parameters and 6 degrees of freedom.
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3. Planar Symmetric Rollings with Circular Paths

All planar symmetric rollings with points
running on circular paths were determi-
ned by Bereis [3].

a) The polodes are ellipses and the fo-
cals of the moving ellipse are running
on circles.

This motion can be realized by a
twin-crank mechanisms with non-
counter-rotating cranks.
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3. Planar Symmetric Rollings with Circular Paths

b) The polodes are hyperbolas and the
focals of the moving hyperbola are
running on circles.

This motion can be realized by
a twin-crank mechanisms with
counter-rotating cranks.
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3. Spherical Symmetric Rollings with Circular Paths

Spherical symmetric rollings with cir-
cular paths are generated by spherical
isograms, which are studied in more
detail in [34].

The moving and fixed polode are spheri-
cal conics. As on the sphere points can
be replaced by their antipodes, it can
be shown [35] that every spherical conic
can be interpreted as a spherical ellipse.
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3. Spherical Symmetric Rollings with Circular Paths
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If we replace A and A0 by their antipodal points A and A0, respectively, and look
on the sphere from the right side, then we get the figure illustrated on the right.
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3. Resulting Hexapods with Symmetric Self-Motions

The axodes of the self-motions are cylinders (left) and cones (right), respectively,
but only the planar/spherical directrices of these singular quadrics are illustrated.
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3. Hexapods with Trivial Symmetric Self-Motions

Clearly, a pure rotation is a symmetric
rolling where every point of the moving
system traces a circle. This trivial case
(butterfly self-motion) arises for:

⋆ M1, . . .Mi are collinear and

⋆ mi+1, . . . ,m6 are collinear

with 1 ≤ i ≤ 5.

If the collinearity is replaced by coin-
cidence then there exists even a 2-
dimensional spherical self-motion.
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3. Known Self-Motions are Line-Symmetric

If we embed the planar/spherical symmetric rollings into the group SE(3) of
Euclidean displacements, then they can also be seen as line-symmetric motions.

Therefore, all the self-motions of the hexapods given so far are symmetric rollings
and line-symmetric motions at the same time.

This raises also the question of whether self-motions exist, which are symmetric
rollings but not line-symmetric.

An answer can be obtained by formulating the problem in terms of algebraic
geometry by means of Study parameters (e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3).
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4. Problem Formulation using Study Parameters

There is a bijection between SE(3) and real points of the 7-dimensional Study para-

meter space P 7, which are located on the so-called Study quadric Ψ :
∑3

i=0
eifi = 0

sliced along the 3-dimensional subspace e0 = e1 = e2 = e3 = 0.

For e20 + e21 + e22 + e23 = 1 the translation vector t := (t1, t2, t3)
T and the rotation

matrix R := (rij) of the corresponding Euclidean displacement x 7→ Rx + t are
given by:

t1 = 2(e0f1 − e1f0 + e2f3 − e3f2),

t2 = 2(e0f2 − e2f0 + e3f1 − e1f3),

t3 = 2(e0f3 − e3f0 + e1f2 − e2f1),

R =





e20 + e21 − e22 − e23 2(e1e2 − e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)
2(e1e3 − e0e2) 2(e2e3 + e0e1) e20 − e21 − e22 + e23



 .
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4. Problem Formulation using Study Parameters

The reflection on a plane is an orientation-reversing congruence transformation,
which cannot be described directly by the Study parameters. Therefore, we follow
the approach of Selig and Husty [7], which is as follows:

• We start with a reflexion on a fixed plane; say the xy-plane of the fixed frame
F0. By this plane-reflection of F0, we obtain F0.

• Then we apply the reflexion on the plane τ(t), which finally yields the pose F
t

0.

As the composition of two plane-reflexions is again a direct congruence transfor-
mation, we can describe the plane-symmetric motions in this way.

As a consequence plane-symmetric motions are given by e3 = f0 = f1 = f2 = 0;
i.e. this corresponds to a 3-dimensional generator space P 3 of Ψ.
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4. Symmetric Rollings with Spherical Paths

Due to the symmetry of the motion the
following theorem holds:

Theorem 2. If a point A of the mo-
ving system traces a spherical path with
center B0 during a symmetric rolling,
then also the point B of the moving
system has a spherical trajectory about
the point A0, where A and A0 as well
as B and B0 are the symmetric points
of the moving and fixed system.

