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Abstract

Given a cloud P of data points, we present techniques
and algorithms to decide whether P could be measurements
of a developable surface and to reconstruct the original
shape of the surface. We will use the dual approach to de-
velopable surfaces, which says that a developable surface
can be considered as envelope of a one-parameter family of
planes. A classification will be given which detects cones,
cylinders, and developable surfaces of constant slope. Fi-
nally we discuss the problems occurring in this context.

1. Introduction

Given a cloud of data points pi, i = 1, . . . , N in R
3,

we want to decide whether pi are measurements of a de-
velopable surface. If this is the case, we will describe the
problem how to find a developable surface which approx-
imates the data points pi and give solutions to that. The
problem sounds simpler as it is in fact. One would like to
have a fully automatic procedure but the experience shows
that there are certain limitations concerning the regularity
of the approximation, see Section 5.5.

Points and vectors in R
3 or R

4 are denoted by boldface
letters, p,v. Planes and lines are displayed as italic capital
letters, T,L. We use cartesian coordinates in R

3 with axes
x, y and z. In R

4 the axes of the cartesian coordinate system
are denoted by u1, . . . , u4.

A ruled surface carries a one parameter family of straight
lines L. The surface is in particular a developable surface
D if all surface points along a fixed line have the same tan-
gent plane (with exception of a possibly occurring singular
point). The general parametrization of a ruled surface is

x(u, v) = c(u) + ve(u), (1)

where c(u) is called directrix curve and e(u) is a vector
field along c(u), which describes the generating straight

lines. The normal vectors of the ruled surface x(u, v) are

n(u, v) = ċ(u) × e(u) + vė(u) × e(u). (2)

For fixed u = u0, the normal vectors are linear combina-
tions of the vectors ċ(u0) × e(u0) and ė(u0) × e(u0). If
x(u, v) is a developable surface, the two components ċ× e

and ė × e are linearly dependent. This gives the follow-
ing characterization: The parametrization x(u, v) describes
a developable surface exactly if the condition

det(ċ, e, ė) = 0 (3)

is identically satisfied. This says that the normals along a
generating line are all parallel which implies that the tangent
plane T (u) along a generating line L is fixed. There exists a
unique singular point s(u) at each generating line L(u), and
it is determined by the parameter value

vs = − (ċ × e) · (ė × e)

(ė × e)2
. (4)

If e and ė are linearly dependent, the singular point s is at
infinity. In Euclidean space R

3 there exist three different
classes of developable surfaces:

1. Cylinders: the singular curve degenerates to a single
point at infinity.

2. Cones: the singular curve degenerates to a single
proper point, which is called vertex.

3. General Case: these surfaces consist of the tangent
lines of a regular space curve s(u), which is the sin-
gular curve of the surface.

In all three cases the surface can be generated as envelope
of its one parameter family of tangent planes. A cylinder of
revolution is obtained by rotating a plane around an axis
which is parallel to that plane. A cone of revolution is ob-
tained by rotating a plane around a general axis, but which
is not perpendicular to that plane. Further, it is known that
smooth developable surfaces can be characterized by van-
ishing Gaussian curvature.



Figure 1. General cylinder and cone

Figure 2. General developable surface: one
and two sheets of the tangent surface of a
space curve

1.1. Contribution of the article

The is quite a lot of literature on modelling with devel-
opable surfaces, see for instance [1, 2, 3, 7, 12, 15]. B-
spline representations and the dual representation are well
known and have been used for interpolation and approxima-
tion tasks. Article [12] discusses an interesting modelling
approach by prescribing the generating lines and comput-
ing a reliable directrix curve of a developable surface.

The contribution of this paper is the focus on the recon-
struction of developable surfaces from scattered data by the
use of estimated tangent planes for the data points. The ap-
proximation is performed in the space of planes with respect
to a meaningful chosen metric. In addition, we use a data
structure (tesselation) in the space of planes, which guaran-
tees quick data access. The proposed algorithm can also be
applied to approximation of arbitrary (nearly developable)
surfaces by developable surfaces. The test implementations
have been performed in Matlab and the data have been gen-
erated by scanning models of developable surfaces with an
optical laser scanner.

The article is organized as follows: Section 2 contains
the dual approach together with a discussion of the Blaschke
image curves of developable surfaces. Section 3 tells about
a classification of developable surfaces with help of the

Blaschke image. Section 4 discusses the recognition of
these surfaces in point clouds. Section 5 gives two algo-
rithms to reconstruct these surfaces from data points. Fi-
nally, we present some examples and discuss problems and
possible solutions.

