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Abstract

We put the Hough transform, a method from Image Processing,

into relation to Laguerre geometry, a concept of classical geometry,

and study both concepts in the 3D case. It is shown how Laguerre

geometry, which works in the set of oriented planes, is used in the

detection of special shapes such as planes, spheres, rotational cones

and cylinders, general cones and cylinders, and general developable

surfaces. We perform shape recognition tasks by principal component

analysis on a set of points in the so-called Blaschke model of Laguerre

geometry. These points are Blaschke image points of estimated tan-

gent planes at the given data points. Finally we present examples and

show how the implementation also takes advantage of mathematical

morphology on images, which are defined on meshes.

1 Introduction

The recognition and reconstruction of 3D shapes from 3D measurement data
is an important issue in various applications. These include reverse engineer-
ing of CAD models from existing technical objects [28], the reconstruction of
3D city models from airborne laser scanner data [30] or as-built reconstruc-
tions of industrial sites such as oil platforms, plants and refineries [14]. In



these applications it is essential that special shapes such as planes, spheres,
cylinders, etc., are not just fitted by a freeform surface, but represented in a
more precise way according to their simple geometric nature.

In the present paper, we deal with the problem of recognizing and recon-
structing special 3D shapes from 3D data. This may be a cloud of measure-
ment points or another 3D shape representation such as a triangular mesh
or a surface representation in parametric or implicit form. The only assump-
tion we make is that we are able to compute a discrete number of points on
the surface and to estimate surface normals there. The availability of nor-
mals is not necessary for some considerations, but is not a heavy restriction,
especially since recent scanners also deliver the normal information.

We are dealing with the following special surfaces: planes, spheres, cones
and cylinders, in particular those with rotational symmetry, and general
developable surfaces.

1.1 Review of previous work

Let us briefly address the main approaches to the present problem.
In Computer Vision, Image Processing and Pattern Recognition, the de-

tection and reconstruction of special shapes is often performed by methods
related to the Hough transform. Originally designed for the detection of
straight lines in 2D images, it received an enormous amount of attention
and has been generalized to the detection and reconstruction of many other
shapes (see, e.g., the survey articles [9, 10]). Pure Hough transform methods
work in the space of considered shapes. Therefore, they quickly lead to high
dimensions and thus to reduced efficiency.

To reduce the dimension of the search space, Hough transform techniques
are sometimes mixed with constructive geometric considerations [9]. Those
approaches are already close to techniques invented by the CAD community.
In this community geometric properties of surfaces, which are mainly based
on the Gaussian sphere, are used to segment the data and to extract special
shapes, see [27, 28].

Methods based on line geometry [20] recognize cylinders, surfaces of rev-
olution and helical surfaces by the fact that their normals lie in a so-called
linear line complex. Thus, one fits a linear complex to estimated normals
at the data points, which is an eigenvalue problem. In particular, surfaces
which allow multiple self-motions, namely right circular cylinders, spheres
and planes are detected from the distribution of eigenvalues. Moreover, the
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technique is extendable to other surface classes which may be locally well
approximated by the mentioned surface types [3, 20].

Another class of methods uses locally estimated tangent planes at the data
points and thus operates in the space of planes. Projective duality makes it
easy to handle projective and algebraic properties. Especially for developable
surfaces this has been pursued successfully [20]. Moreover, after removing all
planes, which are parallel to some selected line, one can introduce a metric in
the space of remaining planes and solve approximation problems there. This
has also been used for surface recognition and reconstruction [16, 19].

1.2 Contributions of the present paper

In the present paper, we also work in the set of planes in R
3. However, we

do not use projective duality, since it has the disadvantage that approxi-
mation aspects require the removal of planes which might be in the area of
interest. What we are proposing here is an extension of the Gaussian sphere,
which is rooted both in classical Laguerre geometry [1, 2, 4] and in the Hough
transform method [9, 10]. Applications of Laguerre geometry in CAGD, in
particular from the algebraic viewpoint and its relation to offsets, have been
given in several contributions [17, 18]. Although we do not use Laguerre
transformations as an invariance group and thus the techniques are not be-
longing to Laguerre geometry in its strict sense, there is still a big advantage
to use the classical knowledge in the present setting.

The Gaussian image of an oriented plane in R
3 with unit normal vector

n is the point n on the unit sphere S2 ⊂ R
3. The Gaussian preimages of a

point n ∈ S2 are parallel planes with equation n · x + d = 0. The distance
d of the origin to the plane is neglected by the Gaussian image. However,
the Blaschke model of Laguerre geometry uses this distance and considers as
image point of the plane the point (n, d) ∈ R

4. Thus, the image points of all
oriented planes fulfill the so-called Blaschke cylinder B : n2 = 1 in R

4. Its
cross sections are copies of the Gaussian sphere S2.

In the present paper, we present elementary derivations of a number of
remarkable properties of this cylinder model, which are interesting for the
present application. They allow us to use fitting by hyperplanes (principal
component analysis) in the recognition and reconstruction procedure. The
distribution of eigenvalues (principal components) gives information on spe-
cial shapes such as spheres, cones and cylinders, in particular those with
rotational symmetry. Moreover, developable surfaces can be recognized and
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classified in a simple way, and important information about their reconstruc-
tion is derived as well.

An appropriate discretization of the Gaussian sphere and the Blaschke
cylinder is used in the implementation. It turns out that techniques from
mathematical morphology [7, 24, 25] are very useful for the implementation
of the proposed methods. However, there are just very few contributions
[8, 12, 21, 22, 29] which extend morphology to curved manifolds and to
meshes and cell decompositions on curved manifolds, such as the Blaschke
cylinder. We also present initial results on this topic and outline directions
for future research which are related to the present shape recognition and
reconstruction problem.

