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Abstract. Parallel manipulators which are singular with respect to the Schönflies motion group
X(a) are called Schönflies-singular, or more precisely X(a)-singular, where a denotes the rotary
axis. A special class of such manipulators are architecturally singular ones because they are sin-
gular with respect to any Schönflies group. Another remarkable set of Schönflies-singular planar
parallel manipulators of Stewart Gough type was already presented by the author in [6]. More-
over the main theorem on these manipulators was given in [7]. In this paper we give a complete
discussion of the remaining special cases which also include so-called Cartesian-singular planar
manipulators as side-product.
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1 Introduction

The Schönflies motion group X(a) consists of three linearly independent translations
and all rotations about a fixed axis a. This 4-dimensional group is of importance in
practice because it is well adapted for pick-and-place operations.

The geometry of a planar parallel manipulator of Stewart Gough type (SG type)
is given by the six base anchor points Mi ∈ Σ0 with coordinates Mi := (Ai,Bi,0)T

and by the six platform anchor points mi ∈ Σ with coordinates mi := (ai,bi,0)T .
By using Euler Parameters (e0,e1,e2,e3) for the parametrization of the spherical
motion group SO(3) the coordinates m′

i of the platform anchor points with respect
to the fixed space can be written as m′

i = K−1R·mi + t with

R := (ri j) =

e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 − e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e2

0 − e2
1 + e2

2 − e2
3 2(e2e3 − e0e1)

2(e1e3 − e0e2) 2(e2e3 + e0e1) e2
0 − e2

1 − e2
2 + e2

3

 , (1)

the translation vector t := (t1, t2, t3)T and K := e2
0 + e2

1 + e2
2 + e2

3.
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It is well known that a SG platform is singular if and only if Q := det(Q) = 0
holds, where the ith row of the 6× 6 matrix Q equals the Plücker coordinates li :=
(li, l̂i) := (m′

i −Mi,Mi× li) of the ith carrier line.

1.1 Related work and notation

For the determination of X(a)-singular planar parallel manipulators we distinguish
the following cases depending on the angle α ∈ [0,π/2] between the axis a and the
carrier plane Φ of the base anchor points and the angle β ∈ [0,π/2] between a and
the carrier plane ϕ of the platform anchor points:

1. α 6= β : (a) α = π/2, β ∈ [0,π/2[ (b) α,β ∈ [0,π/2[
2. α = β : (a) α = π/2 (b) α =]0,π/2[ (c) α = 0

Every X(a)-singular manipulator belongs to one of these 5 cases (after exchanging
platform and base). Due to the theorem given in [7] the manipulators of the solution
set of case (1a) presented in [6] are the only X(a)-singular ones with α 6= β which
are not architecturally singular. In this paper we discuss the remaining special cases
with α = β .

In the following we use the notation introduced in [6]. We denote the determinant
of certain j× j matrices as follows:

|X,y, . . . ,Xy|(i1,i2,...,i j) := det(X(i1,i2,...,i j),y(i1,i2,...,i j), . . . ,Xy(i1,i2,...,i j)) (2)

with X(i1,i2,...,i j) =


Xi1
Xi2
...

Xi j

 , y(i1,i2,...,i j) =


yi1
yi2
...

yi j

 , Xy(i1,i2,...,i j) =


Xi1yi1
Xi2yi2

...
Xi j yi j

 (3)

and (i1, i2, . . . , i j) ∈ {1, . . . ,6} with i1 < i2 < .. . < i j. Moreover it should be noted
that we write |X,y, . . . ,Xy|i j

i1
if ik+1 = ik +1 for k = 1, . . . , j−1 hold.

The algebraic condition that Mi,M j,Mk or mi,m j,mk are collinear is denoted by
C(i, j,k) := |1,A,B|(i, j,k) = 0 and c(i, j,k) := |1,a,b|(i, j,k) = 0, respectively. It should
also be said that in the latter done case study we always factor out the homogenizing
factor K if possible. Moreover we give the number n of terms of not explicitly given
polynomials F in square brackets, i.e. F [n].

