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Abstract

We use the output angle of a spherical four-bar linkage C as the input angle of a
second four-bar linkage D, where the two frame links are assumed in aligned position
as well as the follower of C and the input link of D. We determine all cases, where
the relation between the input angle of the input link of C and the output angle
of the follower of D is reducible and where none of the components produces a
transmission, which equals that of a single spherical coupler. The problem under
consideration is of importance for the classification of flexible 3 x 3 complexes.
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1 Introduction

Let a spherical four-bar linkage C be given by the quadrangle I,0A; By Iy (see
Fig. 1la) with the frame link [;9l50, the coupler A;B; and the driving arm
IipA;. We use the output angle ¢, of this linkage as the input angle of a
second coupler motion D with vertices IogAsBsl3y. The two frame links are
assumed in aligned position as well as the driven arm I,0B; of C and the
driving arm I55As of D.

The goal of this paper is to complete the determination of all cases, where the
relation between the input angle ¢, of the arm I;pA; and the output angle o3
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Fig. 1. a) Composition of the two spherical four-bars I1gA1Bil2 and IsgAsBalsg
with spherical side lengths o, 5;,7i,0;, i = 1,2. b) Composition of two orthogonal
four-bar linkages with Iy = I19. (Courtesy H. Stachel)

of I39B, is reducible. As all reducible compositions of spherical coupler com-
ponents with a so-called spherical coupler component were already computed
by the author in [1], we are only interested in cases without a spherical coupler
component, i.e. no component produces a transmission which equals that of a
single spherical coupler.

The problem under consideration is of importance for the classification of
flexible Kokotsakis meshes (cf. [2], [3] and [4]) with a 4-sided planar central
polygon, which are compounds of 3 x 3 planar quadrangular plates with hinges
between neighboring plates.! This results from the fact that the spherical
image of a 3 x 3 complex consists of two compositions of spherical four-bars
sharing the transmission p; — 3 (see Fig. 1a).

Based on this article and [1] it should be possible to give a complete list of
flexible 3 x 3 complexes if Stachel’s conjecture holds true that all multiply
decomposable compounds of spherical four-bars are reducible (with exception
of the translatory type and planar-symmetric type). The work towards this
goal is in progress. Such a listing is of great interest, because Bobenko et al.
[3] showed that a polyhedral mesh (in general position), where four planar
quadrilaterals meet at each vertex, is flexible if and only if all 3 x 3 complexes
are flexible. One possible application is the architectural design of flexible
claddings composed of planar quads [5]. Further applications are e.g. the fold-
ings of the roof at cabriolets [6] or new unfoldings of solar panels beside the
Miura-ori technique [7]. Moreover, a listing of all flexible 3 x 3 complexes would
also have an impact on the art of Origami [8].

L Such a structure is also known as 3 x 3 complex or Neunflach in German.



Remark: Based on the reducible compositions with a spherical coupler com-
ponent (cf. [1]) the author was able to determine all flexible octahedra in the
projective extension of the Euclidean 3-space (cf. [9] and [10]). o

1.1 Transmission by one spherical four-bar linkage

We start with the analysis of the first spherical four-bar linkage C with the
frame link 19I5 and the coupler A;B; (Fig. 1a). We set «; := TpA; for the
spherical length (= arc length) of the driving arm, /3 := I B; for the output
arm, v, = A, By, and 6, := I1oI5. We may suppose 0 < o, 31,71, 01 < 7.

The movement of the coupler remains unchanged when A; is replaced by its
antipode A; and at the same time a; and v; are substituted by # — a; and
T — 71, respectively. The same holds for the other vertices (cf. supplementary
spherical four-bar linkages in [11]). When Iy is replaced by I, also the sense
of orientation changes, when the rotation of the driving bar I;0A; is inspected
from outside of the unit sphere S? either at I, or at I.

We use a Cartesian coordinate frame with its origin at the spherical center,
1o on the positive z-axis and [9l59 in the xy-plane that Iy has a positive
y-coordinate (see Fig. la). The input angle ¢; is measured between I1ola
and the driving arm [;pA; in mathematically positive sense. The output angle
Yy =< 110150 B; is the oriented exterior angle at vertex Io.

As given in [4], the constant spherical length 7, of the coupler implies the
following equation:

ngt%t% —+ Cgot% —+ Cogt% + ci1tite + coo = 0, (1)
with t; := tan(p;/2), c11 = 4saq s # 0,

oo =N+ Ky —Li+ M, cop=DN + K+ L — M, 2)
oo =N — K1 — Ly — My, copo=N — K+ L+ M,

and

Ky =caysfysdy, Ly =sajcBisd, My =saysfcd, Ni=cayclco—cy.

(3)
Herein s and c are abbreviations for the sine and cosine function. In these
equations the spherical lengths oy, 3; and §; are signed. For a more detailed
explanation and alternative expressions of Eq. (1) see [4].

Remark: Note that the 2-2-correspondence of Eq. (1) depends only on the
ratio of the coefficients oy : - -+ : oo (cf. Lemma 1 of [12]). o



1.2 Composition of two spherical four-bar linkages

Now we use the output angle o5 of the first four-bar linkage C as input angle of
a second four-bar linkage D with vertices I59 A3 Bs I3y and consecutive spherical
side lengths aw, 72, (B2, do (Fig. la). The two frame links are assumed in
aligned position. In the case < I19la0l30 = 7 the spherical length 5 is positive,
otherwise negative. Analogously, a negative ay expresses the fact that the
aligned bars I,0B; and IyyAs are pointing to opposite sides. Changing the
sign of 3 means replacing the output angle @3 by @3 — 7. The sign of v, has
no influence on the transmission.

Due to Eq. (1), the transmission between the angles ¢, ¢o and the output
angle 3 of the second four-bar with t3 := tan(y3/2) can be expressed by the
two biquadratic equations

C = ngt%tg + Cgot% + Cogtg + Clltltz + Coo — 0,
D = dggt%t% —f- dgot% —|— dogt% —|— d11t2t3 —f‘ do() = O .

(4)

The d;;, are defined by equations analogously to Egs. (2) and (3). We eliminate
ty by computing the resultant X (cf. [13]) of the two polynomials with respect
to to. The resulting biquartic equation X = 0, where each monomial is of
even degree, expresses a 4-4-correspondence between points A; and By on the
circles a; and by, respectively (Fig. 1la). We call the composition reducible if
the bivariate polynomial X is non-trivially reducible.

1.2.1  Known example of reducible compositions

Due to [1], the reducible compositions with a spherical coupler component can
be summarized as follows:

Corollary 1 If a reducible composition of two spherical four-bar linkages C
and D with a spherical coupler component is given, then it is one of the fol-
lowing cases or a special case of them, respectively:

a. One of the following four cases holds:
Cop =C2 =0, doo=1dn =0, coo=co2=0, dyp=dp=0,
b. The following conditions hold for A € R\ {0}:

cooC20 = Adoodp2,  C22C02 = Adaaday,
0%1 — 4(cooCa2 + Ca0C02) = )\[d% — 4(dpodaz + daodoz)],

c. One of the following two cases holds:

Cog = Cog = dop = dog =0, dae = dog = coo = c20 = 0,



d.

One of the following two cases holds for A € R\ {0} and B € R:

® Cyo = Ado2, Coo = Ad22, co2 = Bdaa, coo = Bdyg, doy = dag = 0, dpada 75 0,
o dy = Acy, da = Acsa, dog = Bceaa, dog = Beap, coo = co2 = 0, Ca0C22 7"é 0.

Until now, to the author’s best knowledge, there is only the following example
of a reducible composition without a spherical coupler component known. This
example was given by STACHEL [4] and reads as follows:

Two orthogonal four-bars? are combined that they have one diagonal in com-
mon (see Fig. 1b) with ap = (; and d, = —d;, hence I3y = I1p. Then the
4-4-correspondence between A; and Bs is the square of a 2-2-correspondence
of the form

so1tits + S1at1ts + S10t1 + Soitz = 0
and therefore this component cannot produce a transmission, which equals
that of a single spherical coupler.

Moreover, in the conclusion of [1] it was noted that this so-called orthogonal
type can be generalized as follows: dyy = Acgg, dog = Acgs, dog = Bcga, doo =
Bego with A, B € R and C being an orthogonal coupler (< coocaa = coaca). >

2 Possible cases of reducible compositions without spherical cou-
pler component

Given are the two spherical couplers C and D and their corresponding trans-
mission equations C and D, respectively (see Eq. (4)). In the following we are
interested in the conditions the ¢;;’s and d;;’s have to fulfill that the resultant
X splits up into the product FG of two factors F and G. Depending on the
structure of the factors F and G, we have to distinguish eleven cases, which
are grouped as follows:

e Symmetric symmetric (SS) case: The first ”symmetric” means that the
structure of each of the factors F and G do not change if we interchange the
unknowns ¢; and ¢3; i.e. with each monomial f;;t}#} resp. g,st7t5 there is also
a monomial fjit{tg resp. gs-tity included in F resp. G.