The paper is organized as follows. In section 2 we briefly describe the
classical 2D Hough transform and relate it to the Blaschke cylinder of 2D
Laguerre geometry. Section 3 presents 3D Laguerre geometry, a discretization
of the Blaschke cylinder and a corresponding Hough transform for the de-
tection of planes in R

3. Section 4 further elaborates on the Blaschke model
and uses it for surface recognition. Implementation issues, mathematical
morphology and examples are presented in section 5. We conclude with an
outlook to future research.

2 Hough transform for lines in the plane and

the Blaschke model of 2D Laguerre geom-

etry

Using Cartesian coordinates (x, y) =: x, a straight line L in the Euclidean
plane can be written in the Hesse normal form,

n1x + n2y + d = 0, n2

1 + n2

2 = 1. (1)

Recall that n1x + n2y + d is the signed distance of the point (x, y) to L. In
particular, d is the (signed) distance of the origin to L. We can parameterize
the unit normal vector n = (n1, n2) with help of its directional angle φ,
n = (cos φ, sin φ) and map the line L to the point h(L) := (φ, d) of another
plane, called Hough plane. If we exclude negative values of d, we have to use
φ ∈ [0, 2π). Hence, the line–to–point mapping h maps lines of R2 to points
in [0, 2π]×R

+. For practical applications, we can bound d by some constant
D, such that the image lines h(L) will fall into the rectangle [0, 2π] × [0, D].
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However, we have to note that φ = 0 and φ = 2π have to be identified, such
that the topology is that of a cylinder.

Let us now consider a fixed point p = (p1, p2) and all lines L which pass
through this point. The incidence condition between p and L is

p1 cos φ + p2 sin φ + d = 0, (2)

and therefore the image points h(L) = (φ, d) in the Hough plane lie on the
sine curve d = −p1 cos φ − p2 sin φ; of course, one takes just positive d to
be consistent with the given range of d. We call the curve the Hough image
h(p) of the point p. Given k points p1, . . . , pk, which are all incident with
some line G, the Hough image curves h(pi) of these points must pass through
the point h(G). This simple observation is the basis of the Hough transform,
whose implementation proceeds as follows.

One puts a regular grid over the Hough plane, i.e. views it at as pixel
plane. Initially, all pixels have value 0. For each point pi, the Hough image
curve h(pi) is also discretized; those pixels which are met by the exact curve
h(pi) get a ‘vote’ from pi, i.e., their value is increased by 1. The peaks in
this accumulator array now indicate nearly collinear arrangements of points
in the original plane. There is a large body of literature dealing with efficient
implementations and accuracy issues of this method [9, 10].

Planar Laguerre geometry [1, 2, 4] studies the set of oriented lines and the
set of ‘cycles’, which are the oriented circles and the points, seen as circles
of radius 0. In a natural way it defines the tangency between a cycle and
an oriented line and studies properties which are invariant under so-called
Laguerre transformations. These maps are bijective on the set of oriented
lines, bijective on the set of cycles, and they keep tangency.

Laguerre geometry is studied in various models. One of these models is
very closely related to the Hough plane. We have already observed, that
the topology of the Hough plane is that of a cylinder. Laguerre geometry
uses the cylinder: With help of a unit normal vector n = (n1, n2) a line
L ∈ R

2 is assigned an orientation, and it is mapped onto the point b(L) =
(n1, n2, d) ∈ R

3. In order to carefully distinguish between the original plane
and the image space R

3, we denote Cartesian coordinates in the image space
R

3 as (u1, u2, u3). Under the Blaschke mapping b, the set of all oriented lines
of R

2 is mapped to the entire point set of the right circular cylinder B, called
Blaschke cylinder

B : u2

1 + u2

2 = 1. (3)
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This equation expresses the normalization condition n2 = 1 of a normal
vector n of a line L. If we omit the orientation of lines, we can use just the
upper half of the cylinder B. Cutting this cylindrical part along a ruling and
unfolding it into the plane yields the Hough plane.
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Figure 1: Blaschke images of a pencil of lines and of lines tangent to an
or. circle.

Let us derive a few simple properties of the Blaschke model. The Blaschke
image points b(L) of all oriented lines L, which pass through a point p =
(p1, p2), satisfy in view of (2) the equation

p1u1 + p2u2 + u3 = 0. (4)

This is a plane through the origin of R
3. It cuts the cylinder B in an ellipse.

The Blaschke image points b(L) of lines L through p are exactly the points
of this ellipse, see Fig. 1.

A point p is a circle of radius 0. Let us now consider all oriented lines
L tangent to an oriented circle with center p and (signed) radius r. These
tangents are exactly those oriented lines, whose signed distance from p equals
r. Therefore, they satisfy

n · p + d = r. (5)

Their Blaschke image points are thus confined not only to B, but also to the
plane

p1u1 + p2u2 + u3 − r = 0, (6)
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and thus they lie on the intersection of this plane with B, which is an ellipse.
This is also clear from the fact that passing from the circle of radius 0 to its
offset at distance r implies a translation of b(L) by the vector (0, 0, r) in the
Blaschke image, see Fig. 1.

Summarizing we can say: The oriented tangents of a cycle are in one-to-
one correspondence with the curved planar intersections of B. An intersec-
tion of B with a plane H (not parallel to the u3-axis),

H : a0 + a1u1 + a2u2 + u3 = 0,

is the Blaschke image of the oriented tangents of a circle with center (a1, a2)
and radius −a0; the latter can be zero.

