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Abstract

In this paper we introduce two new posture-dependent performance indices for 6-
dof UPS and 3-dof RPR parallel manipulators. One is based on an object-oriented
metric in the workspace (end-effector dependent) and the other one takes the angular
velocities of the passive joints into consideration (end-effector independent). Both
newly defined indices are invariant under rigid-body motions and similarities, they
have a geometric meaning, and they can be computed in real time. Moreover these
indices can also be used for robot design, especially the end-effector independent
index is suited for that problem by taking the geometry of the manipulator into
consideration. We also optimize the design of 6-dof UPS and 3-dof RPR parallel
manipulators with respect to both newly presented indices.
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1 Introduction

According to Angeles [1], a performance index of a robotic mechanical system
is a scalar quantity that measures how well the system behaves with regard
to force and motion transmission. In section 2 and 3 we introduce two new
posture-dependent performance indices for robot control. Analogous to well
known methods these indices can also be used for robot design, as demon-
strated in section 4.
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The first new index depends on the end-effector 1 EE (EE dependent) because
it is based on an object-oriented metric and the so-called operation ellipsoid,
which was already used in [12] to define an EE dependent performance index
for 6R robots. We adopt the approach of [12] for n-legged 6-dof UPS manip-
ulators (n > 5) and prove that the results of [12] concerning the geometric
interpretation of the characteristic length and its redefinition are also valid for
parallel manipulators.

In section 3 we present a new EE independent performance index, called con-
trol number, which takes the angular velocities of the passive joints into con-
sideration. Moreover, in section 3.4 we compare this index with already ex-
isting ones (manipulability [9,19], rigidity rate [6], best approximating linear
line complex [14]) reviewed in section 3.1. In section 4 we compute optimal
designs of a special class of n-legged 6-dof UPS manipulators with respect to
both new indices. Moreover we describe how these indices can be adapted for
g-legged 3-dof RPR parallel manipulators with g > 2 and optimize the design
of such manipulators as well.

Both new indices assign to each posture K of the manipulators configuration
space a scalar PI(K) which has the following six properties:

1. PI(K) ≥ 0 for all K of the configuration space,

2. PI(K) = 0 if and only if K is singular,

3. PI(K) is invariant under Euclidean motions,

4. PI(K) is invariant under similarities,

5. PI(K) has a geometric meaning,

6. PI(K) is computable in real time.

The two best known and most used performance indices are probably the
condition number (see section 2.1) and the manipulability (see section 3.1).
Both are based on the manipulator’s Jacobian J

JT =

l̂1 ‖l1‖−1 ... l̂n ‖ln‖−1

l1 ‖l1‖−1 ... ln ‖ln‖−1

 with
li = pi − bi and

l̂i = bi× li = pi× li
(1)

where bi resp. pi are the coordinates of the base anchor point Bi resp. platform
anchor points Pi with respect to any fixed reference frame Σ0 with origin O (see
Fig. 1). Therefore the ith row of J equals the normalized Plücker coordinates
‖li‖−1(li, l̂i) of the carrier line li of the ith leg oriented in the direction BiPi.
We’ll assume for the rest of this article that Bi 6= Pi for i = 1, .., n.

1 It should be pointed out that the EE denotes that part of the robot, for that’s
manipulation the robot serves (e.g. capsule of a flight simulator).
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Fig. 1. (a) 6 legged 6-dof UPS parallel manipulator, which is also known as Stewart
Gough Platform (b) Decomposition of v(Pi) into v

l
(Pi) and v⊥(Pi).

The kinematic meaning of the Jacobian J can easily be seen as follows: The
velocity vector v(Pi) of Pi due to the instantaneous screw q := (q, q̂) of the
platform Σ against Σ0 can be decomposed in a component v

l
(Pi) along the ith

leg and in a component v⊥(Pi) orthogonal to it (see Fig. 1 (b)), thus

v(Pi) = q̂ + (q× pi) = v
l
(Pi) + v⊥(Pi) (2)

with

di := ‖v
l
(Pi)‖ =

li
‖li‖

·v(Pi) =
l̂i
‖li‖

·q +
li
‖li‖

·q̂. (3)

The last expression is independent of the selected point on li, thus the Jacobian
J is the matrix of the linear mapping

ι : q 7→ d = Jq with d = (d1, .., d6)
T . (4)

If the rank of J drops below 6, then there exists a screw k ∈ kerι with k 6= o.
Then also µk with µ ∈ R lies in kerι. Therefore v(Pi) can be arbitrarily large
for vanishing translatory velocities in the n prismatic legs 2 and the manipula-
tor is in a shaky position. This results in the following well-known Theorem
(e.g. see Merlet [10]):

Theorem 1 A posture of a n-legged 6-dof UPS parallel manipulator with n >
5 is singular if and only if the rank of the Jacobian J of (1) drops below
6. Exactly in this case the carrier lines of the n legs belong to a linear line
complex.