2. The dual approach

Let T (u) be a one-parameter family of planes

T (u) : n4(u) + n1(u)x + n2(u)y + n3(u)z = 0

with arbitrary functions ni, i = 1, . . . , 4. The vector
n(u) = (n1, n2, n3)(u) is a normal vector of T (u). The de-
velopable envelope surface D of T (u) contains generating
lines L(u) which are obtained by intersecting T (u)∩ Ṫ (u),
where Ṫ (u) denotes the derivative with respect to u. The
generating lines themselves envelope the singular curve
s(u) which is obtained by the intersection T (u) ∩ Ṫ (u) ∩
T̈ (u).

The functions ni of T (u) are not uniquely defined, but
any ρn1, ρn2, ρn3, ρn4 with a smooth function ρ(u) de-
scribes the same family of planes T (u). So, we can assume
that T (u) is given in Hesse normal form which satisfies the
condition

n2
1 + n2

2 + n2
3 = 1. (5)

This is the normalization of the normal vector n(u). We
consider n1, n2, n3, n4 as coordinate functions in a space
R

4, with coordinate axes u1, u2, u3, u4. The normalization
condition is

B : u2
1 + u2

2 + u2
3 = 1, (6)

which describes a hypersurface in R
4.

2.1. The Blaschke mapping

The coefficients ni of planes E : n4 + n1x + n2y +
n3z = 0 can be interpreted as coordinates of points E∗ =
(n1, n2, n3, n4) on B, if we take the condition (5) into ac-
count. The vectors (n1, . . . , n4) and (−n1, . . . ,−n4) de-
fine the same carrier plane, but their unit normals n and −n

have opposite orientations. Thus, each carrier plane carries
two different oriented planes and orientation is defined with
respect to the oriented unit normal n.

The hypersurface B is a quadratic cylinder and the in-
tersections of B with hyperplanes u4 = const. are spheres
with radius 1. In particular, the intersection with u4 = 0
is the unit sphere in R

3 (if R
3 is embedded in R

4 as hyper-
plane u4 = 0).

Let b be the mapping from the set of oriented planes E
to their image points b(E) ∈ B, defined by

b : E : n4+n1x+n2y+n3z = 0 7→ b(E) = (n1, n2, n3, n4).
(7)
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We call it Blaschke mapping and B is called Blaschke cylin-
der. B is the image of the set of oriented planes E ∈ R

3.

2.2. Tangent planes of a sphere

We have to investigate the Blaschke images of the tan-
gent planes T of a sphere S in R

3 because these results will
be used for the classification of developable surfaces in sec-
tion 3. Let S be given by the equation

S : (x − m1)
2 + (y − m2)

2 + (z − m3)
2 − r2 = 0.

The sphere can be considered as oriented surface with
help of oriented unit normals. Equivalently, we can orient
spheres by considering signed radii, thus the spheres with
center m = (m1,m2,m3) and radii ±r are different.

An oriented plane T : n4 + n1x + n2y + n3z = 0 is
tangent to the oriented sphere S, exactly if

n4 + n1m1 + n2m2 + n3m3 − r = 0. (8)

This says that the Blaschke images b(T ) of tangent planes
T of S satisfy a linear equation of the form

−r + u1m1 + u2m2 + u3m3 + u4 = 0. (9)

Conversely, if points q = (q1, q2, q3, q4) ∈ B satisfy a lin-
ear relation

H : a0 + u1a1 + u2a2 + u3a3 + u4a4 = 0,

q = b(T ) are Blaschke images of planes T which are tan-
gent to a sphere in case a4 6= 0. Center and radius are
determined by

m =
1

a4

(a1, a2, a3), r =
−a0

a4

.

If a0 = 0, the planes b(T ) pass through the fixed point
m. If a4 = 0, the planes T form a constant angle with the
direction vector a = (a1, a2, a3) because of a · n = −a0,
with n = (u1, u2, u3).

3. The classification of developable surfaces

Since any developable surface D can be considered as
one-parameter family of tangent planes T (u), it can be in-
terpreted as curve b(T (u)) = b(D) on B ⊂ R

4. We will
discuss how cylinders and cones and other special devel-
opable surfaces can be characterized by their Blaschke im-
age b(D).