The second ”symmetric” means that with each monomial fijtitg in F
there is also a term gjit{tg in G and vice versa. * We distinguish two types

of (SS) cases:

2 Four bar-mechanisms, where the diagonals of the corresponding spherical quad-
rangle are orthogonal, are called orthogonal spherical four-bars (cf. [4]).

3 This case will correspond to item 3 of the later given Theorem 1.

4 (learly, this also implies the explanation for the other three cases abbreviated by
(SA), (AS) and (AA), respectively.



L.

IT.

The first case is given by

F=fotits + f12t1t§ + fiot1 + foits,
G =gntits + 912t1t§ + gi0t1 + goits,

with fo; # 0 # fia.

The second case is given by

F =/foulit: + faol] + foots + foo,
G 292275%153 + goot] + goﬂ% + 9oo,

(6)

e Symmetric asymmetric (SA) case: Here we distinguish again two types:

L.

IT.

The first case is given by

F =fiot1 + foits,
G =gsotits + gaoti + gastits + goitits + giatits + giot1 + Gosts + goits,

(7)
with fio # 0 # for.

The second case is given by

F =fals + f02t§ + foos
G =gaat3t3 + gaot: + goots + oo,

with fao 7# 0 # foz.

e Asymmetric symmetric (AS) case: Here we get three types:

L.

IT.

III.

The first case is given by

F =faols + fartits + fiot1 + foits,
G =903t§ + 912t1t§ + goits + giot1,

(9)

with f3o # 0. Moreover, if fo; = fo1 = 0 holds we get a special case of
the later given case (AA,IV).
The second case is given by

F=fatits + faol] + futits + foo,

10
G :gmtltg + 90275% + g11t1ts + goo, (10)

with f3; # 0. Moreover, if g;3 = 0 holds we can also assume g;; = 0,
as otherwise we get a component with a spherical coupler component.
The third case is given by

F =faoti + faoli + foo,
G :go4t§ + 902t§ + 900,

(11)



e Asymmetric asymmetric (A A) case: In this case we even get four types:
I. The first case is given by

F =fiot1,
G :93475?7% + 932t?t§ + g30ts + giot1 + 92375%152 + gtttz + go3t§ + go1ls + 914t1t§ + 912t1t§>
(12)

IT. The second case is given by

F =faot; + foo,
G 292475%1531 + 92215%75;% + gaots + 913t1t§ + guitits + 904t§ + 902t;2«; + 900,
(13)

with fog # 0. Moreover, if goy = ¢g13 = gou = 0 holds we can also
assume g3 = 0, as otherwise we get a component with a spherical
coupler component.

[TI. The third case is given by

F =f21t%t3 + fiot1 + foits,

14
G =ga3t 15 + gartits + giatit; + grots + Gosls + goits, (14)

IV. The fourth case is given by
F =fs0t; + fiot1, (15)

G 2914t1t§ + 91215175% + giot1 + 90375% + goits,

Lemma 1 The types of compositions given in FEqs. (5-15) are all possible
compositions without a spherical coupler component with respect to the inter-
change of the unknowns t; and t3.

Proof: We only give a sketch for the proof of this lemma, because then it can
easily be verified by the reader. As the case F = fyy = const. does not make
sense, we start with F = fiot;. Now G can only be of the form given in Eq.
(12) so that the product FG is a biquartic polynomial in ¢; and ¢3 with the
same structure as the resultant X.

Then we further by considering the case F = fiot; + foo. It can easily be
seen that there does not exist a polynomial G (with exception of the zero-
polynomial) so that the product FG is a polynomial with the same structure
as the resultant X (even-degree terms only). Therefore this case does not imply
an entry into our above given listing. The reason for this is that both factors,
F and G, can either contain even-degree monomials or odd-degree monomials
only.



As the cases F = fi1t1t3 and F = fi1t1t3 + foo yield spherical coupler compo-
nents, we further the discussion by considering F = fyt? and so on. Finally,
this procedure yields the above given eleven cases. i

In the following we denote the coefficients of tit} of Y := FG and X by Y;; and
Xi;, respectively. By the comparison of these coefficients, we get the following
13 equations Q;; = 0 with Q;; := Y;; — X;; and

(,7) € {(4,4),(4,2),(4,0),(3,3),(3,1),(2,4),(2,2),(2,0), (1,3), (1, 1),(0,4), (0,2), (0,0)},

which must be fulfilled. In the following we discuss the solution of this non-
linear system of 13 equations for the above given eleven possible compositions.
As the number of unknowns f;;’s and g;;’s is ranging between six and eleven
(depending on the respective case), there have to be relations between the ¢;;’s
and d;;’s to allow the solution of the whole system. The intention of the follow-
ing discussion is to determine the subvarieties in the space of design variables
c;j and d;;, that there exists a decomposition of the transmission function,
where none of the resulting components corresponds to the transmission func-
tion of a spherical coupler. Therefore we first eliminate the unknowns f;; and
gi; in order to get the equations, which only depend on the ¢;;’s and d;;’s. By
solving the resulting equations, we obtain the desired relations between these
unknowns.

As we compute the resultant X with respect to t,, the coefficient of t3 in C and
D must not vanish. Therefore the two cases cas = cp2 = 0 and day = dyg = 0
are excluded and hence they have to be discussed separately.

In the next section we prove the main theorem on reducible compositions
without a spherical coupler component, which reads as follows:

Theorem 1 If a reducible composition without a spherical coupler component
18 given, then it is one of the following cases:

~

One of the cases given in item a of Corollary 1,
The case given in item b of Corollary 1,
3. The following conditions hold for A, B € R\ {0}:

o

Coop = Acoz, 0 = Acga, doo = Bdao, dop = Bdy, A= B, (16)
4. One of the following four cases holds:

coo=Cco2=0, doo=doe=0, coo=1c0=0, do=dyp=0.(17)



3 Proof of the main theorem

In the following we discuss the eleven possible cases. If the case study yields
a solution, we write the corresponding item(s) of Theorem 1 in parentheses.

3.1 Discussing type (SS,I)

3.1.1 General case: coy # 0

Assuming cps # 0 we can solve the equations Qu = Qi = Qus = 0 for
Cyp = COQCQQ/CQQ, doo = Coodgo/Cog and d02 = Coodgg/Cog. MOI‘GOV@I‘, we can
express go1 and gio from Qu2 = 0 and Q24 = 0, respectively. Now we distinguish
the following two cases:

1. for # 0: In this case we can express go; from Qpe = 0.
a. fio # 0: Now we can compute gio from (a9 = 0. As for coo = 0 all g;;’s
would vanish (which yields a contradiction), we can solve @13 = 0 and
Q11 = 0 for fi5 and fig, respectively. Now the remaining three equations
Q33 = Q31 = Q22 = 0 can only vanish without contradiction (w.c.) for
coo = 0 (item 3) or fo; = co2fa1/coo (general case of item 3).
b. fio = 0: We can express g1 from (11 = 0. As for c¢yo = 0 all g;;’s would
vanish, we get dgyp = 0 from @)y = 0. Finally, we can compute fy and
fi2 from Q22 = 0 and @13 = 0, respectively (item 3 and 4).
2. for = 0: We distinguish two cases:
a. fio # 0: Under this assumption we can express gip and gg; from Q99 = 0
and ()17 = 0, respectively. Then )y, cannot vanish w.c..
b. fio = 0: Now Qu2 = 0 implies ¢g9 = 0 and Q31 = 0 yields g1 = 0.
Finally, ()13 cannot vanish w.c..

3.1.2  Special case: coo =0

Now we can assume without loss of generality (w.l.o.g.) that ¢y # 0 holds, as
otherwise we get the excluded case. Therefore we can express dpy = Copdag/ 22
and dgg = ca0da0/co2 from Qe = 0 and Q4 = 0, respectively. Then (Qpy and
Qoo can only vanish w.c. for ¢yg = 0. Moreover, we can compute go; and gio
from Q4 = 0 and Q94 = 0. Now we distinguish two cases:

1. fio # 0: In this case we can solve Qo = 0 for gio. Now it can easily be seen
that Qo, Q13 and ()11 can only vanish w.c. for fo; = go1 = 0. Finally, we
can express f12 and fio from Q33 = 0 and Q3; = 0 (item 3 and 4).

2. f10 = 0: We distinguish again two cases:

a. for = 0: Q13 = 0 implies go; = 0 and ()9 can only vanish w.c. for:



1. 90 = 0: Qg9 = 0 yields the contradiction.
iil. dyg = 0, co90 # 0: Then Q2 = 0 implies g1o = 0. Finally, Q33 = 0
remains, which yields fio = — fardascy/(co2dyy) (item 2, 3 and 4).
b. for # 0: Now Q)11 = 0 and Qp2 = 0 imply g10 = 0 and go; = 0, respec-
tively. As for co9 = 0 all g;;’s vanish (a contradiction), we get dyg = 0
from QY59 = 0. Finally, (025 cannot vanish w.c..