Laguerre geometry shows that Laguerre transformations are seen in the
Blaschke model as restrictions of those projective maps to B, which map B
(as a whole) onto itself. Let us mention some simple special cases. Rota-
tions about the origin of R

2 are transformed with b to rotations of B about
the u3-axis. Translations x′ = x − t in R

2 are transformed to affine shear
transformations in u3 direction, (u′

1, u
′

2, u
′

3) = (u1, u2, t1u1 + t2u2 + u3). A
dilation, which maps each oriented line L, with b(L) = (n1, n2, d), onto a
parallel line L′ at oriented distance c, is seen as a translation by the vector
(0, 0, c), since b(L′) = (n1, n2, d + c). If we view a general curve as set of
its oriented tangents, this dilation maps it onto its signed offset at distance
c. The fact, that offsetting is so simply represented in Laguerre geometry,
makes it an attractive tool for studying offsets. For example, rational curves
with rational offsets belong to (arbitrary) rational curves on B.

A Euclidean metric in the set of lines

Any Euclidean metric, which we may use in R
3, does not have a meaning

for planar Laguerre geometry; automorphic projective maps of B are not
compatible with it. However, we do not aim at full Laguerre invariance, but
at the use of the concept for data analysis and fitting. Hence, we require the
introduction of a metric in the set of lines of R

2.
We will now illustrate that the simplest choice within our framework,

namely the canonical Euclidean metric in the surrounding space R
3 of the

Blaschke cylinder B, is a quite useful metric. Thus, the distance d(L,G)
between two lines L,G is defined to be the Euclidean distance of their image
points b(L) and b(G).
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For visualization, let us fix a line M in R
2 as x−m = 0. Its Blaschke image

is b(M) = (1, 0,−m). All points of the Blaschke cylinder, whose Euclidean
distance to b(M) equals r, form the intersection curve s of B with the sphere
(u1 − 1)2 + u2

2 + (u3 + m)2 = r2. This is an algebraic curve of order 4. Its
points are Blaschke images B(L) of lines L in R

2, which satisfy

(n1 − 1)2 + n2

2 + (d + m)2 − r2 = 0. (7)

Because (n1, n2, d) are coefficients in the linear equation of L, they are related
to the general homogeneous coordinates (g1, g2, g3) of that line L : g1x+g2y+
g3 = 0 by

n1 =
g1

√

g2
1 + g2

2

, n2 =
g2

√

g2
1 + g2

2

, d =
g3

√

g2
1 + g2

2

.

We plug this into (7) and obtain the following quartic homogeneous relation
in line coordinates,

[(2 − r2 + m2)(g2

1 + g2

2) + g2

3]
2 = 4(g1 − mg3)

2(g2

1 + g2

2). (8)

Hence, all lines L, which have constant distance d(L,M) = r to a fixed line
M , form the tangents of an algebraic curve of class 4 (and order ≤ 8). These
curves can be identified as so-called ’hypercycles’, which have been introduced
and studied by W. Blaschke [2]. For our applications, they bound tolerance
regions for lines (see Fig. 2). If a line L deviates from a line M in the sense,
that b(L) and b(M) have at most distance r, then the line L lies in a region of
R

2, which is bounded by the curve (8). Figure 2 shows the boundary curves
of tolerance regions of lines Mi : x = mi, for mi = 0, 1.25, 2.5 and radius
r = 0.25. The lines Mi are drawn dashed. The extremal perpendicular
distance of lines L and Mi within the tolerance regions is r. The extremal
turning angle of L against Mi is indicated by the asymptotic lines of the
boundary curves, which are displayed in dotted style. For mi = 0, the
intersection point of the asymptotic lines is at M0, but for increasing values
of |m| this does not hold in general and the tolerance regions will become
asymmetrically. For large values of |m| this intersection point might even
be outside the region, and the canonical Euclidean metric in R

3 is then no
longer useful to define distances between lines.

Note that the introduced metric is not invariant under all Euclidean mo-
tions of the plane. Rotating M about the origin, the tolerance region at
distance r is undergoing the same rotation. However, for translations this
is not true in view of the remarks above. If we change the distance of M
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Figure 2: Boundary curves of regions containing lines having constant
distance to the center lines Mi.

to the origin, then the shape of the tolerance region also changes. However,
Fig. 2 shows that within some circular area of interest around the origin, the
change is not dramatic and thus the introduced metric is still useful. For
applications, we will therefore place the origin in the center of the data set to
be analyzed and we scale the data uniformly in a way that the coordinates
are < 1.

Metric considerations are also important when one discretizes a Hough
image space. The cells should belong to useful tolerance regions of the ana-
lyzed shapes in object space. However, a closer inspection of the literature on
Hough tranforms shows that this aspect has not received too much attention
so far.
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3 Hough transform for planes and the Blaschke

model of 3D Laguerre geometry

3.1 Shape recognition using the Gaussian sphere

Consider a smooth oriented surface Φ in R
3. The orientation is given by a

field of unit normal vectors n of Φ. For applications, where Φ is the boundary
of a solid S, the orientation can be chosen such that the normals point to the
exterior of S. The Gaussian mapping γ maps points of Φ to the unit sphere
S2: a point x ∈ Φ, with unit normal vector n to Φ, is mapped to the point
n ∈ S2.

It is known that the Gaussian image of an oriented plane Φ is just a single
point.

A general cylinder surface x(u, v) = l(u)+vr is formed by a smooth family
of parallel straight lines (direction vector r), called rulings or generators. All
normal vectors n of a cylinder are orthogonal to the rulings, and thus the
Gaussian image is a great circle in a plane with normal vector r.

A right circular cone has normals n, which form a constant angle φ with
its axis (direction vector a). Hence, its Gaussian image is a small circle,
whose axis is given by a. A general, non-rotational cone, formed by lines
through a fixed point, has a nonplanar curve as Gaussian image.

A developable surface Φ is a surface which can be mapped isometrically
into the plane. Because of this property, these surfaces play an important
role in various applications, for example in sheet metal and plate metal based
industry. Assuming sufficient differentiability, developable surfaces are char-
acterized by vanishing Gaussian curvature K. This implies that the Gaussian
image is a curve. Clearly, all surfaces discussed in this section are developable.
The remaining type of developable surfaces are those, which are formed by
the tangents of a space curve. Thus, all developable surfaces are ruled, but
the converse is not true. Only those ruled surfaces, which possess a constant
tangent plane along each ruling are developable, and exactly because of this
property, γ(Φ) is a curve.