2 The sole exception is the case where Pi lies on the instantaneous screw axis and
k is an instantaneous rotation.
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2 EE dependent performance indices

2.1 Review: Condition Number CDN

According to Salisbury and Craig [16], the condition number CDN equals the
ratio of the maximum and the minimum of the quadratic objective function

ζ̂(q) : qTq = ω2 +
[
ω̂2 + ω2qO

2
]

= ω2 + ‖v(O)‖2 (5)

with q denoting the instantaneous screw axis isa, ω the angular velocity and
ω̂ the translatory velocity of the screw q, under the quadratic side condition
ν(q) that the sum of the squared translatory velocities di is equal to 1, i.e.,

ν(q) : dTd = qTNq = 1 with N = JTJ. (6)

CDN−1 lies in the interval [0, 1] and therefore this enjoys the properties 1
and 2. It should be noted that postures with the maximum value 1 are called
isotropic. Due to (5) CDN−1 is not invariant under Euclidean motions with
the exception of rotations of the reference frame about O. But the real prob-
lem, which causes the variance of CDN−1 under similarities, occurs from the
dimensional inhomogeneity of ζ̂(q) which can also be seen in (5). To over-
come this deficiencies, different methods were introduced. In the following we
discuss the two most used concepts:

2.1.1 Concept A

To achieve the invariance under Euclidean motions O is linked with an EE
point, namely the operation point OP. The characteristic length CL originally
introduced by Tandirci et al. [17] for 6R robots is also used to overcome the
problem of inhomogeneity of parallel manipulator’s Jacobian (see [20]). The
summand ‖v(O)‖2 which has units of length is divided by CL2 which means
that the objective function ζ̂(q) defined above now reads

ζ̂(q) : qTLq with L =

 I3 O3

O3
I3

CL2

 (7)

where Ii is the i× i identity matrix and Oi the i× i zero matrix. The condition
number based on this concept is denoted by CDNCL. Due to the definition of
CL as the solution of an optimization problem, a meaningful geometric inter-
pretation of CL and therefore also of CDNCL for 6-dof UPS manipulators is
still missing according to the author’s best knowledge. Such an interpretation
was already given in [12] for 6R robots. We show that the results obtained for
6R robots are also valid for 6-dof UPS manipulators.
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2.1.2 Concept B

Kim and Ryu [5] adapted the concept of Gosselin [2] for parallel manipulators.
They described the global velocity of the EE instead of q by the velocity of
three non-collinear points. In this way the desired quality was achieved. The
work of Kim and Ryu [5] was furthered by Pond and Carretero in [13]. The
drawback of this concept is that the choice of the reference points is arbitrary
and that the index is not invariant under changes of these points. But which
EE-points are representative for the motion of the EE? We will answer these
question in the next section.

2.2 Object-oriented metric and the operation ellipsoid

In this subsection we review the concept of the operation ellipsoid which was
introduced in section 2 of [12].

In order to provide a geometric interpretation and avoid a indeterminacy of
number and choice of reference points of the newly defined performance in-
dices, we use a geometrically meaningful metric in the space of rigid body
motions. The used metric introduced by Hofer et al. [4] is motivated by the
following consideration:
Basically, one is not interested in the manipulation of a single point (OP) or
of three points, but in that of a complete object O. Therefore we need an
object-oriented metric which allows us to define a distance between any two
poses of O(0) and O(t). According to Hofer et al. [4] these can be done as
follows:

d(O(0),O(t))2 :=
N∑

i=1

‖xi(0)− xi(t)‖2, (8)

where the xi’s are the position vector of the points Xi i ∈ {1, . . . , N}, which
represent the object of interest. Based on this metric and the same consid-
erations as in [12] we can expand the operation point to the more practical
concept of an operation ellipsoid which is defined as follows:

Definition 1 The operation ellipsoid OE denotes that part of the end-effector
bounded by an ellipsoid E with Vol (E) 6= 0, which one intends to manipulate.
The OE ∈ Σ is determined by the six vertices Si of E.

2.3 The Performance Index CDNOE

Assume OE is given by its vertices Si with si := (si
1, s

i
2, s

i
3) for i = 1, .., 6. Due

to (8) the distance between any two poses OE(0) and OE(t) can be written
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as:

d(OE(0),OE(t))2 =
6∑

i=1

‖si(0)− si(t)‖2. (9)

The first order Taylor approximation of the posture OE(t) yields:

d(OE(0), OE(t))2 ≈
6∑

i=1

‖v (Si) ‖2 with v(Si) = q̂ + (q× si). (10)

We are interested in the instantaneous screws q− and q+ which has the lowest
resp. largest effects on the instantaneous displacement of OE, assumed that
the sum of the squared translatory velocities di is equal to 1. Therefore these
instantaneous screws are resulting from the worst resp. best motion transmis-
sion between the translatory velocities of the prismatic joints and the velocity
of the operation ellipsoid.

Hence we search for the minimum λ− and maximum λ+ of the objective func-
tion (quadratic form in the unknowns of q)

ζ(q):
6∑

i=1

‖v (Si) ‖2 = qTDq (11)

with

D =
6∑

i=1

ST
i Si ST

i

Si I3

 and Si =


0 si,3 −si,2

−si,3 0 si,1

si,2 −si,1 0

 (12)

under the side condition (= normalization condition) ν(q) of (6). We solve
this optimization problem by introducing a Lagrange multiplier λ. With ∇ζ =
2Dq and ∇ν = 2Nq, minimization results in the general eigenvalue problem
(D − λN)q = o with symmetric D, N and positive definite N. This system
of linear equations has a nontrivial solution, if and only if the determinant
of (D − λN) vanishes. Every general eigenvalue λi is linked with a general
eigenvector q

i
. Because of

ζ(qi) = qT
i
Dq

i
= λiq

T
i
Nq

i
= λi (13)

the smallest general eigenvalue λ− and the largest general eigenvalue λ+ corre-
spond to the required solution. Therefore the condition number CDNOE based
on the object oriented metric and the OE can be defined as follows:

Definition 2 The EE dependent performance index CDNOE(K) of the con-
figuration K of a n-legged 6-dof UPS parallel manipulator with respect to the
operation ellipsoid OE (Def. 1) is defined as

CDNOE(K) := +

√
λ+

λ−
with CDN−1

OE(K) ∈ [0, 1] (14)
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where λ− resp. λ+ is the smallest resp. largest general eigenvalue of D (12)
with respect to N (6).