Cylinder: The surface D is a cylinder if all its tangent
planes T (u) are parallel to a vector a. Thus, the nor-
mal vectors n(u) are perpendicular to a. This implies
that the image points b(T ) of the tangent planes T of

D satisfy n · a = n1a1 + n2a2 + n3a3 = 0. Thus, the
curve b(T (u)) is contained in the three-space

a1u1 + a2u2 + a3u3 = 0. (10)

Cone: The surface D is a cone if all its tangent planes T (u)
pass through a fixed point p = (p1, p2, p3). This inci-
dence is expressed by p1n1 + p2n2 + p3n3 + n4 = 0.
Thus, the Blaschke image curve b(T (u)) = b(D) is
contained in the three-space

p1u1 + p2u2 + p3u3 + u4 = 0. (11)

There exist other special types of developable surfaces. Two
of them will be mentioned here.

The surface D is a developable of constant slope, if its
normal vectors n form a constant angle φ with a fixed di-
rection vector a. Assuming that ‖a‖ = 1, we get cos(φ) =
a · n = γ = const. This implies that the Blaschke images
of the tangent planes of D are contained in the three-space

−γ + a1u1 + a2u2 + a3u3 = 0. (12)

The developable surface D is tangent to a sphere with
center m and radius r, if the tangent planes T (u) of D sat-
isfy n4+n1m1+n2m2+n3m3−r = 0. Thus, the Blaschke
image curve b(D) is contained in the three-space

−r + u1m1 + u2m2 + u3m3 + u4 = 0. (13)

It is of particular interest if a developable D is a cone or
cylinder of revolution. These two cases are discussed in the
next section.

3.1. Cones and cylinders of revolution

Let D be a cylinder of revolution with axis A and radius
r. The tangent planes T of D are tangent to all spheres of
radius r, whose centers vary on A. We consider two spheres

S1 : (x − p)2 − r2 = 0, S2 : (x − q)2 − r2 = 0

with equal radii. The Blaschke images b(T ) satisfy the re-
lations

H1 : −r + u1p1 + u2p2 + u3p3 + u4 = 0, (14)

H2 : −r + u1q1 + u2q2 + u3q3 + u4 = 0,

which implies that the Blaschke image curve b(D) is a pla-
nar curve (conic) B ∩ P , where P is the plane determined
by (14).

Cones of revolution D can be obtained as envelopes of
the common tangent planes of two spheres S1, S2 with dif-
ferent radii r 6= s. Thus, b(D) is a conic contained in the
plane P defined by

H1 : −r + u1p1 + u2p2 + u3p3 + u4 = 0, (15)

H2 : −s + u1q1 + u2q2 + u3q3 + u4 = 0.
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Conversely, if the Blaschke image b(D) of a developable
surface is a planar curve, contained in a plane P , how can
we decide whether D is a cone or cylinder of revolution?
Let b(D) = b(T (u)) be a planar curve ⊂ P and let P be
given as intersection of two three-spaces H1, H2, with

Hi : hi0 + hi1u1 + hi2u2 + hi3u3 + hi4u4 = 0. (16)

We have already found in Section 2.2 that if the Blaschke
image b(T ) is contained in a three-space Hi, the corre-
sponding tangent plane T is tangent to a sphere, or is pass-
ing through a point, or encloses a fixed angle with a fixed
direction. This property has to hold with respect to H1 and
H2. If we exclude the degenerate case h14 = h24 = 0,
we can assume that P is determined by two three-spaces
H1, H2 of the form (14) or (15).

1. At first, the plane P is defined by three-spaces H1, H2

given by equations (14). Then, the developable surface
D is a cylinder of revolution. By subtracting the equa-
tions (14) we find that the normal vectors n of T (u)
have to satisfy

n · (p − q) = 0.

Thus, the axis A of D is given by a = p − q and D’s
radius equals r.

2. At second, the plane P is defined by three-spaces
H1, H2 given by equations (15). The pencil of three-
spaces λH1 + µH2 contains a unique three-space H ,
passing through the origin, whose equation is

H :

3∑

i=1

ui(spi − rqi) + u4(s − r) = 0.

Thus, the tangent planes of the developable surface D
are passing through a fixed point, corresponding to H ,
and D is a cone of revolution. Its v vertex is

v =
1

s − r
(sp − rq).

The axis A of D is given by a = p − q. and the
inclination angle φ between the axis A and the tangent
planes T (u) is

sin φ =
|s − r|
‖q − p‖ .