3.1.3 FEzxcluded cases

We only discuss the case coo = ¢go = 0, under the assumption that dos = dog =
0 does not hold. ® Due to Q4 = Qo = 0, we have to distinguish two cases:

1. dyy = 0: As a consequence we can assume w.l.o.g. das # 0. Then we get
g12 = 0 from Q94 = 0. Moreover, we can express go; = 0 from Q42 = 0. Now
@13 = 0 implies go; = 0. Then we get cgo = 0 and ¢y = 0 from Qg = 0
and 33 = 0, respectively. Finally, ()3; cannot vanish w.c..

2. dyp # 0: Now Qg0 = 0 and Qo = 0 imply cgp = 0 and cgg = 0, respectively.
Then we get go1 = 0 from Qu2 = 0, g12 = 0 from Q33 = 0 and g;9 = 0 from
@31 = 0. Finally, ()13 cannot vanish w.c..

Due to footnote 5, we are only left with the special case cos = cga = dog =
doo = 0. We get g1 = 0 from Q40 = 0, g1 = 0 from Q)33 = 0 and ¢19 = 0 from
@31 = 0. Finally, ()13 cannot vanish w.c..

3.2 Discussing type (SS,II)

3.2.1 General case: coy # 0

Due to cge # 0, we can solve Q33 = Q31 = Q13 = 0 for co9 = cooca2/coz, dop =
—coodao/coz and dog = —coodaz /coa, respectively. Moreover, we can express goo
from @y = 0 w.l.o.g.. Now we have to distinguish the following eight cases:

L. foofozfa0 # 0: Now we can compute goo, goz and gzo from Qoo = 0, Qos = 0
and (4 = 0, respectively. Moreover, we can assume cqg # 0, as otherwise

all g;;’s vanish. Then we distinguish further six cases:

a. dogdaaces # 0: In this case we compute the resultant R of Qo9 and Qps
with respect to fog. Moreover, we compute the resultant S of ()24 and
(42 With respect to fas. The only non-contradicting factor of S equals
the only non-contradicting factor of 7. We denote this factor with F3[15],
where the number in the square brackets gives the number of terms.

5 For the discussion of the case dos = dop = 0, under the assumption that cgo =
co2 = 0 does not hold, we refer to analogy.

10



Moreover, we eliminate foo from Qo9 by computing the resultant T' of
Q2o and Q42 with respect to fas. Then we calculate the resultant U of
T and Q)op with respect to foo. Now F; and the only non-contradicting
factor F3[18] of U only depend on fsy and fos. Therefore we compute
the resultant of F} and F5 with respect to one of these unknowns, which
shows that the following condition has to hold (item 2):

CoaCaadyy + 16¢o0Caadanday — dagdanc; = 0. (18)

b. co9 = 0, dogdas # 0: In this case we can express foo from QQoy = 0, foo from
Q20 = 0 and fyo from Qo2 = 0. Then Yy = 0 yields the contradiction.
c. dog = 0, dogcos # 0: In this case we can express foo from Qe = 0, foo from
Qo2 = 0 and fay from Q99 = 0. Then Q99 = 0 yields the contradiction.
d. dog = 0, dagcas # 0: In this case we can express foo from QQqe = 0, foo from
Qo2 = 0 and fyy from Q2 = 0. Then ()94 = 0 yields the contradiction.
e. dog = oo = 0, dog # 0: Now Qo5 = 0 already yields the contradiction.
f. dog = co9 = 0, doyg # 0: Again Q9o = 0 yields the contradiction.
. foo = 0, foofoo # 0: W.lo.g. we can express ggo from Qpqs = 0, goo from
Qi = 0 and goo from Qe = 0. Moreover, we can assume cog # 0, as
otherwise all g;;’s vanish. Therefore Qo9 = 0 implies dyy = 0. Finally,
20 = 0 yields the contradiction.
. foo = 0, foofoo # 0: W.lo.g. we can express ggo from Qpqs = 0, goo from
Qoo = 0 and g99 from @99 = 0. Moreover, we can assume cog # 0, as
otherwise all g;;’s vanish. Then Q42 and Q40 can only vanish w.c. for cop =
dog = 0. Now Qo4 = 0 implies an expression for fys. Finally, we remain with
Qo2 = 0, which can be solved w.l.o.g. for fa (item 2 and 4).
. foo = 0, foofoo # 0: W.lo.g. we can express goo from Q4 = 0, goo from
Qoo = 0 and ggo from @9y = 0. Moreover, we can assume cog # 0, as
otherwise all g¢;;’s vanish. Therefore Qou = 0 implies dys = 0. Finally,
Qo2 = 0 yields the contradiction.
. foo = foo = 0, foo # 0: W.lo.g. we can express goo from Qoo = 0, goo
from Qo4 = 0 and g9y from Qo9 = 0. Moreover, we can assume cyy # 0, as
otherwise all g;;’s vanish. Therefore Qo4 = 0 implies dyo = 0. Now Q42 and
(40 cannot vanish w.c..
. foo = foo = 0, foo # 0: W.lo.g. we can express goo from Q0 = 0, goo
from Qo4 = 0 and ggo from Qo9 = 0. Moreover, we can assume cyy # 0, as
otherwise all g;;’s vanish. Now Q4 and Q)49 cannot vanish w.c..
. foo = fao = 0, foo # 0: W.lo.g. we can express gpo from Qos = 0, gag
from Q42 = 0 and ggo from Qp2 = 0. Moreover, we can assume cgg # 0, as
otherwise all g;;’s vanish. Therefore Yoy = 0 implies dyy = 0. Then we can
express foy from Qg = 0. Finally, Qo4 = 0 yields the contradiction.
. foo = fao = foo = 0: W.lo.g. we can express gog from QQuo = 0, gpo from
Q24 = 0 and ggo from Q2 = 0. We can assume coy # 0, as otherwise all
gi;'s vanish. Then Qg4 = 0 implies dgy = 0. Finally, Qoo cannot vanish w.c..

11



3.2.2  Special case: coo =0

W.lLo.g. we can express doy = —Coodag /22 from Q33 = 0 and dog = —ca9da0/ 22
from @31 = 0. Then ()13 = 0 and ()1; = 0 can only vanish w.c. for ¢yy = 0.
Moreover, we can compute g from Qa4 = 0, go2 from Q24 = 0 and gy from
Q42 = 0. Now Qoo = —9goo foo implies two cases:

1. goo = 0: Now we can assume w.l.o.g. that ¢y # 0 holds, as otherwise all g;;’s
vanish. Due to Qps = 0 and Qo2 = 0, we have to distinguish the following
three cases:

a. doy = 0: Now Qg9 = 0 implies fpo = 0. Then we can compute foo from
Q10 = 0 and foo from Qo = 0 (item 2 and 4).
b. fao = —4foaCa0C2/C31, doy # 0: In this case we can compute fyo from
(22 = 0. We distinguish two cases:
i. dyg # 0: Now we can express foo from Qo9 = 0. Finally, Q)49 cannot
vanish w.c..
ii. dyy = 0: Now Qg9 = 0 implies foo = 0 (item 2 and 4).
c. foo = fo2 =0, d22(f220%1 + 4f02020022) # 0: We get doyy = 0 from Qa9 = 0
and fyo = 0 from @y = 0 (item 2 and 4).

2. goo # 0: Now Qgo = 0 implies fyo = 0 and from Qg = 0 we get foo = 0.
Moreover, we can express fao from (29 = 0 and fa from @z = 0. Finally,
(40 cannot vanish w.c..

3.2.8 FExcluded cases

Here we only discuss the case coo = cgo = 0 assuming that doy = dyg = 0
does not hold (cf. footnote 5): We get ¢oo = 0 and ¢op = 0 from Q3 = 0
and Q)11 = 0, respectively. Moreover, we get gos = 0 from QQqqy = 0, g0 = 0
from Qg = 0 and gge = 0 from Qo4 = 0. Therefore we do not get a reducible
composition as G is a constant function.

Due to footnote 5, we are only left with the special case coy = cgo = dog =

dog = 0. We get goo = 0 from Qqy = 0 and gop = 0 from Q42 = 0. Finally, Qo4
cannot vanish w.c..