Theorem 2 CDNOE(K) is (i) well defined and (ii) has all six properties re-
quired in section 1.

Proof: (i) λ− is always greater than zero because ζ(ω) depends only on the
distances of Si from the instantaneous screw axis q, the angular velocity ω and
the translatory velocity ω̂ of screw q according to

6∑
i=1

‖v (Si) ‖2 = ω2
6∑

i=1

qSi
2
+ 6 ω̂2. (15)

λ− would be equal to zero if and only if OE would degenerate to a single
line segment or a point, which is not possible because of Def. 1. Moreover the
number of roots λi of the characteristic polynomial |D−λN| = 0 dropping to
infinity equals the defect(J) because all screws ±µq ∈ kerι with µ ∈ R cause
arbitrarily large velocities v(X) for all X ∈ Σ. The proof follows by carrying
out limµ→∞ and (13).

To complete the proof of well-definedness we must show that the index is
invariant under the choice of the vertices of OE if they are not determined
uniquely. This is the case when OE is a sphere or an ellipsoid of revolution.
Due to (15) we only have to prove that the sum of squares of the distances of
Si from q is invariant under the choice of the vertices Si. But this is trivially
true.

(ii) Due to the above considerations CDNOE(K) enjoys the properties 1 and
2. This index satisfies also the 3rd point because the vertices Si of OE are
rigidly attached to Σ. CDNOE(K) is also invariant under similarities because
it is defined as a ratio. The 5th property is trivially true because CDNOE(K)
is based on a geometrically meaningful metric with respect to OE. Moreover
CDNOE(K) is computable in real time, because one only has to calculate the
general eigenvalues of D with respect to N. �

For a better understanding of the newly introduced index we give a physical
interpretation of CDNOE, which can be formulated as follows:

Theorem 3 CDNOE equals the square root of the ratio of the minimal and
maximal kinetic energy of the operation ellipsoid materialized as an ellipsoidal
shell E of arbitrary mass (> 0) induced by all instantaneous motions causing
that the sum of the squared translatory velocities of the n legs is equal to 1.

Proof: We assume that in the considered posture OE is centered in the origin
and that the axes of the reference frame are the principal axes of OE. Therefore
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the vertices Si of OE have the following coordinates:

s1,4 = (±a, 0, 0) s2,5 = (0,±b, 0) s3,6 = (0, 0,±c). (16)

The matrix D defined in equation (12) simplifies to

D =

K O3

O3 6I3

 with K =


2(b2 + c2) 0 0

0 2(a2 + c2) 0

0 0 2(a2 + b2)

 . (17)

We can replace the matrix D by 1
6
D without changing CDNOE. Then the

lower right 3× 3 matrix is the identity matrix and the upper left 3× 3 matrix
(= 1

6
K) equals the inertia tensor of the operation ellipsoid materialized as an

ellipsoidal shell E of mass 1. As CDNOE is defined as a ratio, the factor of
mass cancels which finishes the proof. �

With the help of CDNOE(K) we are able to give a geometric interpretation of
the characteristic length CL as well. The indices CDNOE(K) and CDNCL(K)
are equal if and only if D = 6CL2L holds. This is the same system of linear
equations as obtained for 6R robots in [12]. Therefore Theorem 5 of [12], which
gives a geometric interpretation of CL is also valid for 6-dof UPS manipulators.
As a consequence the CDNCL can be seen as a special case of the CDNOE,

where CL equals
√

2/3 times the radius of an operation sphere centered in
the operation point. As in the case of 6R robots this point of view puts the
original definition of CL into question and leads to the same redefinition of
this length given in Definition 4 of [12].

Due to the fact that in singular configurations the standstill of the prismatic
joints cannot be transmitted to the platform, performance indices are often be
interpreted as distance measure to the next singularity. But this point of view
is not accurate for the following reason: Because the singularity set of an 6-dof
UPS manipulator is uniquely determined by its geometry (platform and base
anchor points), a distance measure must not depend on the EE. Therefore only
EE independent performance indices can be seen as a kind of distance measure.
But on the other hand, most of the existing EE independent performance
indices do not take the geometry of the manipulator into consideration, as we
will see in the next section.
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3 EE independent performance index

3.1 Review and preliminary considerations

In the following we analyze some of the in our opinion most important indices
in view of the initially stated six properties.

Manipulability
The manipulabilitiy introduced by Yoshikawa [19] is not invariant under simi-
larities, because for non-redundant 6-dof UPS parallel manipulators it equals
nothing else than |det(J)|. So Lee et al. [9] used |det(J)|·|det(J)|−1

+ as index,
where |det(J)|+ denotes the maximum of |det(J)| over the manipulator’s con-
figuration space. But the computation of |det(J)|+ is a nonlinear task and was
only done for manipulators with planar base and platform with very special
geometries. Only for these manipulators |det(J)|+ can be interpreted geomet-
rically as the volume of the framework (see [7,9]). Moreover this approach was
applied to 3-dof RPR manipulators in [8] and extended to redundant 6-dof
UPS manipulators in [21].

Best fitting linear line complex
Pottmann et al. [14] introduced the concept of the best fitting linear line com-
plex c := (c, ĉ) of the n legs. The suggested index equals the square root of the
minimum of

∑
d2

i with respect to c under the side condition cTc = 1. Due to
the side condition the best fitting linear line complex is either the path-normal
complex of a pure rotation or a helical motion. In order to get the best fitting
path-normal complex of a translation the authors proposed to minimize the
objective function under the side condition ĉT ĉ = 1, which yields a second
value. Beside that problem of combining these two values to a single number,
the two obtained values are not invariant under similarities.