The Gaussian image is used as a shape detection method for reverse engi-
neering [28]: One estimates normals at the given data points and investigates
their image on the Gaussian sphere. Planar surfaces give rise to point-like
clusters on S2, other developable surfaces generate curve-like clusters, with
special cases as outlined above. However, there are several disadvantages
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including the following ones.

• A translation does not effect the Gaussian image. Parallel planes, coax-
ial cylinders, offset pairs of cones, etc., cannot be separated by the
Gaussian image.

• Not only right circular cones have a small circle as Gaussian image, all
developable surfaces of constant slope have the same property. Analo-
gously, from a great circle on S2, one cannot conclude on a right circular
cylinder.

• The γ-image of a solid, which is not just bounded by developable sur-
faces, covers the entire Gaussian sphere, partially in multiple ways.

All these disadvantages basically arise from the fact, that the Gaussian
image is a 2-dimensional image of the 3-dimensional set of oriented planes in
R

3, and thus it eliminates one dimension.

3.2 The Blaschke model for oriented planes in 3-space

Given our derivations above, the reader may immediately realize how to
overcome the problem. We build up the Blaschke model of the set of oriented
planes in R

3 in an analogous way as we have done it for lines in the plane.
This model does not suffer from a loss of dimension and we show that it
serves well for our purpose.

We can be brief with the Blaschke model of the set of planes of R
3 itself,

since the generalization from 2D to 3D is straightforward:
An oriented plane P in R

3 with unit normal vector n = (n1, n2, n3) is
represented as

n1x + n2y + n3z + d = 0, n2

1 + n2

2 + n2

3 = 1. (9)

We map it to the point b(P ) = (n1, n2, n3, d) ∈ R
4. This Blaschke image

point lies on the Blaschke cylinder

B : u2

1 + u2

2 + u2

3 = 1. (10)

The base surface of B in u4 = 0 is exactly the Gaussian sphere. Obviously,
the Blaschke image is nothing else than a graph of the support function,
which plots the distance d to the origin over the Gaussian image point n.
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All oriented planes P , which are tangent to an oriented sphere with center
p and (signed) radius r, have signed distance r from p. Therefore, they
satisfy

n · p + d = r. (11)

Their Blaschke image points lie in B and in the hyperplane (3-dimensional
affine space)

p1u1 + p2u2 + p3u3 + u4 − r = 0. (12)

Thus, the Blaschke image points form an ellipsoid on B.
Conversely, any cut of B with some hyperplane H, which is not parallel

to the u4-axis,

H : a0 + a1u1 + a2u2 + a3u3 + u4 = 0,

is the Blaschke image of the oriented tangent planes of an oriented sphere
with center (a1, a2, a3) and radius −a0. In particular, if a0 = 0, we get
oriented planes through the point (a1, a2, a3).

Everything we have said about Laguerre transformations and metric con-
siderations carries over to 3D in a straightforward way. The tolerance zone
of an oriented plane M is rotationally symmetric with respect to the normal
n from the origin onto M . In the planes through n we have the 2D case,
and thus the 2D case has been sufficient for visualization. It also justifies the
definition of a metric in the space of oriented planes in R

3 via the canonical
Euclidean distance in R

4.

3.3 Discretization of the Blaschke cylinder for a 3D

Hough transform

The Blaschke cylinder B is the Cartesian product of the unit sphere S2 and
the real line R. An appropriate discretization of B is given by the Cartesian
product of a discretized sphere and a discretized real line. The latter is
trivial: assuming origin distances |d| ≤ D, we regularly divide the interval
[−D,D] into 2N intervals of length l = D/N . A discretization of S2 can be
based on so-called geodesic spheres. These are polyhedra with vertices on S2,
which are obtained via subdivision from a regular icosahedron.

One variant splits each triangle via edge midpoint insertion into 4 tri-
angles and then displaces the inserted edge midpoints radially onto S2. In
the first step, this yields a polyhedral approximation of S2 with 20 · 4 faces.
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Iterative application of the same procedure gives in depth k a polyhedron
Sk with 20 · 4k triangular faces. The triangles are not regular, but close to
regular, see Figures 4 and 5.

The cells of the discretized Blaschke cylinder should be close to spherical
for the use in a Hough transform, since we compute distances in the Blaschke
model with the canonical Euclidean metric in R

4 . To achieve this, the
interval length l can be chosen as the average edge length of Sk’s triangular
faces.

A Hough transform for the detection of nearly coplanar arrangements
in a set of data points p1, . . . , pk proceeds as follows. We place the origin
in the barycenter of the data points and call the new coordinate vectors
again pi. Moreover, we use a discretization Bd of the Blaschke cylinder
and set the values in all cells equal to zero. Each point pi = (pi,1, pi,2, pi,3)
is viewed as bundle of incident planes and thus gives rise to a hyperplane
Hi : pi,1u1 + pi,2u2 + pi,3u3 + u4 = 0 in R

4. The values of those cells in Bd,
which are met by Hi are increased by one. At the end, the centers of the
cells with the highest scores are Blaschke images of planes which are close
to ‘many’ data points. Clearly, one will then compute a regression plane to
those data points.

Dealing with oriented planes is not necessary here. We can confine the
considerations to planes with d ∈ [0, D].

An efficient implementation has to use several techniques which have
been invented in the standard case. Surprisingly, we did not find exactly the
presented version of a Hough transform for planes in the literature. Muller
and Mohr [13] parameterize S2 with longitude φ and latitude θ and in this
way map it to a rectangle; this yields heavy distortions near the poles of
the parameterization. Vosselman and Dijkman [30] pursue the approach
suggested by projective geometry: they eliminate planes parallel to some
line, say the z-axis, write them as z = ax + by + c and map them to points
(a, b, c). This is suitable for their application, but not for a general concept.