2 Case (2a)

Theorem 1. A non-architecturally singular planar SG platform, where the axis a is
orthogonal to ϕ and Φ , is X(a)-singular if and only if |1,A,B,a,b,Ab−Ba|61 = 0
and |1,A,B,a,b,Aa+Bb|61 = 0 are fulfilled.
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Proof. Without loss of generality (w.l.o.g.) we can choose Cartesian coordinate sys-
tems in Σ and Σ0 such that A1 = B1 = B2 = a1 = b1 = b2 = 0 hold. As both carrier
planes are orthogonal to the axis we set e1 = e2 = 0 and compute the condition
Q := det(Q) = 0 as given in Section 1. Q splits up into z3K2[F1(e2

0−e2
3)+2F2e0e3]

where F1 and F2 are the two conditions given in Theorem 1. �

Remark 1. A geometric interpretation of these 2 conditions is still missing. More-
over, it should be noted that the manipulators of the solution set of case (1a) also
fulfill F1 = F2 = 0 due to their property rk(1,A,B,a,b)6

1 = 4 (cf. [6]). �

3 Case (2b)

Theorem 2. A non-architecturally singular planar manipulator with 0 6= α = β 6=
π/2 is X(a)-singular if and only if in a configuration with coinciding carrier planes
the anchor points {Mi} and {mi} are within an indirect similarity, which is the
product of a dilation and the reflection on the orthogonal projection of a onto Φ = ϕ .

Proof. The proof of this theorem is given in the following two parts:

Part [A] No four anchor points are collinear:

Due to [2, 6] we can always choose coordinate systems in the platform and the
base such that a2A2B3B4B5c(3,4,5)(a3 − a4)(b3 − b4) 6= 0 hold. Now we must dis-
tinguish again two cases, depending on whether γ > α or γ = α holds with
γ := ∠([M1,M2],a) ∈ [0,π/2].

Case γ > α:
Under this assumption we can rotate the platform about a such that the common
line s of Φ and ϕ is parallel to [M1,M2]. Therefore we can use the same co-
ordinatisation as in the proof of Theorem 1 of [7], namely: Mi = (Ai,Bi,0) and
mi = (ai,bi cosδ ,bi sinδ ) with A1 = B1 = B2 = a1 = b1 = 0 and sinδ 6= 0. We set
e1 = e4 cos µ , e3 = e4 sin µ and e2 = e4n where e4 is the homogenizing factor.

Therefore we only have to consider those cases in the proof of Theorem 1 of [7]
which yield the contradiction α = β . There is exactly one such case which will be
discussed here in more detail. As given in [7] this case is characterized by K1 =
K2 = K4 = 0, b2 = 0, e2 6= 0 and bi = b3Bi/B3 for i = 4,5 with

K1 = |A,B,Ba,Bb,a|62, K2 = |A,B,Ba,Bb,b|62, K4 = |A,B,Ba,Bb,Ab|62. (4)

We proceed by computing Q51
020 = 0 where Quv

i jk denotes the coefficient of t i
1t j

2tk
3eu

0ev
4

of Q. Its only non-contradicting factor can be solved for A4 w.l.o.g.. Then Q42
020 = 0

implies an expression for A5. Due to Q71
010 = 0 we must distinguish two cases:

1. A2 = a2: Solving the only non-contradicting factor of Q62
100 = 0 for n yields

b3 sin µ sinδ/(B3 − b3 cosδ ). Note that for B3 = b3 cosδ the coefficient Q62
100

cannot vanish without contradiction (w.c.). We proceed by expressing A3 from
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Q44
100 = 0, which can also be done w.l.o.g.. Now Q35

100 and Q26
100 can only vanish

w.c. for:

a. B3 = b3: This yields a solution and the platform and the base are congruent.
b. B3 = −b3: We get again a solution; but now we have an indirect congruence.
c. cos µ = 0: In this case Q35

010 = 0 yields the contradiction.

2. A2b3(ncosδ +sinδ sin µ)−na2B3 = 0, A2 6= a2: As Q71
010 = 0 cannot vanish w.c.

for B3 = b3A2 cosδ/a2 we can solve the above condition for n w.l.o.g.. Moreover
we can express A3 w.l.o.g. from the only non-contradicting factor of Q62

010 = 0.
Now Q44

100 and Q35
100 can only vanish w.c. for:

a. b3 = B3a2/A2: This yields a solution and the platform and the base are similar.
b. b3 = −B3a2/A2: We get a solution; but now we have an indirect similarity.

Note that the solutions (1a) and (1b) as well as (2a) and (2b) are identical if one
takes the relative position of ϕ , Φ and a into consideration.