Rigidity Rate
The rigidity rate introduced by [6] is based on the idea, that a non-redundant
6-dof UPS manipulator at any positionK permits a one-parametric self-motion
within the group of Euclidean similarities G7. The angle ϕ ∈ [0, π/2] between
the tangent of the self-motion in K and the subgroup of Euclidean displace-
ments serves as an index. But the choice of the invariant symmetric bilinear
form in the tangent space of G7, which is necessary in order to define a measure
in the sense of non-Euclidean geometry, is arbitrary. Beside the fact that the
rigidity rate can only be applied to non-redundant manipulators we will see
in section 2.4 that its applicability as performance index is also limited.
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Due to the invariance of the Jacobian matrix J with respect to the choice of the
platform and base anchor points on the carrier lines of the legs, the manipula-
bility and the best fitting linear line complex do not consider the geometry of
the manipulator. Therefore Pottmann et al. also presented a modified version
of their method in [14], namely the so-called line segment method. The result-
ing index, computed by an iterative procedure, satisfies the above demand but
does not eliminate the other weak points. The rigidity rate is independent of
the choice of the base anchor points and so it only takes the geometry of the
platform into consideration. This raises the following problem: If we change
the viewpoint and consider Σ as the unmoved base and Σ0 as platform, we
get another index for the same configuration. So the instantaneous rigidity of
the manipulator depends on the viewpoint which is dissatisfying.

Another advantage – beside the interpretation as a distance measure – of an
EE independent performance index considering the geometry of a manipulator
is its application in robot design. By optimizing manipulators with respect to
such an index we get explicit designs (platform and base anchor points) and
not only an optimal line configuration for the n legs. The latter provides ∞2n

different manipulator design e.g. for an isotropic configuration with respect to
any condition number index. This is demonstrated in section 4.

3.2 Idea and definition of the Control Number CTN

In practice configurations must be avoided, where minor variations of the leg
lengths have uncontrollable large effects on the instantaneous displacement of
the platform Σ. But how should the quantity of effects be measured in relation
to the variation of the leg lengths? The boarder case of this uncontrollability
is, if there exists an infinitesimal motion of Σ while all actuators are locked. In
such a singular position the velocities of the platform points can be arbitrarily
large, and therefore the posture is uncontrollable. The question is, which mea-
surable parameter of the parallel manipulator indicates the circumstance of
uncontrollability in a natural way and has a geometric meaning for the robot
(5th demand).

Let’s assume there is instantaneously a minor variation of the n leg lengths and
the manipulator is not in a singular configuration. So there exists a unique
screw q which describes the motion of Σ against Σ0 according to (4). We
consider the velocities v(Pi) of the platform anchor points Pi with respect to
q because we can get the most information out of them due to their special
position. We are not interested in the instantaneous displacements of Pi in
direction of the leg, because the leg length is an active joint which can be
controlled totally. Therefore only the component v⊥(Pi) can be an indicator
of uncontrollability (see Fig. 1 (b)).
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But v⊥(Pi) is no mechanical parameter of the manipulator and therefore we
look at the angular velocity ωBi

of the ith passive base joint. These passive
joints are either ball or cardan joints, but for the following considerations the
difference is unimportant. According to (2) and (3) the angular velocity ωBi

is defined as follows (see Fig. 1 (b))

ωBi
:=
‖v⊥(Pi)‖
‖li‖

. (18)

As a consequence, ωBi
is proportional to ‖v⊥(Pi)‖. But there also exists angu-

lar velocities ωPi
in the passive platform joints, which are defined analogously.

The sole difference is that we regard the inverse motion of q. So we have to
substitute Bi for Pi and −q for q in (2), (3) and (18). Obviously ω 2

Bi
and ω 2

Pi

are quadratic forms with the coordinates of q as unknowns. Therefore we can
rewrite them as

ω 2
Bi

=
‖v⊥(Pi)‖2

‖li‖2
=
‖v(Pi)‖2 − d2

i

‖li‖2
= qTABi

q (19)

and

ω 2
Pi

=
‖v⊥(Bi)‖2

‖li‖2
=
‖v(Bi)‖2 − d2

i

‖li‖2
= qTAPi

q (20)

with li according to (1). Moreover it should be noted that the matrices ABi
and

APi
are symmetric 6× 6 matrices. Now the circumstance of uncontrollability

can be expressed by the following index, called control number:

Definition 3 The control number CTN of a n-legged 6-dof UPS parallel ma-
nipulator configuration K with n > 5 is defined as

CTN(K) := +
√

λ−/λ+ with CTN(K) ∈ [0, 1] , (21)

where λ− resp. λ+ is the minimum resp. maximum of the objective function
ζ(q)

ζ(q) =
n∑

i=1

ω 2
Bi

+ ω 2
Pi

= qTTq with T =
n∑

i=1

ABi
+ APi

(22)

under the side condition ν(q) of (6). CTN(K) = 0 characterizes a singular
configuration and a value of 1 an optimal one.

Due to section 2.3 the minimum λ− and the maximum λ+ can be computed as
the minimal and maximal general eigenvalue λi of T with respect to N. If the
corresponding eigenvectors are denoted by q

i
we get the analogue equation to

(13), namely

ζ(qi) = qT
i
Tq

i
= λiq

T
i
Nq

i
= λi. (23)
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3.3 Well-definedness of CTN and the instantaneous motion near singularities

Theorem 4 CTN(K) is (i) well defined and (ii) has all six properties required
in section 1.