4. Recognition of Developable Surfaces

Given a cloud of data points pi, this section discusses the
recognition of developable surfaces and the classification,
which type of surface we are dealing with. The algorithm
contains the following steps:

1. Estimation of tangent planes Ti for all data points pi.

2. Computing the Blaschke images b(Ti) of Ti.

3. Analysis of the structure of the set T of image points
b(Ti).

4. If T is curve-like, classification of the developable sur-
face, which is close to pi.

4.1. Estimation of tangent planes

Given the data points pi with cartesian coordinates
xi, yi, zi in R

3, we assume that a triangulation of the data
points is already computed. So, we are given in addition a
list of triangles tj = (j1, j2, j3), consisting of triples of in-
teger values, which are references to the point list pi. This
gives topological information for the point cloud, and we
are able to define neighboring points qk for all data points
pi. In addition we assume that the data points pi represent
a surface with orientation which is reflected by oriented tri-
angles tj .

For each data point pi, we want to estimate a tangent
plane Ti. So, let p be a fixed point and let qk be p

′s
neighbors. The estimated tangent plane T at p shall be
a plane best fitting the data points qk. T can be com-
puted as minimizer (in the l1 or l2-sense) of the vector
of distances d(qk, T ) between the data points qk and the
plane T . This leads to a set of estimated tangent planes
Ti : di + aix + biy + ciz = 0, corresponding to the set
of data points pi and we use the normalization condition
a2

i + b2
i + c2

i = 1. For more information concerning reverse
engineering, see the survey [17].

4.2. Blaschke image of estimated tangent planes

The Blaschke images b(Ti) = (ai, bi, ci, di) of the esti-
mated tangent planes Ti form a point cloud on the Blaschke
cylinder B : u2

1 + u2
2 + u2

3 = 1. The original surface with
measurement points pi is a developable surface, if the im-
age points b(Ti) form a curve-like region on B. To check
the property curve-like, it is necessary to define neighbor-
hoods on B. Another possibility, which is similar to this,
is the definition of a distance d(T1, T2) between two planes
T1, T2. For this, we have to make some assumptions on our
data points pi.

We apply a uniform scaling of the data points in a way
that all coordinates xi, yi, zi are ≤ c = 1/

√
3. Thus,

the object is contained in a cube, bounded by the planes
x = ±c, y = ±c, z = ±c. This implies that the max-
imum distance of a data point pi and the origin is 1. In
addition, the maximum distance d(O, Ti) of an estimated
tangent plane Ti to the origin is 1. Since d(O, Ti) = di,
the fourth coordinates di of the Blaschke images b(Ti) are
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bounded by 1. We define the squared distances between two
planes T1, T2 according to the canonical Euclidean distance
in R

4, by

d(T1, T2)
2 = (a1−a2)

2+(b1−b2)
2+(c1−c2)

2+(d1−d2)
2.

(17)
To study this distance function in R

3, we consider a fixed
plane M and all planes X with d(M,X) < r. The bound-
ary of the region for which d(X,M) = r holds, is illus-
trated in the 2D-Figure 3. It shows three ’planes’ Mi, i =
0, 1, 2 with different distances to the origin and the bound-
aries for r = 0.25. The extremal perpendicular distance
of X and M is r and the extremal turning angle between
X and M is indicated by the dotted asymptotic lines of the
boundaries.
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Figure 3. Regions for d(X,Mi) < r.

For practical computations on B we use a cell decompo-
sition of B to define neighborhoods of image points b(T ) of
(estimated) tangent planes T .

4.3. A cell decomposition of the Blaschke cylinder

We recall that B’s equation is u2
1 + u2

2 + u2
3 = 1. Any

cross section with planes u4 = const. is a copy of the unit
sphere S2 in R

3. So, we start with a decomposition of S2

and lift it to B.
A tessellation of S2 can be based on the net of a reg-

ular icosahedron. Let vi, i = 1, . . . , 12, with ‖vi‖ = 1,
be vertices of a regular icosahedron. The vertices vi form
twenty triangles tj and thirty edges. All edges have same
arc length. This icosahedral net is subdivided by computing
the midpoints of all edges (geodesic circles). Any triangle
tj is subdivided into four new triangles. The inner trian-
gle has equal edge lengths, the outer three have not, but the
lengths of the edges to not vary too much.

Figure 4 shows an icosahedron and one refinement step.
For simplicity only the polyhedra are drawn and not the
geodesic nets on the unit sphere. The final tesselation of
the unit sphere is displayed in Figures 5 and 8.