Case γ = α:

For this case we can use the same coordinatisation as in the case γ > α but now we
have e2 = δ = 0. In the first step we show that K1 = K2 = 0 (cf. Eq. (4)) must hold.
Therefore we compute Q[30768] in its general form. Computation of the following
two linear-combinations already yields the result:

K1 =
Q51

002
2ω(0,0,1)

+
Q42

011
4ω(0,0,2)

+
Q33

020
8ω(0,0,3)

, K2 =
Q24

200
8ω(0,1,3)

−
Q42

101
4ω(0,0,2)

,

with ω(i, j,k) := sinδ i sin µ j cos µk. Moreover, due to 8b2(K4 + K2) = Q53
100/ω(0,0,3)

we must distinguish the following two cases:

1. b2 6= 0 (⇒ K4 = 0): We compute Q in dependency of K1, . . . ,K4 as given in the
proof of Theorem 1 of [7] with K3 := |A,B,Ba,Bb,Aa|62. By setting K1 = K2 =
K4 = 0 we end up with Q = K3e4 sin µA2F [2646]. As K1 = K2 = K3 = K4 = 0
indicate the architecturally singularity (cf. [2]) we prove that F cannot vanish
w.c.. The resultant of F05

200 and F14
200 with respect to a2 implies |a,b,B|53 = 0.

a. c(1,3,4) 6= 0: W.l.o.g. we can express B5 from |a,b,B|53 = 0. Back-substitution
yields F05

200 = H[4]G1[8] and F14
200 = H[4]G2[8], respectively. It is not difficult

to verify that G1 = G2 = 0 yields a contradiction. Therefore we express b4
from H := B3(a2b4 −b2a4)−B4(a2b3 −b2a3).

i. Assuming b3 6= b5 we can compute A4 from F14
001 = 0 and A5 form F14

020.
ii. For b3 = b5 we can compute A5 from F14

001 = 0 and A4 form F14
020.

In both cases we proceed by expressing A6 and b6 from K1 = K2 = 0. Now
we get b2K3 = a2K4. This is a contradiction as K4 = 0 yields K3 = 0.

b. c(1,3,4) = 0: W.l.o.g. we can express a3 from c(1,3,4) = 0. Then |a,b,B|53 = 0
yields B3 = b3B4/b4 and F14

200 = 0 implies an expression for b5. Moreover,
we can compute A5 from F14

110 = 0. Now F14
020 can only vanish w.c. for A3 =

b3A4/b4. After computing A6 and b6 from K1 = K2 = 0, we get again the
contradiction b2K3 = a2K4.
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2. b2 = 0: Here we distinguish again two cases:

a. K4 = 0: This assumption yields Q = K3e4 sin µA2F [1338]. The resultant of
F05

200 and F14
200 with respect to B5 can only vanish w.c. for b5|b,B|43 = 0.

For b5 = 0 we get B3 = B4 from F14
200 = 0 and F05

200 = 0 yields the contradiction.
Therefore we can set B3 = b3B4/b4 because not both bi (i = 3,4) can be
equal zero. Moreover we can assume b5 6= 0. Then from F14

200 = 0 we get
B5 = b5B4/b4. We proceed by computing A5 from F14

110 = 0. Now F14
020 = 0

implies an expression for A4. Due to F34
100 = 0 we must distinguish two cases:

i. B4 = −b4A2/a2, A2 6= a2: In this case the 3 equations F25
100 = 0, K1 = 0,

K2 = 0 imply an indirect similarity.
ii. For B4 = −b4 the 4 equations F43

010 = 0, F25
010 = 0, K1 = 0, K2 = 0 imply

an indirect congruence.
b. K4 6= 0: We start by considering Q24

200 = 0 which implies |b,B,Bb|53 = 0. Now
|b,B,Bb|53 = 0 cannot be solved for any bi if and only if B3 = B4 = B5 hold.
But for this special case we get the contradiction from Q15

200 = 0.
Therefore we can assume w.l.o.g. that we can express b3 from |b,B,Bb|53 = 0.
Now Q33

020 can only vanish w.c. for (B4 −B5)G[16] = 0. As for B4 = B5 we
get the contradiction from Q15

200 we set G[16] = 0. From this condition we can
compute a3 w.l.o.g.. Then Q15

200 and Q24
020 can only vanish w.c. for |b,B|54 = 0

and |a,b,A|(2,4,5) = 0, respectively. From these conditions we can express
A5 and B5 w.l.o.g.. Moreover we can compute B6 from K2 = 0 which yields
b6K1 = K4, a contradiction.