Proof: (i) According to [3] all general eigenvalues λi are real and due to (23)
they are non-negative. Moreover, in nonsingular configurations all λi > 0 for
the following reason: If q is no pure translation (q 6= o), then all angular
velocities in the passive joints would vanish if and only if all anchor point
lie on the isa. But such a configuration yields rank(J) = 1. In the case of a
pure translation, there would be no angular velocities in the passive joints if
and only if the legs are parallel to the direction of the translation. But such a
configuration yields rank(J) ≤ 3.

The proof of well-definedness is again closed by the fact that the number of
roots λi of |T−λN| = 0 dropping to infinity equals the defect(J). This can be
seen as in the proof of Theorem 2 under der consideration of v(Pi) = v⊥(Pi)
resp. v(Bi) = v⊥(Bi) and (23).

(ii) Due to (i) the control number enjoys the properties 1 and 2. The 3rd point
is satisfied because the objective function ζ(q) and the side condition ν(q)
are invariant under Euclidean motions. The invariance under similarities was
achieved by defining CTN(K) as a ratio. Moreover this index has a geomet-
ric meaning due to approach of the angular velocities of the passive joints.
CTN(K) is computable in real time, because one only has to calculate the
general eigenvalues of T with respect to N. �

Theorem 5 CTN(K) depends on the choice of the anchor points on the car-
rier lines of the n legs. Moreover all 2n manipulator configuration, which arise
from interchanging the anchor points Pi and Bi on the ith leg, have the same
control number.

Proof: Clearly the side condition ν(q) is independent of the choice of the
anchor points. The velocity vectors vq(X) and v−q(X) of a point X with re-
spect to q and −q have the same length but they are directed oppositely, i.e.
vq(X) = −v−q(X). Therefore the objective function ζ(q) is invariant under
the interchange of the anchor points on the same line. �

Remark It does not make sense to define ζ(q) only as
∑

ω 2
Bi

(resp.
∑

ω 2
Pi

)
for following reasons: The index would not fulfill our 2nd demand, because there
exist nonsingular 6-dof UPS manipulator configurations, where the carrier
lines of the n legs are the path tangents of Pi (resp. Bi) with regard to q.
Consequently we get ζ(q) = 0 and the index would equal 0. Moreover the
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resulting index would not take the geometry of the base (resp. platform) of
the manipulator into consideration.

According to Wolf and Shoham [18] the closest path normal complex of a
helical motion (rotations and translations included) to the n legs, described
by its axis c and pitch c, provides additional information on the manipulator’s
instantaneous motion and understanding of the type of singularity when the
manipulator is at, or in the neighborhood of, a singular configuration. Since
the CTN is a performance index as well as a distance measure, a small CTN
indicates the closeness to a singularity. Due to Theorem 4 and the continuity
of the polynomial functions |T− λN| = 0, which arise if we move towards a
singular position, we can say that the closest linear complex to the carrier lines
of the n legs equals the path normal complex of the eigenvector q

+
:= (q+ , q̂+)

of the largest general eigenvalue λ+. The Plücker coordinates (c, ĉ) of the axis
c and the pitch c can be reconstructed from q

+
as follows:

c =
q+q̂+

q+q+

, c =
q+

‖q+‖
, ĉ =

q̂+ − c·q+

‖q+‖
. (24)

Therefore this method additionally brings about a kind of best approximating
linear line complex in the neighborhood of singularities, and the calculation
needs no case analysis like the method of Pottmann et al. [14]. The advantage
of the presented method is demonstrated in the next section.

Remark Assume λ+ is a double root of |T − λN| = 0 or a second general
eigenvalue differs only a little from λ+ . In such a case the carrier lines of the n
legs can be approximated by two (nearly) equally good linear line complexes,
and therefore by the whole pencil of linear line complexes spanned by these
two complexes. As a consequence the carrier lines can be fitted by a linear line
congruence (see [15]). In such a configuration the manipulator is in or close to
a configuration with a two parametric instantaneous self-motion.

These considerations can be extended to the case where two or more λi’s are
equal to (or differ only a little from) λ+ . If the carrier line can be approximated
by three (nearly) equally good linear line complexes (spanning a bundle of
linear line complexes), then the n lines can be fitted by a bundle of lines, a field
of lines, a regulus or by two pencils of lines which share the line of intersection
of their carrier planes (see [15]). In such a configuration the manipulator is in
or close to a configuration with a three parametric instantaneous self-motion.

13



3.4 Comparison of EE independent performance indices

We compare the EE independent performance indices at hand of the fol-
lowing two parametric set SK of 6 legged UPS manipulators, because such
manipulators are very relevant in practice (e.g. flight simulator). The coordi-
nates bi and pi of the base Bi and platform anchor points Pi are given by
bi = (cos αi, sin αi,−2h)T and pi = (cos βi, sin βi, 0)T with

α1 = β2 −
π

3
= −α α3 = β4 −

π

3
=

2π

3
− α α5 = β6 −

π

3
=

4π

3
− α

α2 = β1 +
π

3
= α α4 = β3 +

π

3
=

2π

3
+ α α6 = β5 +

π

3
=

4π

3
+ α

where α ∈ [0, π
6
] denotes the design parameter and h ∈ R+ the posture

parameter (see Fig. 2 (a)). Moreover it should be noted that all configurations
K ∈ SK with α 6= π

6
and h 6= 0 are nonsingular.

2α

2h

Bi

Pi

(a)

0 π/6

0.8

α

h

(b)

Fig. 2. (a) Sketch of SK (b) Contours of CTN(K) over the (α, h)-plane.