13



4 Recognition of special surfaces with help of

the Blaschke model

4.1 Special surfaces and their Blaschke image

Right circular cone and cylinder

Consider two oriented spheres C0, C1 with different centers m0, m1 and radii
r0, r1. The signs of the radii are chosen in a way that there exists a family
of common oriented tangent planes of C0 and C1. The radii r0, r1 could be
equal. These tangent planes T envelope a cone or cylinder of revolution Φ,
with an axis spanned by m0, m1. According to equation (12), the Blaschke
image points b(T ) must lie in the two hyperplanes

Hi : mi,1u1 + mi,2u2 + mi,3u3 + u4 − ri = 0, i = 0, 1, (13)

corresponding to the or. spheres C0, C1. H0 ∩ H1 is a 2-dimensional plane
f 2 ⊂ R

2. It intersects B in the Blaschke image of Φ. We see that the Blaschke
image of a cone or a cylinder of revolution is an ellipse (planar intersection
curve of B).

The projection of this ellipse onto u4 = 0 is the Gaussian image circle
γ(Φ) of Φ; this is a great circle for a cylinder and a small circle for a cone.

Consider hyperplanes Ht in the pencil spanned by H0 and H1, represented
by an affine combination (1 − t)H0 + tH1 of the two equations in (13). Ht

belongs to a sphere with center (1 − t)m0 + tm1 and radius (1 − t)r0 + tr1.
It is an inscribed sphere of Φ. For r0 = r1 all inscribed spheres are of equal
radius and clearly Φ is a cylinder. Otherwise, one sphere has radius 0. Its
t-value is tv = r0/(r0 − r1), and its center,

v = (1 − ts)m0 + tsm1 =
r1

r1 − r0

m0 +
r0

r0 − r1

m1, (14)

is the vertex of the cone Φ.
This shows how to find the corresponding surface if one is given a planar

cut of B. One passes two general hyperplanes through the plane f 2 and
obtains in this way two inscribed spheres.
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General cone and cylinder

All tangent planes of a general cone Φ pass through its vertex v. Therefore
the Blaschke image curve lies in a hyperplane through the origin,

p1u1 + p2u2 + p3u3 + u4 = 0. (15)

This hyperplane does not contain the u4-axis. If Φ is not a right circular cone,
it does not have an inscribed sphere with nonvanishing radius and hence b(Φ)
is not planar.

The normal vectors n of a general cylinder Φ are orthogonal to a vector
a in direction of Φ’s generating lines, i.e. a · n = 0. Thus, the points of the
curve b(Φ) lie in the hyperplane

a1u1 + a2u2 + a3u3 = 0. (16)

This hyperplane contains the u4-axis. Exactly if Φ is a right circular cylinder,
b(Φ) is planar and, more precisely, an ellipse with center (0, 0, 0, r). Here, r
is the radius of Φ.

Other developable surfaces

Any developable surface Φ, different from a plane, has a curve as Blaschke
image. If the surface is circumscribed to a sphere of nonvanishing radius, the
curve b(Φ) lies in a hyperplane, which does not pass through the origin,

p1u1 + p2u2 + p3u3 + u4 − c = 0, c 6= 0. (17)

Let Φ be a developable surface whose tangent planes build a constant
angle with a fixed plane a · x + d = 0 with a2 = 1. Φ is called developable
surface of constant slope with respect to a. The unit normal vectors n of Φ
satisfy n · a = c where c 6= 0 is constant. Thus, the Blaschke image b(Φ) lies
in a fixed hyperplane

a1u1 + a2u2 + a3u3 − c = 0, c 6= 0. (18)

We consider a general developable surface Φ and a fixed tangent plane T ,
and we compute the osculating plane f 2 of the image curve b(Φ) at a point
b(T ) and intersect f 2 with B. The intersection B ∩ f 2 is an ellipse (13) and
it is the Blaschke image of a right circular cone or cylinder Γ(T ), which has
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second order contact with Φ along the ruling of Φ, whose tangent plane is T .
Γ is called osculating cone.

A curve c on B, which consists of smoothly joined planar pieces c1, c2, . . .,
can be constructed in a similar way as so-called arc splines on the sphere.
The latter consist of smoothly joined planar curve arcs (circular arcs) on
the sphere. In fact, the orthogonal projection of c onto u4 = 0 is an arc
spline on the Gaussian sphere S2. By the considerations above, each of the
planar segments ci of c is the Blaschke image b(Φi) of a segment of a right
circular cone Φi. Therefore, the Blaschke preimage of the entire curve c is
a developable surface composed of smoothly joined right circular cones. Such
cone spline surfaces have been studied by S. Leopoldseder [11].

4.2 Surface recognition with principal component anal-

ysis on the Blaschke image of estimated tangent

planes

Assume that we are given a set of data points p1, . . . , pk ∈ R
3 from a smooth

oriented surface Φ. With one of the familiar methods from geometric design
we estimate an oriented tangent plane Pi at each data point pi. Now we
would like to check whether the data points come from a surface which is
contained in one of the special classes discussed above.