Figure 4. Icosahedron and refinement step

The cell decomposition of the Blaschke cylinder is now
computed in the following way: Since we measure dis-
tances according to (17), the height of a prismatic cell have
to be approximately equal to the edge length of a triangle.
As we have mentioned earlier, the values of the fourth co-
ordinate in R

4 are bounded by ±1. When each triangle of
the tessellation is subdivided into four children, each inter-
val of the fourth coordinate is divided into two subintervals.
We start with 20 triangles, 12 vertices and 2 intervals in u4-
direction. The test-implementation uses the resolution after
four subdivision steps with 1280 triangles, 642 vertices and
16 intervals in u4-direction.

In addition to the vertices and cells on B we store a list
with adjacency information. Since each triangle on S2 has
eleven or twelve neighbors, a cell on B has at most 38 ad-
jacent cells.

Remark concerning the visualization: It is easy to visu-
alize the spherical image (first three coordinates) on S2, but
it is hard to visualize the Blaschke image on B. We con-
fine ourself to plot the spherical image on S2, and if neces-
sary, we add the fourth coordinate in a separate figure. This
seems to be an appropriate visualization of the geometry on
the Blaschke cylinder.

4.4. Analysis of the Blaschke image

Having computed estimates Ti of the tangent planes
of the data points and their images b(Ti), we can check
whether the Blaschke image of the considered surface is
curve-like, see [17] for more information on reverse engi-
neering. According to Section 4.3, the interesting part of
the Blaschke cylinder B is covered by 1280 × 16 cells Ck.
We compute the memberships of image points b(Ti) and
cells Ck and obtain a binary image on the cell structure C
of B.

1. If the data points pi are contained in a single plane P ,
the image points b(Ti) form a point-like cluster around
b(P ).

2. If the data points pi are contained in a developable sur-

5



face, the image points b(Ti) form a curve-like region
in B, see Figure 5.

3. If the data points pi are contained in a doubly curved
surface S, the image points b(Ti) cover a two dimen-
sional region on B.

In the following we assume that the surface under con-
sideration is a smooth developable surface. Since the esti-
mation of tangent planes gives bad results on the boundary
of the surface patch and near measurement errors, there will
be outliers in the Blaschke image. To find those, we search
for cells Ck carrying only a few image points. These cells
and image points are not considered for the further compu-
tations. The result is referred to as cleaned Blaschke image.
Figure 5 shows the original and the cleaned Blaschke image
of a developable surface patch.

Figure 5. Original and cleaned Blaschke im-
age of a developable surface

4.5. Classification of the developable surface

After having analyzed and cleaned the Blaschke image
from outliers we are able to decide whether the given de-
velopable surface D is a general cone or cylinder, a cone
or cylinder of revolution, another special developable or a
general developable surface.

So, let Tl be the reliable planes of D after the cleaning
and let b(Tl) be their Blaschke images. As we have worked
out in Section 3 we can classify in the following way.

We compute three-spaces of regression Hi, i = 1, . . . , 4
to the data b(Tl). By investigating the magnitude of the
eigenvalues λi of Hi and the coefficients of Hi we can de-
cide which type of surface is present. Let Hi be given by
the equations

Hi : hi0 + hi1u1 + hi2u2 + hi3u3 + hi4u4 = 0.

1. Two small eigenvalues λ1, λ2 and different coefficients
h10, h20, (|h10 − h20| > ε): The surface D can be
well approximated by cone of revolution. The vertex

and the inclination angle are computed according to
Section 3.

2. Two small eigenvalues λ1, λ2 but nearly equal coef-
ficients h10, h20, (|h10 − h20| ≤ ε): The surface D
can be well approximated by a cylinder of revolution.
The axis and the radius are computed according to Sec-
tion 3.

3. One small eigenvalue λ1 and small coefficient h10:
The surface D is a general cone and its vertex is

v =
1

h14

(h11, h12, h13).

4. One small eigenvalue λ1 and small coefficients h10

and h14: The surface D is a general cylinder and its
axis is parallel to the vector

a = (h11, h12, h13).

5. One small eigenvalue λ1 and small coefficient h14:
The surface D is a developable of constant slope. The
tangent planes of D form a constant angle with respect
to an axis. The angle and the axis are found according
to formula (12).

6. One small eigenvalue λ1 characterizes a developable
surface D whose tangent planes Ti are tangent to a
sphere. Its center and radius are

m =
1

h14

(h11, h12, h13), r =
−h10

h14

.