Control Number The matrix T − λN simplifies to the diagonal matrix
diag(∆1, .., ∆6). Therefore the eigenvalues λi can be computed explicitly using
∆i = 0, whereas λ1 = λ2 and λ4 = λ5 holds. K+ given by

h+ =
κ

4
≈ 0.4, α+ = − arctan

(√
5κ−

√
15

5

)
≈ 4◦, κ =

√
2
√

5− 2 (25)

has the maximal CTN of all K ∈ SK (see Fig. 2 (b)). For K+ determined by

λ1,2 = λ4,5 and λ3 = λ6 we get CTN(K+) =

√
2
√

5− 4 ≈ 0.687.

The manipulator with α+ also makes sense from the practical point of view,
because contrary to the often propagandized 3-3 octahedral manipulator (α =
0) this design has no coinciding anchor points, which are hard to manufacture.
The configuration K+ is displayed in Fig. 1 (a).
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0 π/6

0.8

α

h

(a)

0 π/6

0.8

α

h

(b)

Fig. 3. (a) Manipulability (b) Index of Lee and Duffy.

Manipulability Paradoxically, the configuration gets better in the sense
of the manipulability, if it is closer to the singularity where corresponding
platform and base anchor points coincide, e.i. α = π

6
and h = 0 (see Fig. 3

(a)). Therefore there exists no local maximum over the definition interval and
SK has no optimal configuration with respect to this index. If SK is evaluated
by the index of Lee and Duffy [7], we get a one parametric set of optimal
configurations (see Fig. 3 (b)). This follows immediately from the definition
of this index, because for each design parameter α ∈ [0, π

6
[ exists a maximum

|det(J)|+.

Best fitting linear line complex According to subsection 3.1 we have to
distinguish between the following two cases. In Fig. 4 (a) the standard devia-
tion σr of the best fitting path-normal complex of a pure rotation or a helical
motion is illustrated and in Fig. 4 (b) the graph of the standard deviation σt

with respect to the best fitting path-normal complex of a pure translation is
given. Due to the variance of σr under similarities this index is faced with the
same phenomenon as the manipulability. σt has a one parametric set of opti-
mal configurations over the definition interval, because this index is invariant
under translations of each carrier line.

0 π/6

0.8

α

h

(a)

0 π/6

0.8

α

h

(b)

Fig. 4. (a) Standard deviation σr (b) Standard deviation σt
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Rigidity Rate The rigidity rate of all configurations of SK is constant at
the maximal value of π/2. Only in singular positions (α = π

6
and/or h = 0) it

drops to zero. So if we approach a singularity at the boundary of the definition
interval the value of the rigidity rate is constant π/2.

This example shows very well that the indices reviewed in subsection 3.1 are
not adequate for comparing different postures of different manipulator de-
signs. The main reasons for that are the invariance under similarities and that
these indices do not take the geometry of the manipulator into consideration.
Moreover the example questions the rigidity rate as a performance index for
a fixed design, because even if we approach to the singularity h = 0 the value
is constant at the maximal value of π/2.

Instantaneous motion near singularities Wolf and Shoham computed
in [18] the axis and pitch of the closest path normal complex of a helical motion
to the n legs with the method of Pottmann et al. (see subsection 3.1). Now
we compare this method with the approach based on the control number (24)
at hand of the manipulator K+ determined by (25).

0.15 0.2 0.25 0.3 0.35 0.4
0

1

0.2

0.3

0.4

0.5

y
x

z
ay

c(−1.2)

c(−0.7)

p(−1.2)

p(−0.7)

(a)

0

0.2

0.4

0.6

0.8

1

1.2

–1.2 –1.1 –1 –0.9 –0.8 –0.7

σr

CTN

pay

cay

δ

(b)

Fig. 5. (a) Illustration of ay, c(δ) and p(δ) for δ ∈ [−1.2,−0.7] (b) Graphs of σr,
CTN, pay and cay for δ ∈ [−1.2,−0.7]

In the first example we rotate the platform about the y-axis through the angle
δ. In the configuration Ky

+
given by δ ≈ −0.95 all carrier lines of the legs inter-

sect the axis ay of a singular linear line complex. Therefore the instantaneous
self motion is a rotation about ay (see Fig. 7 (b)). We compute the axis of the
instantaneous motion with respect to both approaches for δ ∈ [−1.2,−0.7],
where the axis computed by CTN is denoted by c(δ) and the one based on
the method of Pottmann et al. by p(δ) (see Fig. 5 (a)). Due to the symmetry
of the obtained configurations, c(δ) and p(δ) are always parallel to the y-axis.
Therefore we can easily compare these two methods by the distances cay and
pay from the axis ay (see Fig. 5 (b)). Moreover the difference between the
corresponding pitch c(δ) and p(δ) can be neglected because both are less than
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10−9 for all δ ∈ [−1.2,−0.7]. Although this example plays to the method of
Pottmann et al. (ay is a pure rotation) the newly introduced method approx-
imates the axis ay better over the considered interval (see Fig. 5 (b)).

–1

0

10.25 0.3 0.35 0.4 0.45 0.5

–0.4

–0.3

–0.2

–0.1

0
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p(1.39)

p(0.89)

(a)

0

0.2

0.4

0.6

0.8

0.9 1 1.1 1.2 1.3 1.4

σr

CTN

p(γ)

c(γ)

γ

(b)

Fig. 6. (a) Illustration of ax, c(γ) and p(γ) for γ ∈ [0.89, 1.39] (b) Graphs of σr,
CTN, p(γ) and c(γ) for γ ∈ [0.89, 1.39]
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+
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(b)

Fig. 7. (a) Graphs of pax, cax, ^ax
p and ^ax

c for γ ∈ [0.89, 1.39] (b) The configurations
Kx

+
and Ky

+
with axis ax and ay, respectively.