3.8 Discussing type (SA,I)

Due to the conditions
Coodaa — Coadpz = 0, coodag — coadpo = 0. (19)

implied by Q4 = 0 and Qoo = 0, we have to distinguish the following cases:

12



3.3.1 (General case

We set Cop — ACOQ, doo = Adzo, Cop — BCQQ and d02 = Bd22 with A,B € R.
Then we can express gso from Qo = 0, go3 from oy = 0, g1p from Qo9 = 0,

go1 from Qo2 = 0, g3 from Quo = 0, goz from Qos = 0, go1 from ()3 = 0 and
g12 from ()13 = 0. Due to (33 = Q11 = 0, we have to distinguish four cases:

1. AB # 0: We distinguish further two cases:

a. cog # 0: Now we can compute fy; from (Y33 = 0. Then the remaining
equations Q117 = 0 and ()2 = 0 can only vanish w.c. for the common
factor (item 2):

COQCQQd%l - dQOdQQC%l = 0. (20)

b. ¢ = 0: Now @33 = 0 implies dys = 0. Then only ()1; = 0 remains,
which can be solved w.l.o.g. for fy; or fig, respectively (item 2).
2. A=0, B # 0: Again we distinguish two cases:
a. cog # 0: Now we can compute fy; from Y33 = 0. Then the remaining
equation Q22 = 0 can only vanish w.c. for Eq. (20) (item 2).
b. ¢ = 0: Now Q33 = 0 implies doy = 0, but this yields a contradiction as
all g;;’s equal zero.
3. B=0, A # 0: We distinguish two cases:
a. dog # 0: Now we can compute fo; from ()13 = 0. Then the remaining
equation Q22 = 0 can only vanish w.c. for Eq. (20) (item 2).
b. dyy = 0: Now Q11 = 0 implies cgo = 0, but this yields a contradiction as
all g;;’s equal zero.
4. A= B = 0: This already yields a contradiction as all g;;’s equal zero.

3.3.2  Special cases
Now we discuss the two cases, which are not covered by the general case:

1. dyy = coa = 0, cog = Bcoo, dyg = Bdyy with B € R: In this case we can
assume w.l.o.g. that dysces # 0 holds. Then we can express gso from Qg = 0
and go3 from ()24 = 0. Moreover, Q29 = 0 and Qo2 = 0 imply gi10 = 0 and
go1 = 0. We can also compute g3 from Q490 = 0, go3 from Qos = 0, go1 from
@31 = 0 and ¢p2 from ()15 = 0. We distinguish two cases:

a. B = 0: Now only (22 = 0 remains, which is a quartic homogeneous
polynomial in fjp and fp; (item 1 and 2).

b. B # 0: In this case Q33 can only vanish w.c. for fig = —dy1¢92 fo1/(dazca1).
Now the last remaining equation (22 = 0 can only vanish for (item 2):

COOCQQd%l — doonQC%l = 0 (21)

2. dog = cop = 0, coo = ACOQ, dog = Adzo with A € R: In this case we can
assume w.l.o.g. that dygcge # 0 holds. Then we get g32 = 0 from QQuo = 0
and go3 = 0 from Qo4 = 0. Moreover, we can express g9 = 0 from Qo9 = 0
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and gg; = 0 from Qg = 0. We can also compute gsg from Q49 = 0, goz from

Qos = 0, go1 from Q31 = 0 and gy5 from Q13 = 0. We distinguish two cases:

a. A = 0: Now only Q22 = 0 remains, which is a quartic homogeneous
polynomial in fiy and fp; (item 1 and 2).

b. A # 0:In this case ()33 can only vanish w.c. for f190 = —ci1dag fo1/(co2d11)-
Now the last remaining equation @22 = 0 can only vanish for (item 2):

COQCQOd%l - dogdgoC%l = 0. (22)

3.3.8 FEzxcluded cases

Here we only discuss the case coo = cgo = 0 assuming that doy = doyy = 0
does not hold (cf. footnote 5): In this case we get go3 = 0 from Q94 = 0 and
go3 = 0 from Qou = 0. Moreover, Q33 = 0 implies g3» = 0 and Q3 = 0 yields
g12 = 0. Then we can express gzg from Q4 = 0, g1 from Qo9 = 0, go; from
Q22 = 0 and go; from Qo2 = 0. Due to Qua = daacs, and Qoo = daocdy, we have
to distinguish three cases:

1. o0 = cop = 0: Then @Q3; = 0 implies dyy = 0 and from Q;; = 0 we get
doo = 0, which already yields the contradiction as all g;;’s equal zero.

2. Co9 = dog = 0: Now Q31 = 0 implies again dgs = 0. Finally, Q1; = 0 remains,
which is homogeneous quadratic in fy; and fio (item 1 and 2).

3. dys = coo = 0: Now Q)17 = 0 implies dog = 0. Finally, (J3; = 0 remains,
which is again homogeneous quadratic in fy; and fio (item 1, 2 and 4).

Due to footnote 5, we are only left with the special case cos = cgo = dog =
dy = 0. We get g3 = 0 from Qg = 0, g3o = 0 from Q4 = 0, go3 = 0
from Q33 = 0, go1 = 0 from Q31 = 0, go3 = 0 from Qs = 0, g10 = 0 from
Q20 =0, g12 = 0 from Q22 = 0 and go; = 0 from Qo2 = 0, which yields the
contradiction.

3.4 Discussing type (SA,II)

In this case we solve Q49 = 0 for gog, Qos = 0 for gpo, Qs = 0 for goo and
Qo2 = 0 for ggg. Due to Qg = 0 and @33 = 0, the conditions cosc990 = 0 and
doocop = 0 have to hold, which imply the following four cases:

1. ¢99 = 99 = 0: Therefore we can assume w.l.o.g. that cps # 0 holds. Due to
Q24 = dyadgac?|, we have to distinguish two cases:

a. dog = 0: Then Q13 = 0 implies dpz = 0. Now go9 = go9 = go2 = 0 holds

and we do not get a reducible composition as G is a constant function.

b. dyg # 0: Therefore Qo4 = 0 implies dgo = 0. Then Q)13 = 0 and Q)17 =0

imply cgg = 0 and dyy = 0, respectively. This already yields the contra-
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diction as all g;;’s equal zero.
2. o9 = dogs = 0, co9 # 0: Now Q94 cannot vanish w.c..
3. dys = dogz = 0: W.lo.g. we can assume that dsy # 0 holds. Due to Qo4 = 0,
we distinguish two cases:
a. cog = 0: Then Q31 = 0 implies cog = 0. Now gao = g20 = go2 = 0 holds
and we do not get a reducible composition as G is a constant function.
b. ¢o9 # 0: Therefore Qg4 = 0 implies ¢39 = 0. Then @Q3; = 0 and Q11 = 0
imply dog = 0 and coy = 0, respectively. This already yields the contra-
diction as all g;;’s equal zero.
4. cop = dpe = 0, dag # 0: Now Q13 = 0 implies cog = 0. Moreover, ()31 and
(11 can only vanish w.c. for doy = 0. Again all g;;’s equal zero.

3.4.1 Fxcluded cases

Here we only discuss the case cgs = cpe = 0 assuming that dys = dyg = 0 does
not hold (cf. footnote 5): Now we get goo = 0 and ggo = 0 from Qo4 = 0 and
Qo4 = 0. Then Q33 = 0 and Q117 = 0 imply c9 = 0 and cypp = 0, respectively.
Finally, Qg2 = 0 and Q49 = 0 yield goo = goo = 0, a contradiction.

Due to footnote 5, we are only left with the special case cos = cgo = dog =
dso = 0. Now we get goo = 0 and g99 = 0 from Qg = 0 and Q49 = 0. Then
R20 = 0 and Qpq = 0 yield goo = go2 = 0, a contradiction.

3.5  Discussing type (AS,I)

W.l.o.g. we can express gig from Q49 = 0, go3 from Q)33 = 0, g1 from Q31 =0
and g1 from Q4 = 0. Due to the conditions implied by Q4 = Qoo = 0 (cf.
Eq. (19)), we distinguish again following cases:

3.5.1 (eneral case

We set Cop — ACOQ, doo = Adgo, Cop — BCQQ and d02 = Bdgg with A,B € R.
Now we distinguish two cases:

1. B # 0: We distinguish further two cases:

a. ¢ # 0: Under this assumption we can compute fo; from Qoy = 0.
Moreover, we can express f1o from Q22 = 0 and fo; from Q13 = 0. Now

(o4 can only vanish w.c. for:
i. dys = 0: W.Lo.g. we can assume that dyg # 0 holds. Now Qg2 can

only vanish w.c. for:

* cgg = 0: Then ()9 = 0 implies A = 0. Now all conditions are
fulfilled, but we have fy; = fo1 = 0 and therefore we get a special
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case of (AAIV).

* A =0, cpo # 0: Now Q99 = 0 already yields the contradiction.

ii. A= B, dy # 0: Then Qg2 = 0 implies ¢go = 0. Now we get dyg = 0
from Q99 = 0 (item 2, 3 and 4).

iii. cop = daadanc?y/(c2ad?), (A — B)da # 0: Now Qo9 can only vanish
w.c. in one of the following three cases:
* dyy = 0: All conditions are fulfilled identically (item 2 and 4).
x dog = d}AJ[(A — B)?dys], day # 0: Now Q11 cannot vanish w.c..
x dog = d3 B/[(A — B)?das), dag # 0: Again @)1, cannot vanish w.c..

b. ¢ = 0: Then Q94 = 0 implies dyy = 0. Finally, we get A = 0 from
()20 = 0, but this already yields a contradiction as all g;;’s equal zero.