Figure 6. Approximation of a developable of
constant slope (math. model)

For this classification we need to fix a threshold ε, to decide
what small means. This value depends on the accuracy of
the measurement device, the number of data points per area
unit and the accuracy of the object. Some experience is
necessary to choose this value for particular applications.
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Let L be a generating line of a developable surface D and
let T be the tangent plane along L. The Blaschke image of
(L, T ) is a line element (point plus tangent line) on B. If L
is regular and not an inflection generator, then there exists
a unique cone or cylinder of rotation C which has second
order contact with D along L. The Blaschke image b(C) is
the unique osculating conic of b(D) at b(T ).

This implies that a sufficiently small strip on a devel-
opable surface can always be well approximated by a cone
or cylinder of rotation.

5. Reconstruction of Developable Surfaces
from Measurements

So far, we have done some preparation steps for the re-
construction. In this section we describe how to define a
one-parameter family of planes E(t) best fitting the data
points pi or the estimated tangent planes Ti. In addition we
will point to some problems, in particular the control of the
singular curve of the approximation. First we point to some
general demands on the surface D to be approximated.

1. D is a smooth surface not carrying singular points. It
needs not be developable, but one can run the algo-
rithm also for nearly developable surfaces (one small
principal curvature).

2. The density of data points pi has to be approximately
the same everywhere.

3. The image b(Ti) of the set of (estimated) tangent
planes Ti has to be a simple, curve-like region on the
Blaschke cylinder which can be injectively parameter-
ized over an interval.

According to the made assumptions, the reconstruction
of a set of measurement point pi of a developable surface
D can be divided into the following tasks:

1. Estimation of parameter values ti for image points
b(Ti) of estimated tangent planes Ti.

2. Approximation of points b(Ti) plus parameter values
ti by a curve c(t) ⊂ B.

3. Computation of the one-parameter family of planes
E(t) in R

3 and of the generating lines L(t) of the de-
velopable D∗ which approximates measurements pi.

4. Computation of the boundary curves of D∗ with re-
spect to the domain of interest in R

3.

5.1. Estimation of parameter values

To simplify the approximation of points b(Ti) by a curve
c(t) later on, it is appropriate to estimate parameter values.
There exist rather sophisticated methods, also for unorga-
nized sets of data points, see [9]. Since we will use the cell
structure on B, we propose the following algorithm. It uses
the definition of a neighborhood U0 of a data point b(T0).
To define U0, we estimate the width w of the curve-like
point cloud b(Ti). The neighborhood U0 is defined with re-
spect to the cell structure on B and its diameter has to be
chosen significantly larger than the width w.

1. We start at an arbitrary data point b(T0) whose neigh-
borhood is U0. Let b(Tk) ∈ U0 be the neighbors of
b(T0). We compute the ellipsoid of inertia (principal
axes and eigenvalues) for b(Tk) and we obtain one sig-
nificantly larger eigenvalue λ1 and three smaller ones,
due to the property of U0. The eigenvector v1 to λ1

is an estimate of the tangent vector at b(T0), see Fig-
ure 7. By projecting the points b(Tk) orthogonally onto
the line b(T0)+µv1 we can locally estimate parameter
values

tk = [b(Tk) − b(T1)] · v1 (18)

to data points b(Tk) ∈ U0. We associate positive val-
ues tk to points b(Tk) which lie in direction of v1 and
negative values for points lying in direction −v1.

2. Now we perform a march in positive as well as in
negative direction (with respect to the eigenvector v1)
through the curve-like point cloud b(Ti). For that we
choose a new starting point b(T+) ∈ U0 for the posi-
tive direction with respect to v1. The point b(T+) has
to be close to the boundary of U0 and in addition, its
vertical distance from the line b(T0) + µv1 shall be
small. Its parameter value is denoted by t+. The new
starting point for the negative direction with respect to
v1 is defined analogously. In the following we only
describe the procedure for the positive direction with
respect to U0 and v1.

PSfrag replacements
b(T0)

b(Tk)

v1

Figure 7. Local neighborhood of data point
and estimated tangent vector
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3. At each new starting point b(T0) := b(T+) we choose
a neighborhood U0 and determine neighboring points
b(Tk) ∈ U0. We compute an ellipsoid of inertia with
respect to points b(Tk) and estimate the tangent vector
v1 at b(T0). This allows the local estimation of param-
eter values tloc

k for the data points b(Tk) ∈ U0. Since
the starting point b(T0) already corresponds to the pa-
rameter value t+, we associate values

tk = t+ + tloc
k

to the data points b(Tk). We choose a new starting
point close to the boundary of U0 and close to b(T0) +
µv1 and repeat this step.