Part [B] Four anchor points are collinear:

Similar considerations as for part [A] show that possible solutions of this problem
must yield the contradiction α = β in the proof of Theorem 2 of [7]. But there do
not exist such a contradiction in the mentioned proof.

There is only one case which is not covered by the proof of Theorem 2 of [7],
namely the following one: M1, . . . ,M4 collinear and m1, . . . ,m4 collinear with α =
∠([M1, . . . ,M4],a) = ∠([m1, . . . ,m4],a) = β . For this case we can use the same
coordinatisation as in the case γ > α by setting B3 = B4 = b2 = b3 = b4 = e2 = δ =
0. Now Q splits up into e4 sin µ(ye4 cos µ − ze0)H[6]F [56] where H = 0 indicates
item 8 of Karger’s list of architecturally singular manipulators given in Theorem
3 of [3]. From F20

002 = 0 we get b5 = b6B5/B6. Then F13
100 = 0 and F04

100 = 0 imply
B5 = B6 and a5 = a6, respectively. Finally, F22

001 = 0 yields the contradiction. �

Remark 2. The manipulators of Theorem 2 are so-called equiform platforms. The
singularities and self-motions of these manipulators were extensively studied by
Karger [1]. For the special case of congruent platforms see also Karger [4].

In part [B] of the discussion we get no solution because an equiform manipulator
with four collinear anchor points is already architecturally singular (cf. [3]). �
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4 Case (2c)

Theorem 3. A non-architecturally singular planar SG platform is X(a)-singular,
where a is parallel to the x-axes of the fixed and moving system, if and only if one of
the following cases hold: (1)rk(1,b,B,Bb)6

1 = 2, (2)rk(1,b,B,Bb,A−a)6
1 = 3 or

(3) rk(1,A,B,Ba,Bb,a,b,Ab)6
1 = 5.

Proof. We can choose coordinate systems such that Mi = (Ai,Bi,0) and mi =
(ai,bi,0) with A1 = B1 = a1 = b1 = 0 hold. Now we can compute Q in its general
form according to Section 1 under consideration of e2 = e3 = 0. The necessity of K1
and K2 given in Eq. (4) follows directly from Q51

002 + Q15
002 + Q33

002 and Q42
101 + Q24

101,
respectively, where Quv

i jk denotes the coefficient of t i
1t j

2tk
3eu

0ev
1 of Q. In the following

we split up the proof of the necessity into two parts:

Part [A] rk(A,B,Ba,Bb)5
2 = 4

Under this assumption we can perform the generalized version of the matrix manip-
ulation given by Karger in [2]. The 5 steps of the generalization are given by:

(a) li := li − l1 i = 2, . . . ,6 (b) li := li − l2 Ai/A2 i = 3, . . . ,6

(c) li := li − l3
|A,B|(2,i)

|A,B|32
i = 4,5,6 (d) li := li − l4

|A,B,Ba|(2,3,i)

|A,B,Ba|42
i = 5,6

(e) l6 := l6 − l5
|A,B,Ba,Bb|(2,3,4,6)

|A,B,Ba,Bb|52
.

Then l6 has the from (v1,v2,v3,0,−w3,w2) with vi := ri1K1 + ri2K2 and w j :=
r j1K3 + r j2K4 with K3 := |A,B,Ba,Bb,Aa|62 and K4 of Eq. (4).

Due to the above shown necessity of K1 = K2 = 0 we can set them equal to zero
and compute Q = K4F [1032] where F do not depend on K3 and K4. Therefore there
a two possibilities. For K4 = 0 we get solution (3).

In the second case we have to consider the conditions under which F is fulfilled
identically. It can easily be seen that there are only 7 such conditions, namely:

P1 := Q53
100 = |B,Ba,Bb,b|52 = 0 P2 := Q40

003 = |A,B,a,b|52 = 0

P3 := Q62
001 −Q26

001 = |Ba,Bb,b,a−A|52 = 0 P4 := Q33
002 = |A,Bb,a,b|52 = 0

P5 := Q62
001 +Q26

001 = |Ba,Bb,B,a−A|52 = 0 P6 := Q42
101 = |B,Bb,a,b|52 = 0

P7 := Q42
011 = |B,Ba,b,a−A|52 −|B,Bb,A,a|52 = 0

For the discussion of this system of equations we distinguish two cases:

1. rk(b,B,Bb)5
2 = 3: We get a5

2 = λab5
2 +µaB5

2 +νaBb5
2 with (µa,νa) 6= (0,0) from

P6. As a consequence P2 and/or P4 equal/s |b,Bb,B,A|52 = 0. This yields together
with P1 the relation rk(A,B,Ba,Bb,a)5

2 = 3, a contradiction.
2. rk(b,B,Bb)5

2 < 3: Now rk(b,B,Bb)5
2 = 2 must hold due to rk(A,B,Ba,Bb)5

2 =
4. Therefore the vectors B and Bb are linearly independent and we can set b5

2 =
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λbB5
2 +µbBb5

2. It can easily be seen that for any linear combination of b only the
following four conditions remain, namely:

|A,B,a,Bb|52 = 0, |Ba,Bb,B,a−A|52 = 0 and K1 = K2 = 0. (5)

As the vectors A5
2, B5

2 and Bb5
2 are linearly independent due to the assumption

rk(A,B,Ba,Bb)5
2 = 4 we can set a5

2 = λaB5
2 + µaBb5

2 + νaA5
2 without loss of

generality. Now the remaining three equations can only vanish for:

a. |A,B,Ba,Bb|52 = 0 which is a contradiction or for
b. νa = 1, b6 = λbB6 + µbB6b6 and a6 = λaB6 + µaB6b6 + νaA6, which yield

solution (2).

This finishes this part. For the remaining one we can assume that there do not exist
any i, j,k, l ∈ {2, . . . ,6} with |A,B,Ba,Bb|(i, j,k,l) 6= 0.

Part [B] rk(A,B,Ba,Bb)6
2 < 4

Computation of Q shows that it vanishes independently of t1, t2, t3,e0,e1 under con-
sideration of rk(A,B,Ba,Bb)6

2 < 4 if and only if the following 9 conditions are
fulfilled:

R1 := Q40
003 −Q04

003 = |a,b,A,B,Ab|62 R2 := Q31
102 = |a,b,A,B,Bb|62

R3 := Q04
003 +Q04

003 = |a,b,A,B,Ba|62 R4 := Q33
020 = |a,b,A,Ab,Bb|62

R5 := Q62
101 +Q26

101 = |a,B,Ba,Bb,Ab|62 R6 := Q33
110 = |a,b,B,Ab,Bb|62

R7 := Q33
110 = |b,Ba,Bb,Ab,A−a|62 R8 := Q33

020 = |b,B,Ba,Bb,Ab|62
R9 := Q40

002 +Q04
002 = |a,b,A,Ba,Bb|62 + |a,A,B,Ab,Bb|62 + |b,B,Ab,Ba,A−a|62

In this part we distinguish the following three subcases:

1. rk(B,Ba,Bb)6
2 = 3: As rk(A,B,Ba,Bb)6

2 = 3 must hold we can set A6
2 = λAB6

2 +
µABa6

2 +νABb6
2 with (µA,νA) 6= (0,0). Then R2 and/or R3 equals the determinant

of (B,Ba,Bb,a,b)6
2. If the rank of this matrix is 3 we get solution (3). Therefore

we can assume rank 4. For rk(B,Ba,Bb,b)6
2 = 4 we get solution (3) from R8. If

rk(B,Ba,Bb,a)6
2 = 4 holds we get solution (3) from R5.

2. rk(B,Ba,Bb)6
2 = 2: We already get solution (3) if rk(U,V,a,b)6

2 = 2 with U,V∈
{B,Ba,Bb} and rk(U,V)6

2 = 2 holds. Therefore we assume rk(U,V,a,b)6
2 = 4:

a. (U,V) = (B,Bb): Solution (3) is implied by R2 and R6.
b. (U,V) = (B,Ba): Now R3 implies rk(A,B,Ba,Bb,a,b)6

2 = 4. For Bb6
2 =

λBbB6
2 + µBbBa6

2 with µBb 6= 0 we get solution (3) from R6. For µBb = 0 and
λBb 6= 0 we get it from R7. For µBb = λBb = 0 we get solution (3) from R9.