The surface recognition procedure uses the Blaschke image points bi =
b(Pi) ∈ R

4 of the planes Pi. We check if the point cloud b0, . . . , bk on B can
be fitted well by a hyperplane H. To achieve this, we perform a principal
component analysis on the image points b1, . . . , bk. This is equivalent to
fitting the data point cloud b1, . . . , bk by a hyperplane, which minimizes
the sum of squared Euclidean distances in R

4. The unknown hyperplane is
written in the Hesse normal form as

H : h0 + h1u1 + . . . + h4u4 = 0, h2

1 + . . . + h2

4 = 1. (19)

The signed Euclidean distance d(bi, H) is now

d(bi, H) = h0 + h1bi,1 + . . . + h4bi,4 = h0 + h · bi, (20)

where h = (h1, . . . , h4) denotes the unit normal vector of H. The minimiza-
tion of the sum of squared distances,

F2(h0, h1, h2, h3, h4) =
1

k

k
∑

i=1

d2(bi, H)
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=
1

k

k
∑

i=1

(h0 + bi · hi)
2, (21)

is the minimization of the quadratic form F2 in the unknowns h0, . . . , h4

under the quadratic constraint h2 = 1. This is a general eigenvalue problem
with a quartic characteristic equation.

It is well-known and easy to see that the regression hyperplane H passes
through the barycenter c = (

∑

bi)/k of the k data points bi. Using c as
new origin, the coordinate vectors of the data points become qi = bi − c

and the unknown hyperplane H has vanishing coefficient, h0 = 0. F2 is now
written as

F2(h1, h2, h3, h4) =
1

k

k
∑

i=1

(qi · hi)
2. (22)

It is a quadratic form in the unknowns h1, . . . , h4. Using a matrix notation
with vectors as columns, it is written as

F2(h) = hT · C · h, with C :=
1

k

k
∑

i=1

qi · q
T
i . (23)

The symmetric matrix C is known as covariance matrix in statistics and as
inertia tensor in mechanics. Minimizing F2 under the constraint h2 = 1 is
an ordinary eigenvalue problem. Let λi be an eigenvalue of C and let hi

be a corresponding normalized eigenvector (h2

i = 1). Then, λi = F2(hi).
Therefore, the best fitting hyperplane H1 belongs to the smallest eigenvalue
λ1. The statistical standard deviation of the fit with H1 is

σ1 =
√

λ1/(k − 4). (24)

The distribution of the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λ4 of the covariance
matrix C (and the corresponding standard deviations σ1 ≤ · · · ≤ σ4) gives
important information on the shape of the surface Φ:

• Assume that there is a single small eigenvalue λ1 (small standard de-
viation σ1). The corresponding well fitting hyperplane H1 : h1,0 +
. . . h1,4u4 = 0 characterizes a sphere C1 in R

3, whose center m1 and
radius r1 are computed as

m1 =
1

h1,4

(h1,1, h1,2, h1,3), r1 = −
h1,0

h1,4

. (25)
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Then, we check, whether the points bi form a curve-like or a surface-
like arrangement on B (see section 5). If the arrangement of points bi

is surface-like, then the surface Φ is close to the sphere C1. A curve-like
arrangement characterizes a developable surface Φ, which is tangent to
a sphere (close to C1), compare (17). A small radius r1 of C1 indicates
the presence of a cone (not a rotational one), compare (15).

So far, we have tacitly assumed h1,4 6= 0. Vanishing h1,4 characterizes
a developable surface of constant slope, compare (18). If additionally
h1,0 = 0, the surface Φ is a general cylinder, compare (16). Also a small
value of h1,4, which gives rise to a center m1 which is far away from
the considered object, indicates the presence of a cylinder.

Figure 3: Data points of a tennis-ball and reconstructed object.

Figure 3 shows a point cloud obtained from scanning a tennis-ball and
the reconstructed object. The eigenvalues with respect to the mini-
mization of (22) are

λ1 = 0.00004, λ2 = 0.18820, λ3 = 0.35731, λ4 = 0.37100,

and shows one small eigenvalue which leads to one hyperplane H con-
taining the Blaschke image of the estimated tangent planes. The esti-
mated radius of the sphere is 0.9928, since before computing the data
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are uniformly scaled. The mean distance between the data points and
the estimated center is 0.994 which nearly equals the estimated radius.

Figure 4: Left: Data points of a general quadratic cone and estimated
vertex, indicated by a cross. Right: Blaschke image, orthogonally projected
onto S2.

Figure 4 shows a point cloud obtained from scanning a general quadratic
cone without rotational symmetry. Outliers of the Blaschke image have
been removed by morphological cleaning and removing cells which carry
only a view points, compare section 5.1. The eigenvalues according to
the minimization of (22) are

λ1 = 0.00433, λ2 = 0.01480, λ3 = 0.17442, λ4 = 0.57563,

and shows one small eigenvalue which leads to one hyperplane H con-
taining the Blaschke image of the estimated tangent planes. The esti-
mated ’radius’ (according to (25)) is r = 0.0041. This tells us that the
estimated tangent planes shall pass through a fixed point. The analysis
of the dimension of the Blaschke image shows that it is curve-like.

• If there are two small eigenvalues and corresponding standard devia-
tions σ1 ≤ σ2, we get two well fitting hyperplanes H1, H2. Center and
radius of C2 follow analogously to (25). In fact, we have a pencil of
well-fitting hyperplanes, showing that the 2-dimensional plane H1∩H2
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fits the data points bi well. From the discussion in section 4.1, we know
that this reveals the surface Φ as right circular cone or right circular
cylinder. It possesses two inscribed spheres C1 and C2. The axis of the
surface is spanned by their centers m1, m2. Nearly equal radii charac-
terize a cylinder. Otherwise, we have a cone and compute an estimate
of its vertex according to (14).

Figure 5: Left: Data points of a cylinder of revolution and reconstructed
object. Right: Blaschke image (cleaned and resampled), orthogonally pro-
jected onto S2.