4. If the data points b(Ti) form a closed curve, we repeat
the last step until we have associated parameter values
to all data points. Otherwise we have to perform the
march also in negative direction, as already mentioned.

5. Later on, when having computed an approximating
curve c(t) to the data b(Ti), we can apply a parame-
ter correction, according to Hoschek, [6].

5.2. Computing the approximating curve

We are given data points b(Ti) and parameter values ti
and want to compute a curve c(t) ⊂ B best fitting the data.
Because of c(t) ⊂ B, we have the condition

c1(t)
2 + c2(t)

2 + c3(t)
2 = 1.

Thus, (c1, c2, c3)(t) is a curve on S2. For interpolation
purposes there exist nice algorithms for curve design on
quadrics with rational curves, see [8]. Since there are no
polynomial curves on S2, the similar approximation algo-
rithms with rational B-splines on the sphere become non-
linear. In addition, if the data points can be well approx-
imated by a planar curve or a curve in a three-space, we
have to take this into account here.

We do not want to go into details here but like to list two
possibilities.

1. Apply a standard curve approximation with B-splines
in the l2-sense and project afterwards the solution
curve to the Blaschke cylinder. If it is possible to
choose a stereographic projection, the projected curve
is a rational B-spline, otherwise it is not rational.

2. Apply a biarc construction on B, which approximates
the data points b(Ti) by a sequence of ellipse arcs. The
developable D is thus approximated by a sequence of
cones of rotation, see [10]. The biarc construction is
a G1-Hermite interpolation method, and it uses points
Pj plus tangent lines Vj as input. To achieve this, we
have to define the Hermite elements Pj , Vj first. This

can be done by approximating b(Ti) with an arbitrary
curve c̃(t) first, and Pj , Vj are the evaluations of c̃(t)

and ˙̃c(t) at chosen parameter values tj . Any pair of
Hermite elements Pj , Vj and Pj+1, Vj+1 is interpo-
lates by a pair of ellipse arcs on B. There exists a
one- parameter family of solutions which can be pa-
rameterized over the projective line. But there is no
guarantee that practicable solutions exist, with respect
to the orientation given by the tangent vectors Vj , see
[11].

Once having found a curve c(t) well approximating the
image points b(Ti), the one-parameter family E(t) is al-
ready given by

E(t) : c4(t) + c1(t)x + c2(t)y + c3(t)z = 0.

The envelope of E(t) is the developable approximation D∗.
Figure 8 shows an approximating curve to a set of image
points b(Ti).

Figure 8. Approximating curve on B with de-
tail

We like to define the distance of the given surface D
and the approximation D∗. The approximation is a contin-
uous model whereas D is given by measurement points pi

and estimated tangent planes Ti with associated parameter
values ti. If more emphasis is on the tangent planes, the
squared distance of D and D∗ can be defined by

d2(D,D∗) =
1

N

∑

i

d2(Ti − E(ti)), (19)

where the squared distances are computed according to
(17). If more emphasis is on the measurements pi, the
squared distance can be defined by

d2(D,D∗) =
1

N

∑

i

d2(pi − E(ti)), (20)

with respect to orthogonal distances between points pi and
planes E(ti).
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5.3. Boundary curves of the developable approxi-
mation

Once having computed the one-parameter family of
planes E(t) approximating the data points pi, we are able
the generate a point representation of the developable ap-
proximation D∗. The generating lines L(t) of D∗ are the
intersection lines E(t) ∩ Ė(t). We assume that there exist
two bounding planes H1 and H2 of the domain of inter-
est in a way that all generating lines L(t) intersect H1 and
H2 in proper points. The intersection curves of L(t) and
Hi, i = 1, 2 will be denoted by ci(t) and are computed by

ci(t) = E(t) ∩ Ė(t) ∩ Hi. (21)

Thus, a point representation of D∗ is found by

x(t, u) = (1 − u)c1(t) + uc2(t). (22)

Figure 9 shows a developable surface approximating the
data points, displayed as dots. The points displayed as stars
are some singular points of the surface near the domain of
interest.

Figure 9. Developable approximating the data
points

So far, we did not pay any attention to singular points of
D∗. The control and avoidance of the singular points within
the domain of interest is a very complicated topic. We want
to give some facts and ideas.