In the remaining case of rk(U,V,a,b) = 3 we can set x6
2 = λxU6

2 + µxV6
2 +νxy6

2
with (λx,µx) 6= (0,0), x,y ∈ {a,b} and x 6= y:

a. (U,V) = (B,Bb): R1 resp. R4 implies solution (3) for µx 6= 0 resp. λx 6= 0.
b. (U,V) = (B,Ba): For µx 6= 0 we get solution (3) from R1. For the case µx =

0, νx 6= 0 solution (3) is implied by R9 for Bb = 0, by R7 for Bb = RB and
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by R4 in all other cases. The case µx = νx = 0 is the same as the last one for
x = a and y = b. But for x = b, y = a and µx = νx = 0 we get solution (1)
for Bb = 0 or Bb = RB. In all other cases R4 implies solution (3).

3. rk(B,Ba,Bb)6
2 = 1: In this case R1 implies solution (3).

As B6
2 6= 0 must hold the case (U,V) = (Ba,Bb) need not be discussed in item 2.

This finishes the proof of the necessity of the conditions of solution (1), (2) and (3).
The sufficiency of these conditions is proven in the next section.

4.1 Sufficiency of the conditions and their geometric meaning

The sufficiency of the conditions of solution (3) is proven geometrically according
to the method introduced by Röschel and Mick [9]. This method was also used in
[6] to prove the sufficiency of the conditions characterizing the X(a)-singular planar
SG platforms where a is orthogonal to one of the carrier planes of the anchor points.
For readers who are not familiar with line geometry we refer to [8].

All lines of a linear line complex C with homogeneous coordinates (c1 : . . . : c6)
correspond with the null-lines of a null-polarity κ . This linear mapping κ maps
the point P with homogeneous coordinates (p0 : . . . : p3) onto the plane κ(P) with
homogeneous coordinates [ξ0 : . . . : ξ3] by

ξ0
ξ1
ξ2
ξ3

 =


0 −c4 −c5 −c6
c4 0 −c3 c2
c5 c3 0 −c1
c6 −c2 c1 0




p0
p1
p2
p3

 . (6)

If we restrict κ to the points Mi of the base Φ and intersect κ(Mi) with the platform
ϕ we get a correlation γ from points of Φ to lines of ϕ . Due to Lemma 2.1 of Mick
and Röschel [5] we can assume that ϕ is parallel to a. Now the platform anchor
points Mi with homogeneous coordinates (1 : Ai : Bi : 0) and base anchor points mi
with (1 : ai : 0 : bi) are conjugate points with respect to γ if

(1,ai,bi)

 0 −c4 −c5
c4 0 −c3
c6 −c2 c1

 1
Ai
Bi

 = 0 (7)

holds. Moreover this condition must hold for the whole Schönflies group X(a) where
a is orthogonal to Φ and parallel to ϕ . Therefore Eq. (7) must hold independently
of translations of Φ in x and y direction and independently of translations of ϕ in z
direction. This yields (1,ai,bi)A(1,Ai,Bi)T = 0 with

A := (ai j) =

1 0 z
0 1 0
0 0 1

 0 −c4 −c5
c4 0 −c3
c6 −c2 c1

1 0 0
x 1 0
y 0 1

 . (8)
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The ai j are homogeneous linear functions of the coordinates ci. Therefore the set of
linear line complexes spanned by Schönflies-singular manipulators determine a 3-
parametric manifold (parameters x,y,z) of correlations. Moreover the three equation
a00 = 0, a11 = 0 and a01 +a10 = 0 must hold, where a11 = 0 is fulfilled identically.

The remaining two conditions a00 = 0 and a01 +a10 = 0 can be written as(
1 0 −z −x −y xz 0 yz
0 1 0 1 0 −z −y 0

)
(a00,a10,a20,a01,a02,a21,a12,a22)T =

(
0
0

)
. (9)

Due to the first two columns this 2×8 matrix has rank 2 independently of the param-
eters x,y,z. Moreover we can also rewrite the 6 equations (1,ai,bi)A(1,Ai,Bi)T = 0
(i = 1, . . . ,6) in an analogous form as1 a1 b1 A1 B1 A1b1 B1a1 B1b1

...
...

...
...

...
...

...
...

1 a6 b6 A6 B6 A6b6 B6a6 B6b6

(a00,a10,a20,a01,a02,a21,a12,a22)T =

0
...
0

 .