Now we consider a rotation about the x-axis through the angle γ. In the
configuration Kx

+
determined by γ ≈ 1.14 the carrier lines belong to path

normal complex of a helical motion with axis ax and a pitch of approximatively
0.53 (see Fig. 7 (b)). We compute again the axis c(γ) and p(γ) as well as
the pitch c(γ) and p(γ) of the instantaneous motion with respect to both
approaches for γ ∈ [0.89, 1.39] (see Fig. 6). In this case the obtained axes are
not longer parallel to ax and therefore we compare these two methods by the
distances cax and pax along the common perpendicular and the angles ^ax

c

and ^ax
p (see Fig. 7 (a)). It can be seen that the newly presented approach is

better with respect to all quality criterions (pitch, angle, distance).
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4 Robot Design

As demonstrated in subsection 3.4 the control number is suited for comparing
different postures of different manipulator designs, because it takes the geom-
etry of the manipulator into consideration. Therefore we get explicit designs
instead of optimal line configurations by optimizing manipulators with respect
to this index.

4.1 6-dof UPS Parallel Manipulators

In [11] (pp. 84–99) configurations of the configuration set M (see Def. 4) with
an control number of 1 were computed by the author. It should be noted that
the obtained solution set has three free parameters beside the number of legs
and the factor of similarity.

Definition 4 The configuration set M: The sets Sg
1 , S

g
2 and Sg

3 with

Sg
1 = {B1, ..,Bg,P1, ..,Pg} , Sg

2 = {Bg+1, ..,B2g,Pg+1, ..,P2g} , Sg
3 = {l1, .., l2g}

and g > 2 are closed under rotations about the z-axis through the angle 2π
g
.

In the following we compute configurations of the configuration set N (see
Def. 5) which provide an optimal motion transmission between the prismatic
joints and the velocity of the operation ellipsoid (CDNOE = 1) and which have
an optimized geometry with respect to CTN. Due to the length of the paper,
we restrict to the below defined set N for which the desired results can be
obtained by a short computation.

Definition 5 N contains all configurations of M such that a superposition
τ of a rotation about the z-axis and the reflection on the xy-plane exists with
τ(Sg

1 ) = Sg
2 . Moreover the operation ellipsoid for the computation of CDNOE

is an ellipsoid of rotation with respect to the z-axis centered at the origin.

The design optimization is done in two steps. In the first one we compute opti-
mal line configurations obtained by the optimization with respect to CDNOE.
In the second step we compute the platform and base anchor points on these
lines such that the resulting configurations are optimal with respect to CTN
as well. First of all we parametrize the two sets Gg

1 := {l1, .., lg} and Gg
2 :=

{lg+1, .., l2g} of carrier lines determined by Sg
1 and Sg

2 . The line li is given by
the footpoint Fi on li of the common perpendicular of li and the z-axis and by
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its direction gi. The coordinates fi of Fi and the vector gi are given by:

fi :=
(

r cos
(

2(i− 1)
g

π

)
, r sin

(
2(i− 1)

g
π

)
, h

)
,

fj :=
(

r cos
(

µ +
2(i− 1)

g
π

)
, r sin

(
µ +

2(i− 1)
g

π

)
,−h

)
,

gi :=
(
− sin

(
2(i− 1)

g
π

)
, cos

(
2(i− 1)

g
π

)
, t

)
,

gj :=
(
− sin

(
µ +

2(i− 1)
g

π

)
, cos

(
µ +

2(i− 1)
g

π

)
,−t

)
,

(26)

with i = 1, . . . , g, j = g + i and r, h ∈ R+. 3 The factor of similarity is
eliminated by the coordinates si of the vertices Si of the operation ellipsoid,

s1 = (+1, 0, 0) s2 = (0, +1, 0) s3 = (0, 0, +p)

s4 = (−1, 0, 0) s5 = (0,−1, 0) s6 = (0, 0,−p) ,
(27)

where p ∈ R \ {0} is a free parameter. Now the matrix D is the diagonal
matrix of (17) with D = diag(2p2 + 2, 2p2 + 2, 4, 6, 6, 6). The matrix N of (6)
also simplifies to a diagonal matrix with

n11 = n22 = (h2 + t4r2 + h2t2 + t2r2)·D n33 = 2r2(1 + t2)·D (28)

n44 = n55 = (t2 + 1)·D n66 = 2z2(1 + t2)·D. (29)

and D := g/(1 + t2)2. Moreover it should be noted that N is independent of
the angle µ. In order to get a isotropic configuration with respect to CDNOE

the diagonal matrices D and N must be similar. By solving the resulting three
equations

d11

n11

=
d33

n33

,
d11

n11

=
d44

n44

and
d11

n11

=
d66

n66

(30)

we get under consideration of identical configurations with respect to the
spherical motion group the following solution:

r =

√
3

3
, h =

√
6 + 12p2

6
and t =

√
2

2
. (31)

It should be noted that this solution is independent of g and that only the
z-coordinate of Fi depends on p. In sight of Theorem 5 we can parametrize
the set N by:

xi = fi + agi and yi = fi + bgi (32)

with bi,pi ∈ {xi,yi} and bi 6= pi for i = 1, . . . , 2g. Computation of the matrix
T of (22) yields again a diagonal matrix whose entries are independent of µ.