Figure 5 shows a point cloud obtained from scanning a cylinder of
revolution and the reconstructed object. Outliers in the Blaschke image
have been removed by cleaning and removing cells which carry only a
view points. The eigenvalues according to the minimization of (22) is

λ1 = 0.00013, λ2 = 0.00023, λ3 = 0.48055, λ4 = 0.51496,

and shows two small eigenvalues which lead to two hyperplanes H1, H2

containing the Blaschke image of the estimated tangent planes. The es-
timated radii of the spheres determined by H1, H2 are r1 = 0.6707, r2 =

20



0.6636. This indicates that the original surface has been a right circular
cylinder.

• It is impossible that there are exactly three small eigenvalues, since this
indicates that the data points bi on the Blaschke cylinder are nearly
collinear. Then they need to be close to a ruling of the cylinder, which
means that the tangent planes of Φ are nearly parallel to each other.
This happens only, if the surface Φ is close to a plane. Then, however,
we have four small eigenvalues, and a point-like cluster of data points
bi on B, see Figures 8 and 9.

There are several issues which need to be addressed in a successful im-
plementation of the method.

• In all cases, the size of σ has to be judged in comparison to the size of
the object to be investigated.

• The methods presented above are able to compute an estimate for an
approximating plane, sphere, cone or cylinder of revolution. Also the
vertex of a general cone or the directions of the rulings of a general
cylinder can be computed. In all these cases, one will use these ap-
proximants for segmentation of the data and – if necessary – as an
initial fit. Knowing the surface type, the final fit should be performed
by a method working directly on the relevant data points pi (see details
and references in the survey by Varady and Martin [28]).

• A curve-like arrangement of data points bi on the Blaschke-cylinder
indicates a developable surface. In the general case, it will not have an
inscribed sphere. We can fit the data points on B by a curve c(t) ⊂ B.
In R

3, this gives a one-parameter family of planes, whose envelope is an
approximating developable surface. This procedure seems to be simpler
than it is. The major problem with general developable surfaces Φ is
their singular curve cs (the surface Φ is formed by the tangents of
this curve). In applications, one wants to have cs outside the area of
interest. Pushing away the singular curve from the area of interest can
also be done in the Blaschke model: the osculating plane at a curve
point c(t) intersects B in an ellipse, which is the Blaschke image of the
osculating cone. The vertex of this cone is a point of cs. It would lead
too far to elaborate this here in more detail and thus we defer this topic
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to another publication. We just mention two previous publications on
this topic, which work with cone spline surfaces [3, 11] and special
rational developable surfaces [19], respectively.

• In the theoretical formulation given above, we use simple least squares
methods. These are sensitive to outliers. In practical applications,
one uses more robust schemes. One way is to minimize a weighted
sum of squared distances F =

∑

wid
2(bi, H) within a weight itera-

tion. Appropriate weighting schemes are found in the literature on
robust regression [23]. Some outliers are eliminated efficiently by a
morphological cleaning operation as discussed in section 5.1. A further
alternative would be to use the RANSAC principle, which enjoys great
popularity in Computer Vision [6]. There are also contributions on
robust principal component analysis [5].

• A real object will have faces which belong to different classes of sur-
faces. The proposed methods are then not applied to the whole set
of estimated tangent planes. One first recognizes edges on the objects
and splits the data set there. Moreover, one uses the proposed surface
recognition procedures, implemented in a robust way, as local filters.
They are applied to sufficiently large neighborhoods of data points and
those are then characterized as belonging to a certain class of surfaces
(plane, sphere, cone, cylinder, ...). One could say that this results in
an ’image’ defined on a triangular mesh. The mesh has as vertices the
data points p1, . . . , pk and its faces carry a label (0,1,2,...) according
to the locally detected surface type. Processing such labeled images
(or binary images in the case of just 2 values) on meshes can be done
by techniques from mathematical morphology. This will be briefly in-
dicated in section 5.1 and shall be pursued in more depth in future
research.

5 Implementation and examples

5.1 Processing the Blaschke image with mathematical

morphology

We consider a triangular mesh ∆ in R
3, whose vertices are the given data

points p1, . . . , pk. One may view the methods described above as filters,
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which assign to each triangle in the data mesh ∆ a probability p, with which
it lies in a region of a certain surface type. If we fix the type, say spherical,
and set a threshold on p, we get a binary image on the mesh ∆: a black face
indicates membership to a spherical region, and a white face does not. We
may have different spheres or different surfaces types. Then we get a labeled
image, where to each face we assign values from a small set V . Finally, we
could even use probabilities or other indicators with values in some interval
(discretely resolved). This would represent a greylevel image on the mesh.
In all cases, it is very desirable to have processing tools for those auxiliary
images on a mesh. The mesh could also be on the Gaussian sphere. We
have discussed a discretization of the Blaschke cylinder and it is also very
helpful to consider such images defined on the cells of the discretized Blaschke
cylinder.

Image processing frequently uses mathematical morphology for basic topo-
logical and geometric operations [7, 24, 25]. Just a few contributions [8, 12,
21, 22, 29] extend morphology to curved manifolds and to meshes and cell
decompositions on curved manifolds, such as the Blaschke cylinder. Based on
this work, we have started to extend it and to use it in the present context.
Let us briefly describe this here.

A basic element of mathematical morphology on binary images is the
definition of a structuring element Σ. Minkowski sums between Σ and the
considered white or black parts of the image are used for the definition of
dilation and erosion. These are discrete versions of (generalized) offsetting
operations. Dilation and erosion are basic building blocks of more powerful
operations such as opening or closing. The Minkowski sum requires the
availability of translations which move the structuring element to the desired
places of the image. This is exactly the point where curved manifolds create
problems. There is no really useful translation on it, since the geodesic
translation known in differential geometry is path dependent in case of non-
vanishing Gaussian curvature [21, 22]. One way to overcome this is the use
of approximants to geodesic circles as local neighborhoods (positions of the
structuring element). Another way is to define such local neighborhoods in
a purely topological way. In this case we can base the considerations upon
morphology on graphs [8, 12, 29].