(10)
If this 6× 8 matrix has rank 5 the system of linear equations given in Eq. (9) and
(10) has at least a 1-dimensional solution. As a consequence the 7-parametric linear
manifold of correlations described by (3,3)-matrices ai j with a11 = 0 contains at
least one correlation γ and therefore the manipulator is Schönflies-singular.
This proof also provides us the following geometric characterization of solution (3):

Theorem 4. Given are two sets of points {Mi} and {mi} (i = 1, . . . ,6) in two non-
parallel planes Φ and ϕ , respectively. Then the non-architecturally singular planar
parallel manipulator of Stewart Gough type is X(a)-singular with a := (Φ ,ϕ) if
{Mi,mi} are three-fold conjugate pairs of points with respect to a 2-dimensional
linear manifold of correlations, whereas the ideal point of a is self-conjugate.

The proof of the sufficiency of the conditions of solution (1) and (2) can be done
analytically as follows: Due to the symmetry of the conditions with respect to the
interchange of the platform and the base, the linear dependency of b,B,Bb only
imply the following three cases:

i. Bb6
1 = λBbb6

1 + µBbB6
1 and A6

1 = λAb6
1 + µAB6

1 +a6
1,

ii. b6
1 = λbB6

1 + µbBb6
1 and A6

1 = λAB6
1 + µABb6

1 +a6
1,

iii. or the special case Bb6
1 = λBbb6

1 and B6
1 = µBb6

1.

Computation shows that Q vanishes in all three cases for e2 = e3 = 0. This finishes
the proof of the sufficiency and therefore Theorem 3 is proven. �
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Now we also want to give a geometric interpretation of the condition of solution
(1): W.l.o.g. we can choose special coordinate systems in the platform and the base,
such that a1 = b1 = A1 = B1 = 0 holds. Moreover we can assume w.l.o.g. b6

2 = λbB6
2

and Bb6
2 = µBbB6

2. As B6
2 or b6

2 must not equal the zero vector (otherwise we get an
architecturally singular manipulator) we can assume w.l.o.g. λbB6 6= 0. Therefore
we get µBb = λbB6. As a consequence the remaining equations can only hold for
bi = Bi = 0 or Bi = B6 and bi = b6 for i = 2,3,4,5. There only exist two non-
architecturally singular combinatorial cases:

1. [Mi,M j,Mk,Ml ] ‖ [mi,m j,mk,ml ] ‖ [Mm,Mn] ‖ [mm,mn] ‖ a,
2. [Mi,M j,Mk] ‖ [mi,m j,mk] ‖ [Ml ,Mm,Mn] ‖ [ml ,mm,mn] ‖ a,

with (i, j,k, l,m,n) consisting of all indices from 1 to 6.

Remark 3. The geometric meaning of the condition rk(1,b,B,Bb,A − a)6
1 = 3

is still missing. Until now we are only able to identify a geometric meaning
with |1,b,B,Bb|(i, j,k,l) = 0. This algebraic conditions equals DV (Gi,G j,Gk,Gl) =
DV (gi,g j,gk,gl) with Gi := [Mi,U] and gi := [mi,U] where DV denotes the cross-
ratio and U the ideal point of the axis a. �

4.2 Cartesian-singular planar parallel manipulators

Definition 1. Parallel manipulators which are singular with respect to the transla-
tional group T(3) are called Cartesian-singular or T(3)-singular, respectively.

Due to the Lemma 2.1 of of Mick and Röschel [5] the solution set of case (2c)
equals the set of Cartesian-singular planar SG platforms where Φ and ϕ are not
parallel. Therefore only the case with parallel platform and base is missing which
follows from the proof of Theorem 1 by setting e0 = 1 and e3 = 0:

Theorem 5. A non-architecturally singular planar SG platform, where ϕ and Φ are
parallel, is T(3)-singular if and only if |1,A,B,a,b,Ab−Ba|61 = 0 holds.

5 Conclusion

In this paper we discussed the special cases of Schönflies-singular planar Stewart
Gough platforms, where the angle α ∈ [0,π/2] between the rotation axis a of the
Schönflies group and the carrier plane of the base anchor points equals the angle
between a and the carrier plane of the platform anchor points.

We distinguished the three cases α = π/2 (cf. Theorem 1), α ∈]0,π/2[ (cf.
Theorem 2) and α = 0 (cf. Theorem 3). As side product we also characterized all
Cartesian-singular planar parallel manipulators (cf. Section 4.2).

Moreover, the problem of determining all non-planar Schönflies-singular manip-
ulators of Stewart Gough type remains open.
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