Due to this symmetric-leg replacement
the set of base points and platform
points are indirectly congruent.
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4. Spatial Symmetric Rollings with Spherical Paths

The condition that the point mi is located on a sphere centered in Mi is a quadratic
homogeneous equation in the Study parameters according to Husty [36].

Therefore it corresponds to a quadric Λi in the 3-dimensional projective space P 3

with homogenous coordinates (e0 : e1 : e2 : f3).

Due to the symmetric-leg replacement, we only have to find spatial rolling motions
where three points run on spheres. This means that the corresponding three
quardrics Λ1, Λ2 and Λ3 of P 3 have to have a curve in common, which can be a:

⋆ straight line ⋆ conic section ⋆ cubic curve ⋆ quartic curve
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5. Duporcq Hexapod

A discussion of cases shows that there exists only one further hexapod with plane-
symmetric self-motions, which are neither planar nor spherical. This manipulator is
the so-called Duporcq hexapod.
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M1, . . . ,M6 and m1, . . . ,m6 be the vertices of two congruent complete quadrilate-
rals, which are labeled in a way that mi is the opposite vertex of Mi.

It is well known [39] that the Duporcq hexapod is architecturally singular.
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5. Duporcq Hexapod

Due to Duporcq [38] this hexapod has a 2-parametric line-symmetric self-motion.
There are four transition poses between this line-symmetric self-motion and the 1-
parametric plane-symmetric self-motion. All four branching singularities are totally
flat configurations.
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5. Duporcq Hexapod

Recall that the sphere condition Λi is
a homogenous quadratic equation in
e0, e1, e2, f3.

We express f3 from the condition Λ2 −

Λ1, which is linear in f3.

Plugging the resulting expression into
Λ1 implies a homogenous quartic equa-
tion Υ in e0, e1, e2, which represents the
plane-symmetric self-motion.

The quartic Υ is displayed under consi-
deration of the normalization condition
e20 + e21 + e22 = 1.
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5. Duporcq Hexapod

If ax+ by + cz + d = 0 is the equation
of the plane of symmetry, then its dual
representation is given by the homoge-
nous quadruplet (u0 : u1 : u2 : u3) =
(d : a : b : c) according to [11].

The fixed axode corresponds to an al-
gebraic curve of degree 4 in the dual
representation, which results from the
intersection of two cylinders of degree 4
and one quadratic cylinder.

This curve can be parametrized (two
branches).
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5. Duporcq Hexapod

Trajectories of the platform
points during the plane-
symmetric self-motion bet-
ween the totally flat transi-
tion poses 1 and 2.

In the lower left corner a
blow up of the fixed axode
Φ0 (including its line of re-
gression c) is displayed.

Φ0

c
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5. Duporcq Hexapod

Trajectories of the platform
points during the plane-
symmetric self-motion bet-
ween the totally flat transi-
tion poses 3 and 4.

In the upper right corner a
blow up of the fixed axode
Φ0 (including its line of re-
gression c) is displayed.

Φ0

c

39. Fortbildungstagung für Geometrie, Strobl, 8.–10. November 2018 Austrian Science Fund 33



5. Duporcq Hexapod

The Duporcq manipulator also has
a 1-parametric translational self-
motion (circular translation).

There are two transition poses bet-
ween this translational self-motion
and the 2-parametric line-symmetric
self-motion. Again both branching
singularities are totally flat configu-
rations.
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5. Duporcq Hexapod

This circular translation can also be
seen as a point-symmetric motion,
where the corresponding curve (half-
circle) is illustrated in red.

Note that there is no branching
singularity between plane-symmetric
self-motions and point-symmetric
self-motions.
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Conclusion

Summed up one can say, that the Duporcq hexapod is a twofold kinematotropic
mechanism, as there are branching singularities between the 2-dimensional line-
symmetric self-motion and the 1-dimensional

• point-symmetric self-motion,

• plane-symmetric self-motion.

Due to its kinematotropic behavior and its total flat branching singularities the
Duporcq manipulator is possibly of interest for the design of deployable structures.
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