3 The parametrization (26) includes all line configurations of N with a sole excep-
tion, namely the case where all 2g carrier lines are parallel to the z-axis. But this is
a singular configuration.
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Due to t11 = t22 and t44 = t55 = t66 we only get two conditions for the
similarity of the diagonal matrices T and N, e.i.

t11

n11

=
t33

n33

and
t11
n11

=
t44
n44

. (33)

Solving these two equations for a and b yields:

a = −
√

12 + 24p2 + 2
√

6p2(1 + 2p2)

6(1 + 2p2)

b =
−
√

12 + 24p2 + 2
√

6p2(1 + 2p2)

6(1 + 2p2)
.

(34)

Therefore we get for each p determining the operation ellipsoid 22g 6-dof UPS
parallel manipulators which are isotropic with respect to CDNOE and have a
control number of 1. Moreover for each of these 22g configurations the parame-
ter µ can be chosen freely. For g = 3 and p =

√
2/2 two possible configurations

are illustrated in Fig. 8.

(a) (b)

Fig. 8. Illustration of two optimal configurations with respect to CDNOE an CTN.
The parameters are chosen as follows: g = 3, p =

√
2/2 (a) µ = 0 (b) µ = π/3

Now the question arise how the anchor points determined by the optimization
with respect to CTN are in relationship with the operation ellipsoid. By plug-
ging the coordinates of the anchor points into the equation of the operation
ellipsoid

OE : x2 + y2 +
z2

p2
= 1 (35)

one sees that these points are located on this ellipsoid. This gives a surpris-
ing simple geometric characterization of the computed manipulator configu-
rations. Moreover it should be noted that in this case the OE is spanned by
the manipulator itself. The computed manipulators are nice in theory but not
optimal in practice, because the legs penetrate the OE. Therefore a challenge
of future research is the design (computation) of manipulators such that they
are optimal with respect to both indices and that their links do not penetrate
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the OE in the optimized home pose and in a sufficient large part of the ambient
workspace.

4.2 3-dof RPR Parallel Manipulators

3-dof RPR parallel manipulators are the planar analogon of 6-dof UPS parallel
manipulators. Without loss of generality we can say that only translations in
the xy-plane and rotations of the platform about z-parallel axes are allowed.
Therefore we can define for these manipulators CDNOE and CTN as for the
spatial version. The sole difference is that we set q1, q2 and q̂3 of q = (q1, q2, q3)
and q̂ = (q̂1, q̂2, q̂3) equal to zero for the computation of v(Si), v(Bi) and v(Pi),
respectively. Then CDNOE and CTN for 3-dof RPR parallel manipulators can
be computed as given in Def. 2 and Def. 3 with respect to the corresponding
symmetric submatrices

N =


n33 n34 n35

n43 n44 n45

n53 n54 n55

 , D =


d33 d34 d35

d43 d44 d45

d53 d54 d55

 , T =


t33 t34 t35

t43 t44 t45

t53 t54 t55

 . (36)

It should be noted that in this case the general eigenvalue problems can be
solved explicitly because the characteristic polynomial is only of degree 3.

Now we are also interested in 3-dof RPR manipulators which are optimized
with respect to both indices. In the following we compute such configurations
contained in the configuration set P .

Definition 6 The configuration set P: The sets Rg
1 and Rg

2 with

Rg
1 = {B1, ..,Bg,P1, ..,Pg} , Rg

2 = {l1, .., lg} ,

and g > 2 are closed under rotations about the z-axis through the angle 2π
g
.

Moreover the operation ellipsoid for the computation of CDNOE is an ellipsoid
of rotation with respect to the z-axis.

Because P is the planar analogon of the set N , we can give the solution with-
out further computation. The solution set of P is given by projecting the set
Sg

1 of N ’s solution set orthogonally into the xy-plane. Trivially P ’s solution
set is independent of the parameter p determining der operation ellipsoid.
Therefore we get for each p the same one-parametric solution set apart from
the number of legs and the interchange of corresponding platform and base
anchor points. Finally, it should be noted that in the case of the 3-dof RPR
parallel manipulator the inter-penetration of the legs with the operation el-
lipsoid can be avoided because the OE must not be centered in the origin but
can be placed anywhere on the z-axis.
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5 Conclusion

In this paper we introduced two new performance indices for 6-dof UPS par-
allel manipulators. The newly presented EE dependent performance index
CDNOE is based on an object-oriented metric and the operation ellipsoid OE,
which was already used in [12] to define an EE dependent performance index
for 6R robots. We adopted this approach for n-legged 6-dof UPS manipula-
tors (n > 5) and proved that the results of [12] concerning the geometric
interpretation of the characteristic length and its redefinition are also valid
for parallel manipulators. The newly introduced EE independent performance
index, called control number, is based on the angular velocities of the pas-
sive base- and platform joints. Both indices have all six properties required
in section 1 and can be used for robot design as well. Especially the control
number is suited for that problem by taking the geometry of the manipulator
into consideration. By optimizing manipulators with respect to this index one
gets explizit designs and not only optimal line configurations for the n legs.

In subsection 3.4 we compared the control number with already existing EE
independent performance indices (manipulability [9,19], rigidity rate [6], best
approximating linear line complex [14]) and demonstrated that the well-known
indices are not adequate for comparing different postures of different manip-
ulator designs. We also presented at hand of an example, that for the compu-
tation of the axis and the pitch of the instantaneous motion near singularities
the CTN based method is superior to the method of Pottmann et al. [14].

In section 4 we computed optimal designs of a special class of n-legged 6-dof
UPS manipulators with respect to both new indices. Moreover we described
how these indices can be adapted for g-legged 3-dof RPR parallel manipulators
with g > 2 and optimized the design of such manipulators as well.
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