2. B = 0: Moreover, we can assume A # 0, as otherwise all g;;’s would vanish.

Therefore Qo4 can only vanish w.c. for:

a. co2 = 0: Therefore we can assume ¢y # 0 w.l.o.g.. Then we can express
fio from Qo9 = 0 and f5; from QQp2 = 0. Moreover, Qoo can only vanish
w.c. for dys = 0. Then @11 = 0 implies fo; = 0 (item 1, 2 and 4).

b. dys = 0, coe # 0: We can assume Acoodyg # 0 w.l.o.g., as otherwise all
gi;’s would vanish. Therefore we can express fip from Qg = 0, fo; from
@11 = 0 and fy; from Qg = 0. Finally, Q25 cannot vanish w.c..

3.5.2  Special cases
Now we discuss the two cases, which are not covered by the general case:

1. dyy = coa = 0, co9 = Becag, dygo = Bdyy with B € R: In this case we
can assume w.l.o.g. that doscos # 0 holds. Due to QY99 = 0, we have to
distinguish the following two cases:

a. dop = 0: We can assume B # 0, as otherwise all g;;’s would vanish.
Therefore we can express fo; from Q24 = 0 and fio from (22 = 0. Then
we get for = 0 from Q13 = 0 and ¢op = 0 from Qpq = 0 (item 2, 3 and
4).

b. fio = 0, doy # 0: Now Q1 = 0 implies fo; = 0 and from Q3 = 0 we get
coo = 0. We distinguish two cases:

i. B = 0: Then only Q22 = 0 remains, which is a homogeneous
quadratic equation in f3y and fy; (item 1, 2 and 4).

ii. B # 0: Now Qo4 = 0 implies an expression for fo;. Finally, Qs
cannot vanish w.c..

2. dog = o9 = 0, cgg = Acga, dog = Adyy with A € R: Now we can assume
w.l.o.g. that dyycos # 0 holds. Then )13 = 0 implies dyp; = 0. Moreover,
we can assume cy # 0, as otherwise all g;;’s would vanish. Then we can
express fig from Qo9 = 0 and fy; from @1; = 0. We distinguish two cases:
a. A = 0: Then only )92 = 0 remains, which is a homogeneous quadratic

equation in f3p and fo; (item 1, 2 and 4).
b. A # 0: Now Qg2 = 0 implies an expression for fy1. Finally, Q2 cannot
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vanish w.c..

3.5.3 FEzxcluded cases

We start by discussing the case cos = cge = 0, under the assumption that
doo = doy = 0 does not hold. We express g15 from Q4o = 0, g19 from Q49 = 0,
goz from Q33 = 0 and go; from Q3; = 0. Then we get Quo = dagcy:

1. dsy = 0: Now @99 = 0 implies dyg = 0. Moreover, we can assume cgy # 0,
as otherwise all g;;’s would vanish. Then we can express fo; from @13 = 0
and fip from @117 = 0. Now we get fo = 0 from Qoq = 0, cgo = 0 from
Qo2 = 0 and dpo = 0 from Q92 = 0. All conditions are fulfilled, but we have
for = f21 = 0 and therefore we get a special case of (AA,IV).

2. coo = 0, dyy # 0: Moreover, we can assume cyy 7# 0, as otherwise all g;;’s
would vanish. Then ()4 can only vanish w.c. for:

a. fa1 = 0: Then Qp2 = 0 implies fo; = 0 and @Q1; = 0 yields fip = 0. Then
Q22 = Q20 = 0 imply dpo = dgg = 0. Now all conditions are fulfilled, but
we have fo; = fo1 = 0 and therefore we get a special case of (AAIV).

b. dys = 0, fo1 # 0: Then we can express fig from ()59 = 0 and fy; from
@11 = 0. Now (Qp2 can only vanish w.c. for:

i. doo = 0: Then only ()22 = 0 remains, which is a homogeneous
quadratic equation in f3y and fy; (item 1, 2 and 4).

. fo1 = —c11din fao/ (c20d20), doo # 0: Qa2 = 0 implies dpe = 0, which
yields a solution (item 1, 2 and 4).

The discussion of the second excluded case dyy = doy = 0, under the assump-
tion that cgs = cgo = 0 does not hold, can be done as follows: We get g1 =0
from Q42 = 0, g10 = 0 from Q4 = 0, go3 = 0 from Q33 = 0 and go; = 0 from
Q31 = 0. As all g;;’s equal zero, we get a contradiction. The discussion of the

special case cog = cpa = dog = dog = 0 can be done analogously to the second
excluded case.

3.6 Discussing type (AS,II)

W.lo.g. we can express gi3 from Quq = 0, g2 from Q33 = 0, g from Q31 =0
and g1; from Q4 = 0. Due to the conditions

daoCao — doocaz = 0, coodag — dpaco2 = 0, (23)

implied by Q4 = 0 and Qo4 = 0, we have to discuss the following cases:
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3.6.1 (General case

We set Cop — ACOQ, d02 = Adgg, Cop — BCQQ and doo = Bdgo with A,B € R.
Now we distinguish two cases:

1. B # 0: We have to distinguish further two cases:

a. 9 # 0: Now Q99 = 0 implies an expression for foq. Moreover, we can
express fi1 from Qg = 0 and fyy from Qi1 = 0. Then Qy can only
vanish w.c. in one of the following three cases:

i. dyg = 0: Therefore we can assume w.l.o.g. that dys # 0 holds. Now
Q13 and Qg can only vanish w.c. for ¢y = 0. Finally, the last
remaining equation Qo4 = 0 implies A = 0 (item 1, 2 and 4).

ii. A= B, dy # 0: We get das = 0 from @2y = 0 and cpo = 0 from
Qo2 = 0. All conditions are fulfilled, but we do not get a reducible
composition without a spherical coupler component as g;3 = 0 and
g11 # 0 hold. Moreover, g;; cannot vanish w.c..

lii. dyg = coacand?/(daoc?;), (A — B)dyy # 0: Now Qg2 can only vanish
w.c. for one of the following three cases:

* cga = 0: All conditions are fulfilled, but we do not get a solution
as g13 = 0 and g1; # 0 hold. Moreover, g;; cannot vanish w.c..

*x Coo = Ac?, /(coa(A — B)?), o2 # 0: Then Q13 cannot vanish w.c..

x Cog = Bty /(coa(A — B)?), coa # 0: Then @13 cannot vanish w.c..

b. ¢ = 0: Now Q99 = 0 implies dyy = 0. Therefore we can assume w.l.o.g.
that doy # 0 holds. Then we get A = 0 from ()99 = 0, which already
yields the contradiction as all g;;’s vanish.

2. B = 0: W.lo.g. we can assume Acpadas # 0, as otherwise all g;;’s would
vanish. Due to Qo = A?c3,d3,, we have to distinguish two cases:

a. cgo = 0: Then we can express fi; from Qoy = 0, foo from Q13 = 0 and
fao from Q2 = 0. Now Qo9 = 0 implies dyg = 0 (item 1, 2 and 4).

b. dyy = 0, cpa # 0: Then we can express f1; from Qay = 0, foo from Q3 =0
and fy from Qg2 = 0. Now Q92 cannot vanish w.c..

3.60.2 Special cases
Now we discuss the two cases, which are not covered by the general case:

1. coo = day = 0, co9 = Bcag, dyg = Bdsyy with B € R: W.l.o.g. we can assume
Coadag # 0. Due to Qo4 = 0, we have to distinguish two cases:

a. dpz = 0: W.lLo.g. we can assume B # 0, as otherwise all g;;’s would

vanish. Moreover, we can express fi; from Qg = 0, fy from Qg = 0

and fypo from Qg9 = 0. Finally, the last remaining equation (;; = 0

implies cgg = 0. All conditions are fulfilled, but we do not end up with a

solution as g3 = 0 and g;; # 0 hold. Moreover, g;; cannot vanish w.c..

b. fi1 =0, doy # 0: We get foo = 0 from Q13 = 0 and ¢y = 0 from Q,; = 0.
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Then we distinguish two cases:
i. B = 0: Now only the equation Q2o = 0 remains, which is a homo-
geneous quadratic polynomial in f3; and fo (item 1, 2 and 4).
ii. B # 0: In this case Qo9 = 0 implies an expression for foq. Then Qao
cannot vanish w.c..

2. Cog = dog = 0, cop = Acga, doo = Adyy with A € R: W.l.o.g. we can assume
coadao # 0. As a consequence (J1; = 0 implies dgg = 0. Moreover, we can
assume ¢y # 0, as otherwise all g;;’s would vanish. Then we can express
Ji1 from Q24 = 0 and foo from Q13 = 0. We distinguish two cases:

a. A = 0: Now only the equation Q22 = 0 remains, which is a homogeneous
quadratic polynomial in f3; and fo (item 1, 2 and 4).

b. A # 0: Under this assumption (Jgpo = 0 implies an expression for fo.
Then ()92 cannot vanish w.c..

3.6.3 FEzxcluded cases

We start by discussing the case cos = cge = 0, under the assumption that
dos = dog = 0 does not hold. In this case we get g3 = 0 from QQyy = 0 and
go2 = 0 from @33 = 0. Moreover, we can express ¢i; from Q0 = 0 and ggg
from (Y37 = 0. Trivially, this cannot yield a reducible composition without a
spherical coupler component.