5.4. Singular points of a developable surface

In the case where the developable surface D∗ is given
by a point representation, formula (4) describes the singular
curve s(t). If D∗ is given by its tangent planes E(t), the

singular curve s(t) is the envelope of the lines L(t) and thus
computed by

s(t) = E(t) ∩ Ė(t) ∩ Ë(t). (23)

So we see that the singular curve s(t) depends in a highly
nonlinear way on the coordinate functions of E(t). On the
Blaschke cylinder the situation is analogous. The singular
point s of E is in direct relation to the osculating plane

σ = c + λċ + µc̈, (24)

of the Blaschke image curve b(E(t)) = c(t).
We compute the vector n = c ∧ ċ ∧ c̈. The Cartesian

coordinates of the singular curve are

s(t) =
1

n4(t)
(n1(t), n2(t), n3(t)). (25)

Zeros of the function n4 are corresponding to points at in-
finity of s(t). If the data points pi are contained in the unit
sphere (‖pi‖ ≤ 1), we require that s(t) satisfies

‖s(t)‖ > 1. (26)

1. Assuming that c(t) ∈ B shall be represented by ratio-
nal B-splines, the inequality (26) is a rather nasty side
condition for the control points of c(t).

2. Let c(t) ∈ B be composed of biarcs. For two con-
secutive Hermite elements Pj , Vj and Pj+1, Vj+1 there
exists a one-parameter family of interpolating pairs of
arcs. The condition (26) is a quadratic inequality in
the free parameter. It restricts the family of practicable
solutions which essentially depends on the choice of
the Hermite elements, as we have mentioned in Sec-
tion 5.2.

Pottmann and Wallner [15] have proposed a modelling
scheme that uses a special representation

E(t) = e4(t) + e1(t)x + ty − z = 0, (27)

of the family of tangent planes E(t) of D∗ but can han-
dle the side condition (26) with relatively little costs. The
parametrization implies that the planes E(t) are graphs over
the xy-plane and the generating lines L(t) can never be par-
allel to the yz-plane. For appropriately chosen parts of the
surface it is always possible to choose the coordinate sys-
tem in a way that these properties hold. The choice of e2 as
parameter leads to a special parametric representation.

It would be possible to integrate this approach here. One
has to partition the Blaschke image b(Ti) in a way that for
each part one can find a representation (27). The coordinate
system has to be chosen in a way that the estimated planes
Ti are graphs (Ti are not parallel to the z-axis). This sim-
plification has also be used in [13] for developable surface
approximation. In addition it is necessary to rotate the coor-
dinate system in a way that the considered part of the curve-
like region b(Ti) can be parameterized over the y-axis.
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5.5. Correcting singular points

Finally we want to give some hints to the treatment of
singular points occurring in the approximation D∗. The sin-
gular points s correspond directly to the osculating planes
of c, according to (25). A good choice for c is an optimally
stretched curve whose osculating planes do not vary much.
If we choose B-Splines for approximation, the shape of a B-
spline curve is strongly influenced by the choice of the knot
sequence. Some experience and possibly user interaction
seems to be necessary. If we choose the biarc-construction,
the estimation and choice of the Hermite elements will have
much influence on the final shape of c and D∗.

If singular points occur on the modelled surface patch we
propose the following correction method. For that we as-
sume that only a few singular points are present. The lines
carrying these singular points shall not cover the whole sur-
face.

By deleting the lines carrying singular points, we ob-
tain a singularity-free surface with holes which are actually
strips which have to be filled by regular developable pieces.
We have to distinguish if the hole is bounded by two regular
generating lines or if it occurs at the boundary.

1. The strip to be filled is bounded by two lines L1, L2

and tangent T1, T2 planes along them. These Her-
mite elements can be interpolated by a pair of cones
of revolution (biarc-construction), chosen from a one-
parameter family of solutions. As we have mentioned
in Section 5.4, the set of practicable real solutions
could be empty.

2. If the strip to be filled occurs at the boundary, we have
to proceed in another way: Let L1 be the ’last’ reg-
ular generating line, with tangent plane T1. We have
to compute a regular developable, which approximates
the data within the strip and which interpolates the
Hermite element L1, T1. We can try to fit a single cone
of revolution or a general cone whose vertex is outside
the domain of interest. The cone of revolution can be
computed as Blaschke image of a planar intersection
of B with a plane of regression to the Blaschke images
of the data within the strip to be filled.

5.6. Conclusion

We have proposed a method for computing an approx-
imating developable surface to measured data points. The
approach uses estimated tangent and works in the Blaschke
model B of the space of planes. The reconstruction is per-
formed by applying curve approximation with respect to a
chosen metric on B. The control and correction of singular-
ities of the approximating developable surface needs more
research and detailed studies.
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