We split the discussion into two parts. At first we discuss local neighbor-
hoods, to be understood as positions of the structuring element. Secondly,
we show how to use the neighborhoods – independently from their creation
– in the formulation of morphological operators. In both cases we confine
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ourselves to triangular meshes.The mesh is called ∆, but it needs not be the
one to the data points. An extension to other cell arrangements, like those
in the discretized Blaschke cylinder, proceeds along similar lines.

Neighborhoods

The purely topological neighborhood N1(∆i) of depth one to a triangle ∆i

consists of all triangles in ∆, which share at least one vertex with ∆i. The
neighborhood Nk is defined by iterating the procedure: in step k we add all
triangles which share at least one vertex with the boundary of Nk−1.

For a nearly uniform triangulation, the neighborhoods Nk are good ap-
proximants to geodesic circles. Otherwise, one may use a further geometric
criterion to restrict the choice of triangles in Nk. For example, a triangle is
only added to Nk if the spatial (or the geodesic) distance of its barycenter
to the barycenter of ∆i is below a prescribed threshold. We have also exper-
imented with a distance definition between triangles, which includes spatial
distance between their centers and the angle between their normals. The
shapes of such neighborhoods are elongated in direction of smaller normal
curvatures, a very useful effect for the processing of edges.

Morphological Operators

Let us first describe the dilation of level k of black parts (object P ) on a
white background. At each boundary triangle ∆i of P (which may have
many connected components) we compute the local neighborhood Nk(∆i)
and color it black. Under certain assumptions, one may be able to prove the
following counterpart to the planar case: performing k times a dilation of
level one is the same as performing once a dilation of level k. For geodesic
offsets this would be true. Roughly speaking, a dilation is a discrete offsetting
operation.

An erosion of level k of black parts is just a dilation of level k applied
to the white background. From now on, all operations are viewed as being
applied to the object (black part of the image).

A morphological closing operation first applies a dilation of level k, and
then an erosion of level k. This fills holes.

The opening operator applies the erosion before the dilation, which re-
moves thin connections between more compact parts. The width of such
bridges to be removed has to be in accordance to the depth k.
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The thinning operator of depth k inspects the boundary of P . It removes
those boundary triangles ∆i, which have just one black component in N1(∆i).
This can be iteratively applied (or one works with neighborhoods of depth
k). Note that this operation does not remove bridges: those give rise to at
least two components in N1(∆i).

Finally, cleaning an image is extremely useful for outlier elimination in
our techniques. It eliminates those black triangles ∆i, which are the only
black ones in Nk(∆i).

Figure 6: Left: Cad-model of a developable surface. Right: Blaschke
image of a developable, projected onto the Gaussian sphere S2.

Figures 6 and 7 show morphological operations applied to the Blaschke
image of the estimated tangent planes of the developable surface. Since it
is hard to imagine the generating lines of this surface from a figure showing
data points, Figure 6 shows a cad-model instead.

5.2 Examples

We like to present two further examples for the recognition of special geo-
metric parts in an object. The objects of the previous examples in section 4.2
and the first object which will be described here have been scanned with a
laser scanner (Minolta VI-900) from different sides and the different scans
have been merged (registration). Using commercial software, a triangulation
of the point cloud has been computed. Most of the algorithms described here
are implemented in Matlab and C.
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Figure 7: Left: Cleaning of the Blaschke image. Right: Closing of the
Blaschke image.

Fig. 8 shows the first object which is composed of planar pieces only.
The detected edges of the object are represented by black triangles. The
computation of the hyperplanes of regression for the two largest segmented
regions Ri shows the following eigenvalues. This indicates that the Blaschke
images b(Ri) are point-like cluster in B.

R1 : 0.00001, 0.00018, 0.00175, 0.00315

R2 : 0.00001, 0.00046, 0.00112, 0.00201

Fig. 9 shows the second object which consists of planes, cylinders, cones
of revolution and spherical parts. The data points are generated artificially
by sampling a mathematical model. After having computed the edges and
the Blaschke image of the object, the dimension of the Blaschke image has
been analyzed. It is possible to recognize cylindrical and conical parts and
finally the spherical part of the object. The computation of the hyper-
planes of regression to the parts of the object gives the following eigenvalues:
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Figure 8: Segmentation of a piecewise planar object.

Planar vertical region left:
eigenvalues: 0.00000, 0.00006, 0.00098, 0.00200.
Cylinder of rotation, front:
eigenvalues: 0.00002, 0.00069, 0.10908, 0.62807.
Cone of rotation:
eigenvalues: 0.00001, 0.00079, 0.36814, 0.55629.
Spherical part:
eigenvalues: 0.00000, 0.07370, 0.33614, 0.51365.

6 Conclusion and Future Research

We have shown how the classical geometric Blaschke model of Laguerre ge-
ometry is related to the Hough transform and how it can be used to detect
special shapes in point clouds. Moreover, we have presented initial results
on the use of mathematical morphology on meshes in processing tasks which
appear in the context of automatic shape understanding and reconstruction.
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Figure 9: Left: Segmentation of an object which consists of planar,
cylindrical, conical and spherical parts. Right: Blaschke image projected
onto S2.

There are many directions for future research, including the following
ones.

• Mathematical morphology on meshes and discrete representations of
higher-dimensional curved manifolds needs more research. Fundamen-
tal research, implementation issues and applications are of interest here.
Moreover, we need to work on greylevel images as well.

• Another interesting topic is a study of the distortions in the mapping
between Φ and b(Φ), or between their discrete representations ∆ and
∆̄. Obviously, both developable surfaces and highly curved regions give
rise to heavy distortions. These distortions may be seen as functions
(greylevel images) on the meshes ∆ or ∆̄. Mathematical morphology
on those images can aid the segmentation task.

• Differential geometric invariants of Laguerre geometry or invariants of
appropriate subgroups of the Laguerre group would also deserve an
investigation with respect to their use in segmentation tasks.
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