The discussion of the second excluded case day = doy = 0, under the assump-
tion that cgs = cgo = 0 does not hold, can be done as follows: We get g13 =0
from Qus = 0, goz = 0 from @33 = 0, g11 = 0 from Q42 = 0 and gop = 0 from
Q31 = 0. As all g;;’s equal zero, we get a contradiction. The discussion of the
special case coy = cp2 = dag = doyg = 0 can be done analogously to the second
excluded case.

3.7 Discussing type (AS,I11)

W.lo.g. we can express gos from QQuq = 0, goo from Qg = 0 and goy from
Q40 = 0. Then @33, @31, Q13 and Q11 can only vanish w.c. for:

Caadoz +coodaa = 0, Caadoo+c20d20 = 0, coadoz+ coodaz = 0, coadoo+ coodao = 0.
Therefore we have to discuss the following three cases:

1. We set Coo = ACQQ, do() = —Adgo, Cop = ACQQ and d02 = —Adgg with A € R.
Then we can assume Acyy # 0, as otherwise all g;;’s would vanish. We
distinguish two cases:

a. day # 0: Now Qo4 = 0 implies an expression for foo and Qgq = 0 can be
solved for fyo. Then ()95 cannot vanish w.c..
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b. dys = 0: Now Qa2 = 0 implies an expression for foq and QQpo = 0 can
be solved for fyy. Then the only remaining equation Q99 = 0 implies
dy = 0 (item 1, 3 and 4).

2. Cop — dgo = Cop = do() = O, Cop — ACQQ and dog = —Adgg with A € R: Now
()22 = 0 implies foo = 0 and from Qo = 0 we get foo = 0. Then Qo = 0
implies dgy = 0 (item 1, 2, 3 and 4).

3. €90 = dog = €9 = dog = 0, cgg = Acgo and dog = —Adyy with A € R: In this
case we get a contradiction, because all g;;’s vanish.

3.7.1 FEzxcluded cases

We start by discussing the case cos = cpo = 0, under the assumption that
dos = dsy = 0 does not hold. Now we get goy = 0 from Y4y = 0. Moreover, we
can express ggo from (Que = 0 and ggg from Q49 = 0. Finally, ()31 = 0 implies
coo = 0, but this already yields a contradiction as all g;;’s vanish.

The discussion of the second excluded case dyy = dog = 0, under the assump-
tion that cgs = cgo = 0 does not hold, can be done as follows: We get gos = 0
from Qu = 0, goz = 0 from Quo = 0 and gop = 0 from Q4 = 0. As all g;;’s
equal zero, we get a contradiction. The special case co9 = oo = dog = dog =0
can be discussed analogously to the second excluded case.

3.8 Discussing type (AA,I)

W.lo.g. we can express ¢34 from QQuq = 0, g39 from Q49 = 0, gog from Q33 = 0,

g3z from Q2 = 0, go1 from Q31 = 0, g14 from Q4 = 0, g19 from Q2 = 0, gos
from Q13 = 0, go1 from Q)11 = 0 and g15 from Q95 = 0. Now Qoy and Qg imply

Coodaz — Coadoz = 0, Cood20 — Co2doo = 0. (24)
Therefore we have to distinguish the following three cases:

1. coo = Aco, dogg = Adoy and dpy = Adse with A € R: Then Qg2 can only
vanish w.c. for Acge = 0 (both cases yield item 4).

2. oo = o2 = dog = 0: This already yields a solution (item 4).

3. oo = o2 = doy = 0: This also yields a solution (item 4).

3.8.1 FEzxcluded cases
We start by discussing the case cos = cge = 0, under the assumption that
dy = dyy = 0 does not hold. In this case we can compute all g;;’s as in the

general case. Then we remain with Quo = daocd, and Qoo = dogc,, which
implies cgp = 0 (item 1 and 4).
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The discussion of the second excluded case dyy = dyy = 0, under the assump-
tion that cps = co2 = 0 does not hold, can be done as follows: Again all g;;’s
can be computed as in the general case. Due to Qo4 = coad3y and Quo = coad?,
we have to distinguish two cases:

1. ¢o2 = 0: The last remaining equation Qe = 0 implies cggp = 0 (item 4).
2. doy = dpz = 0: Now Qo2 = 0 implies coo = 0 (item 1 and 4).

The discussion of the special case coy = cgo = dag = dyg = 0 shows that the
computation of the g;;’s as done in the general case already yields a contra-
diction (all g;;’s equal zero).

3.9 Discussing type (AA,II)

W.lo.g. we can express goq from Qg = 0, goo from QQue = 0, go from Q4o = 0,

g13 from Q33 = 0, g1 from Q31 = 0, gos from Qa4 = 0, g2 from Qo2 = 0 and
goo from Qo9 = 0. Now we distinguish the following cases:

3.9.1 General case: cardyy + Cogdas # 0

Under this assumption we can compute fyo from ()13 = 0. Then )17 can only
vanish w.c. if C or D are orthogonal; i.e. if one of the following equations holds:

CooC22 — Co2C20 = 0, doodag — dpaday = 0. (25)

1. C is orthogonal: W.l.o.g. we can set cog = Acge and cog = Acge with A € R.

Now it can easily be seen that the remaining equations Qo = Qo2 = Qoo =

0 can only vanish w.c. for the following two cases:

a. coa = 0: This yields a solution (general case of item 4).

b. dyy = dpz = 0: This also yields a solution (item 4).

2. D is orthogonal: W.l.o.g. we can set dog = Adyg and dgs = Adas with A € R.

a. A =0: We get a solution (general case of item 4).

b. A # 0: Under this assumption Qs and (QQyo can only vanish w.c. if their
common factor F[7] is fulfilled identically. Therefore we compute the
resultant of F' and (Qypo with respect to A, which can only vanish w.c.
for:

i. cg2 = 0: Now we distinguish again two cases:
* ¢op = 0: This already yields a solution (item 4).
* cop # 0: Recomputation of the resultant of F' and Qoo with respect
to A implies oy = ¢31/(4cnp). Then F' = 0 yields g9 = 0. Finally,
Qo2 cannot vanish w.c..
ii. co9 = 0, cg2 # 0: Now the condition of the heading of section 3.9.1
yields co9 # 0. Recomputation of the resultant of F' and Qg with
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respect to A implies cpo = ¢, /(4co). Now F = 0 yields cgo = 0.
Finally, Qg2 cannot vanish w.c..

iii. cogg = Acga, o9 = Acoy with A € R and cgocoy # 0: Now F' cannot
vanish w.c..

3.9.2  Special case: caadys + Capdas =0

As for coo = dyy = 0 the expression )13 cannot vanish w.c., we can set w.l.o.g.
Coo = Acgy and dys = —Adyy with A € R. Now (D13 can only vanish w.c. for:

1. doy = 0: W.l.o.g. we can assume that dyy # 0 holds. Moreover, we have to
distinguish the following cases:

a.

co2(doo + Adyg) # 0: Under this assumption we can compute foo from
Q11 = 0. Now Qg2 can only vanish w.c. for dgg = 0 or ¢gg = Acge. In
both cases we do not get a reducible composition without a spherical
coupler component as gsy = g13 = goa = 0 and g1 # 0 hold. Moreover,
g11 cannot vanish w.c..

c9o = 0: Therefore we can assume w.l.o.g. that cp; # 0 holds. Now
Qo2 = 0 implies cgp = 0 and from @)1; = 0 we get doy = 0. This already
yields a contradiction as all g;;’s equal zero.

doo = —Adsg, c29 # 0: Then Q11 = 0 implies ¢og = Acge. We can assume
A # 0, as otherwise all g;;’s would vanish. Therefore QQp2 = 0 implies an
expression for foo. Finally, Qg can only vanish w.c. for cos = 0 (item 2
and 4).

2. cgo = Acga, day # 0: Q11 can only vanish w.c. for:

a.

b.

doy = —Adyy: We can assume A # 0, as otherwise all g;;’s would vanish.
Under this assumption Qg4 and Q)gg can only vanish w.c. if their common
factor G[4] is fulfilled identically. Therefore we compute the resultant of
G and Qg2 with respect to A, which can only vanish w.c. for cg fog —
22 foo = 0:

i. oo # 0: Now we can express fyo from the last condition. Then G
can only vanish w.c. for cpe = 0 (item 2).

ii. cgg = cop = 0: In this case G = 0 implies fyo = 0 (item 1 and 4).

co2.fo0 — 22 foo = 0, dog + Adsg # 0: We distinguish further two cases:

i. c99 # 0: Now we can express foo from the last condition. Then it
can easily be seen that the remaining equations Qgs = 0, Qo2 = 0
and Qoo = 0 can only vanish w.c. for ¢go = 0 (item 4).

ii. 99 = cp2 = 0: Now the remaining equations Qg = 0, Qg2 = 0 and
Qoo = 0 can only vanish w.c. for foo = 0 (item 1 and 4).
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3.9.3 FEzxcluded cases

We start by discussing the case cos = cpo = 0, under the assumption that
dy = dyy = 0 does not hold. In this case we can compute all g;;’s as in the
general case. Then we distinguish two cases:

1. ¢99 # 0: Under this assumption we can express fog from Q13 = 0. Then the
remaining equations Qg2 = 0 and Q)g9 = 0 can only vanish w.c. for cgo = 0 or
doz = doo = 0. In both cases we do not get a solution as go4 = g13 = goa = 0
and g1; # 0 hold. Moreover, g;; cannot vanish w.c..

2. cop = 0: Now Q17 = 0 implies c¢go = 0. Then the remaining equations
Qo2 = 0 and Qoo = 0 can only vanish w.c. for:

a. foo = 0: This yields a solution (item 1 and 4).
b. dos = doo = 0, foo # 0: This yields a contradiction as all g;;’s vanish.

The discussion of the second excluded case dyy = doy = 0, under the assump-
tion that cys = co2 = 0 does not hold, can be done as follows: Again all g;;’s
can be computed as in the general case. Then @1, = 0 implies dyy = 0 and
from Q13 = 0 we get dpo = 0. W.Lo.g. we can assume that cyg # 0 holds,
as otherwise all g;;'s would vanish. Therefore we can solve Qo2 = 0 for foo
w.l.o.g.. We get a further solution (item 1 and 4).

The discussion of the special case cos = cpa = dos = dyy = 0 shows that

the computation of the g;;’s, as done in the general case, already yields a
contradiction (all g;;’s equal zero).

3.10  Discussing type (AA,III)

W.lo.g. we can express go3 from (QQuy = 0, g from Que = 0, g12 from QY33 = 0,
g1o from Q31 = 0, go3 from Q24 = 0 and gn; from Qo2 = 0. Now (g and Qoo
can only vanish for:

Coodao — doocaz = 0, coodao — doocoz = 0. (26)

3.10.1 General case

In this case we set dog = Adsg, cog = Acgs and cog = Acga with A € R. Then
we have to discuss two cases:

1. A = 0: We can assume dyp # 0, as otherwise all g;;’s would vanish. We

distinguish the following cases:
a. 22(2fr0Ceados + farc11d11) # 0: Now we can express fo; from Q3 = 0.
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i. fio = 0: The last remaining equations QQoy = 0 and @y = 0 can
only vanish w.c. for ¢y = 0 (item 1 and 4).

ii. dos = 0, f190 # 0: Now Q11 = 0 can only vanish if a homogeneous
quadratic equation in fy; and fiq is fulfilled (item 1 and 4).

iii. dayofio # 0: Now Qos and Qo can only vanish w.c. for H[3] = 0
and I[5] = 0, respectively. Both factors H and I are homogeneous
quadratic in fy; and fig. Therefore we compute the resultant of H
and [ with respect to fip, which can only vanish w.c. for:

2 2
d20d22011 + 4dagdpacoacar — 002022d11 =0.

If this condition is fulfilled, then the remaining equations can be
solved w.c. (item 2 and 4).

b. c9o = 0: Therefore we can assume w.l.o.g. that cps # 0 holds. Then we
can compute fy; from @13 = 0. Now Q)13 = 0 implies dyg = 0. Then the
last remaining equation Qps = 0 can be solved for fo; (item 1, 2 and 4).

c. 2f10C22doz + forciidin = 0 and coy # 0: Therefore we can solve this
equation w.l.o.g. for fip. Then )13 = 0 implies dyy = 0 and from ()1; =0
we get dyy = d?,/(4dpy). Moreover, the last remaining equation Qg4 = 0
can be solved for fy; (item 1 and 4).

2. A # 0: We distinguish two cases:

a. o9 # 0: In this case we can express fig from Q99 = 0. Now )11 = 0 can

only vanish w.c. for:
i. dyg = 0: We can express fo; from Qpy = 0. Qo4 can only vanish w.c.
for coo = 0 (item 2 and 4) or dpz = 0 (item 1 and 4).
ii. dog = Adas, doy # 0: Now we can express fo; from Qg = 0. More-
over, (J13 and Qo4 can only vanish w.c. for dyy = 0 (item 3).
b. ¢392 = 0: Now Q99 = 0 implies dyy = 0. Finally, Qg2 cannot vanish w.c..

3.10.2  Special cases
Now we discuss the two cases, which are not covered by the general case:

1. ¢c99 = dogg = dog = 0: Therefore we can assume coodas # 0. We distinguish
further three cases:

a. cog = 0: Then Qo = 0 implies c¢oy = 0. Moreover, we can assume dpy # 0,
as otherwise all g;;’s would vanish. Then we can solve the remaining two
equations Q13 = 0 and Qo4 = 0 for fio and fo; (item 1, 2 and 4).

b. fio = 0, o9 # 0: Now we can express fo; from Qp = 0. Moreover,
(13 = 0 implies dps = 0 (item 1 and 4).

c. fiocoo # 0: In this case we compute the resultant of Q)17 and (g2, which
can only vanish w.c. for:

i. dyy = 0: Now Q11 = 0 implies cgo = 0, which yields a contradiction
as all g;;’s vanish.
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ii.

111

co2 = 0, dog # 0: We can express fig # 0 from Q1; = 0. Moreover,
we can solve Q13 = 0 for fy;. Then Qs can only vanish w.c. for
coo =0 (item 1, 2 and 4) or dps = 0 (item 1 and 4).

coo = 0, coadae # 0: In this case (11 is a factor of Q2. Therefore we
compute the resultant of (Q1; and Q13 with respect to fi9, which can
only vanish w.c. for (4dcgacog — ¢2,)K[4] = 0, where K is a homoge-
neous quadratic expression in fy; and fp;. Moreover, K equals the
numerator of the last remaining equation Qo = 0 (beside Q11 = 0
and Q13 = 0). As Qo4 = 0 has to be fulfilled, we do not have to
discuss the case 4cgacag — ¢, = 0. Clearly, the other case K = 0
implies a solution (item 1, 2 and 4).

2. ¢coo = dogg = dyg = 0: Therefore we can assume coodos # 0. Then Qg can
only vanish w.c. for:
a. coo = 0: Now Q17 and Qg2 can only vanish w.c. for:

1.
ii.

fi0 = for = 0: Then Q13 = 0 implies cqo = 0 (item 1, 2 and 4).

The common factor L[3] of Q11 and Qg vanishes, where L is quadratic
homogeneous in fy; and fi9. Now the resultant of L and ()13 can
only vanish w.c. for (4cgoean — ¢3)M[4] = 0, where M is a homoge-
neous quadratic expression in fy; and fo;. Moreover, M equals the
numerator of the last remaining equation Qpy = 0 (beside L = 0
and Q13 = 0). As Qs = 0 has to be fulfilled, we do not have to
discuss the case 4cgocoy — 3y = 0. Clearly, the other case M = 0
implies a solution (item 1, 2 and 4).

b. fio =0, co9 # 0: Qo2 can only vanish w.c. for:

1.
ii.

for = 0: Now Q13 = 0 implies oo = 0 (item 2 and 4).
fOl = COOle/CQO with Coo 7é 0: Now ng =0 1mphes dog =0 (1tem 1
and 4).

3.10.3 FEzxcluded cases

We start by discussing the case cos = cge = 0, under the assumption that
das = dyp = 0 does not hold. We can compute all g;;’s as in the general case.
Due to Quo = daocdy and Qoo = daocdy, we have to distinguish two cases:

1. dyy = 0: Therefore we can assume dsy # 0. Now the resultant of 1; and
Qo2 with respect to fo; can only vanish w.c. for dygcgN[5] = 0:

a.

co0 = 0: Now we can assume dpy # 0, as otherwise all g;;’s would vanish.
Then Q)59 = 0 implies doy = 0. Finally, the remaining equations )1; = 0
and Qoo = 0 can be solved for fig and fy; (item 1, 2 and 4).

dops = 0, o9 # 0: Now we can express fo; from Qg2 = 0. Then only
(20 = 0 remains, which is a homogeneous quadratic equation in fo; and
fio (item 1).

NI[5] =0, dpacap # 0: As N and the numerator of Q99 are homogeneous
quadratic expressions in fy; and fj9, we compute the resultant of N and
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()20 with respect to fi9. This resultant can only vanish w.c. for (item 2):
doodoacty + 4concaodoodas — concaodiy = 0. (27)

2. oo = o9 = 0, dyy # 0: Then Q99 = 0 implies dyg = 0. Now we can assume
dos # 0, as otherwise all g;;’s would vanish. Then ()17 and Qg2 can only
vanish w.c. for fo; = fip = 0 (item 1 and 4).

The discussion of the second excluded case dyy = doyy = 0, under the assump-
tion that cys = cp2 = 0 does not hold, can be done as follows: Again all g;;’s
can be computed as in the general case. Due to Qo = coad3, and Qoo = coad?,
we only have to discuss the case dyg = 0. Then ()1, can only vanish w.c. for:

1. co9 = 0: Now we can assume dgy 7# 0, as otherwise all g;;’s would vanish.
Then Qo2 = 0 implies ¢gp = 0. Finally, we can solve the remaining equations
Q13 =0 and Qo4 = 0 for fip and fo; (item 1 and 4).

2. fi0 =0, 9 # 0: Then Q13 = 0 implies dyps = 0. We can solve Qg2 = 0 for
for (item 1 and 4).

The discussion of the special case cos = cpa = dos = dyy = 0 shows that
the computation of the g;;’s, as done in the general case, already yields a
contradiction (all g;;’s equal zero).

3.11 Discussing type (AA,IV)

W.lo.g. we can express g4 from Quq = 0, g2 from Qg = 0, g1¢ from Q49 = 0,
go3 from (Y33 = 0 and gp; from Q)37 = 0. Now Qps and Qoo can only vanish for:

Coodaz — Coadoz = 0, Cood20 — Co2doo = 0. (28)
Therefore we have to discuss the following cases:

1. Cop = ACQQ, dog = Adgg and doo = Adgo with A € R: Due to Q02 - ACde%l’
we distinguish two cases:
a. A =0: Now we can assume cyy # 0, as otherwise all g;;’s would vanish.
Now Q24 and Q9o can only vanish w.c. for fip = 0. Then Q99 = 0 implies
Co2 = 0 (1tem 4)
b. cp2 =0, A # 0: Now Q13 and (Q1; can only vanish w.c. for:
i. fio = 0: Then Q24 = 0 implies dys = 0. Finally, Q)59 = 0 yields the
contradiction.
il. cog = —Acoa, fio # 0: Then @y and QY99 can only vanish w.c. for
f30 = 4Af10¢3,/cl1. Now Qo = 0 yields the contradiction.
2. cgp = Cog = dog = 0: Therefore we can assume coodyg # 0. Now oy can
only vanish w.c. for:
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a. fio = 0: Then Q22 = 0 implies dpz = 0 and from Q29 = 0 we get dpg = 0
(item 1, 2 and 4).
b. dos =0, fi0 # 0: Now Q9o = 0 implies ¢o9 = 0 and from @Q1; = 0 we get
doo = 0. This already yields a contradiction as all g;;’s vanish.
3. cop = Co2 = dog = 0: Therefore we can assume coodoy # 0. Now Qoo can
only vanish w.c. for:
a. fio = 0: Then Qg = 0 implies dyo = 0 and from Qoy = 0 we get dgy = 0
(item 1, 2 and 4).
b. doo = 0, f10 # 0: Now Q20 = 0 implies cyg = 0 and from Q13 = 0 we get
dpe = 0. This already yields a contradiction as all g;;’s vanish.

3.11.1 FEzxcluded cases

We start by discussing the case cos = cge = 0, under the assumption that
dy = dyy = 0 does not hold. In this case we can compute all g;;’s as in the
general case. Due to Qua = daocdy, and Qoo = dapcdy, we get cgo = 0. Then
Q11 = 0 implies f19 = 0. Moreover, we get dps = 0 and dpy = 0 from Q92 = 0
and Qa0 = 0 (item 1 and 4).

The discussion of the second excluded case dyy = doy = 0, under the assump-
tion that cps = co2 = 0 does not hold, can be done as follows: Again all g;;’s
can be computed as in the general case, but this already yields the contradic-
tion as all g;;’s equal zero. We get the same contradiction for the special case
Cog = Co2 = dog = dog = 0. This finishes the study of all cases.

If we consider those solutions of the case study, which only correspond with
item 4 of Theorem 1, one will see that these cases either belong to the case
coo = co2 = 0 or dyg = dpz = 0. We get the remaining conditions cog = cog = 0
or dog = dgy = 0 given in item 4 of Theorem 1 by exchanging the variables ¢,
and ?3 in the eleven possible reducible compositions given in Egs. (5-15).

Such an exchange does not cause a further solution for item 3 of Theorem 1
as the general solution of this case stems from a (SS) case. This finishes the
proof of Theorem 1. i

4 Geometric interpretation of reducible compositions

Item ¢ of Corollary 1 is a special case of item 4 of Theorem 1. As item d of
Corollary 1 is a special case of item 3 and 4 of Theorem 1, it can also be
written as:

® coo = Acpy, 0= Acpa, doy = Adoz, doo = do =0, doadaz # 0,

® Cy0 = Acga, doo = Adgg, dog = Adza, doo =dao =0, o2 # 0.

27



Fig. 2. a) Reducible spherical composition (cf. [12]) obeying Dixon’s angle condition
<10A1B; = +<l3B2As. b) Reducible planar composition (cf. [12]) with both
components implied by the Dixon’s angle condition <t/10A1 By = £ (7 —|<tI30B243]).
(Courtesy H. Stachel)

Therefore we only have to clarify the geometric meaning of the four items of
Theorem 1:

ad 1)

ad 2)

ad 3)

ad 4)

It was already shown in [4], that spherical four-bars with coy = coo =0
are spherical isograms with «; = (6, and v, = d;. By replacing either
Iy or Iy by its antipode, we get the corresponding mechanism with
ag + 1 =7 and vy, + 07 = 7, which is given by ¢y = cpo = 0 (cf. [9]).
It was shown in [12], that the given algebraic conditions are equivalent
to Dixon’s angle condition <tl1gA;B; = +<tI30ByA, (cf. Fig. 2a). By
replacing either [1g or I3y by its antipode, we get the corresponding
focal mechanism given by the condition <t/10A1B; = +<t390BsA,.

It can immediately be seen that both couplers are orthogonal. Moreover

it can easily be checked by direct computations that the condition A =

B corresponds to the geometric condition that the diagonals A;l5 and

Iy By coincide (cf. Fig. 3a). All these geometric characterizations are

invariant with respect to the replacement of vertices by their antipodal

points.

We distinguish the following cases:

*x cop = o2 = 0: A straight forward computation based on Egs. (2)
and (3) yields a; = §; and 8; = 71 (cf. Fig. 3b). By replacing either
Ay or Iy by its antipode, we get the corresponding mechanism with
a1+ 01 = and (1 + 1 = 7, which is given by cgo = ¢g9 = 0.

* Coo = o9 = 0: This implies a;y +7; = 7 and (1 + 6; = 7. By replacing
either By or Iy by its antipode, we get the corresponding mechanism
with oy = 77 and [3; = 47, which is given by coo = cg2 = 0.

Due to their geometry, we call these four-bars spherical deltoids.
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Fig. 3. a) Two orthogonal four-bars, which have one diagonal in common. b) Spher-
ical deltoids are special orthogonal four-bars.

Now the question arises why the four deltoidal cases
Cop =2 =0, dyp=doa=0, co=1c0=0, dyp=dy=0, (29)

do not appear during the proof of Theorem 1. The reason for this is the used
half-angle substitution ¢; := tan(p;/2) as none of the angles ; can be constant
7, which can only be the case for an assembly mode of a spherical deltoid. If
we would set ¢; := cot(p;/2) instead of ¢; := tan(p;/2) this would imply the
following replacements:

Coo < C22, C20 < Cp2, doo < daz, dag < dpa. (30)

One can immediately see that the cases given in item 4 of Theorem 1 corre-
spond with the cases of Eq. (29) with respect to this substitution. Moreover,
one can also apply the substitution of Eq. (30) to the conditions given in item
¢ of Corollary 1. One will see that the given conditions correspond to each
other. It can also easily be checked, that the conditions of item 1, 2 and 3 of
Theorem 1 are invariant with respect to this substitution. As a consequence
the corresponding mechanisms of item d of Corollary 1 remain the same under
the substitution with exception of the involved deltoidal linkages, which are
replaced by their corresponding ones.

Therefore no case was lost during the case study due to the half-angle sub-
stitution and therefore Theorem 1 already gives all reducible compositions of
spherical four-bar linkages, if one takes those compositions into account, which
arise from the given ones by replacing vertices by their antipodal points.

Remark 1 Clearly, a composition of two spherical four-bar linkages is re-
ducible if one of these linkages is already reducible. Therefore all reducible
spherical four-bars (spherical isogram, spherical deltoid, cf. [14]) also have to
be included in Theorem 1. o
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5 Conclusion

As the transmission function of a planar four-bar mechanism can also be
written in the form of Eq. (1), the reducible compositions of planar four-
bar mechanisms have the same algebraic characterization as their spherical
counterparts (cf. [1,9]). Moreover, if one takes the replacement of vertices
by their antipodal points into account, the list of reducible compositions of
spherical four-bar mechanisms and the one of their planar analogue can be
written within one theorem® as follows:

Theorem 2 If a reducible composition of two planar or two spherical four-bar
mechanisms C and D is given, then it is one of the following cases:

L. Opposite sides of one of the quadrangles C or D have the same length.
II. C and D fulfill Dizon’s angle condition <{l1gA1B; = +(m — |<tI30B2As))
(cf. Fig. 2b).
III. The diagonals of each of the four-bars C and D intersect orthogonally
and the diagonals Ailyg and IygBs coincide.
IV. One of the quadrangles C or D is a deltoid.
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