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Abstract 

Laguerre geometry provides a simple approach to the design of rational curves and surfaces 
with rational offsets. These so-called PH curves and PN surfaces can be constructed from arbitrary 
rational curves or surfaces with help of a geometric transformation which describes a change 
between two models of Laguerre geometry. Closely related to that is their optical interpretation 
as anticaustics of arbitrary rational curves/surfaces for parallel illumination. A theorem on rational 
parametrizations for envelopes of natural quadrics leads to algorithms for the computation of 
rational parametrizations of surfaces; those include canal surfaces with rational spine curve and 
rational radius function, offsets of rational ruled surfaces or quadrics, and surfaces generated by 
peripheral milling with a cylindrical or conical cutter. Laguerre geometry is also useful for the 
construction of PN surfaces with rational principal curvature lines. New families of such principal 
PN surfaces are determined. © 1998 Elsevier Science B.V. 

Keywords: Laguerre geometry; NC milling; geometrical optics; rational curve; rational surface; 
offset; rational offset; Pythagorean-hodograph curve; principal patch; principal curvature line 

Introduction 

In this paper, we continue the discussion of the role of Laguerre geometry in geometric 
design which has been started in (Pottmann and Peternell, 1997). We refer to that paper 
concerning the fundamentals of euclidean Laguerre geometry and its different models. 

The focus of this paper is on offset curves and surfaces, which arise in various 
applications including NC milling, path planning for rapid prototyping, font design 
and geometric tolerancing. It is well known that rational curves or surfaces do in 
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general not possess rational offsets. In order to comply with current industry stan- 
dards, offset curves or surfaces therefore have to be approximated in rational B- 
spline form. As an alternative approach to offsets, Farouki and Sakkalis (1990) pro- 
posed to use only those curves in the design process that do possess rational offsets. 
Farouki and Sakkalis introduced the so-called Pythagorean-hodograph (PH) curves, 
which are polynomial curves :e(t) = (:el ( t ) ,xz( t ) )  with polynomial parametric speed 
a( t)  = ~ + 5: 2. Among other remarkable properties, these curves possess rational off- 
sets :ca(t) = x( t )  + dn(t) ,  where n(t)  is a field of unit normal vectors of the progenitor 
curve x(t) .  Recent work on PH curves and their generalizations to the full class of rational 
curves with rational offsets showed that these curves are well suited for practical design 
purposes (Ait Haddou and Biard, 1995; Albrecht and Farouki, 1996; Farouki, 1992, 
1994; Farouki and Neff, 1995; Farouki et al., 1994; Fiorot and Gensane, 1994; Lti, 1994, 
1995; Pottmann, 1995a, 1995b). 

Using the dual representation, it has been shown by Pottmann (1995a) that all rational 
curves and surfaces with rational offsets can be described explicitly and constructed via 
the dual representation. We denote them briefly by P H  curves and P N  surfaces in the 
sequel, where PN stands for Pythagorean Normal vector field. 

We will now present a new geometric approach to PN surfaces based on Laguerre 
geometry. A geometric transformation (representing the change between two different 
models of Laguerre geometry) maps any rational curve/surface onto a PH curve/PN 
surface. Any PH curve/PN surface may be obtained in this way. This serves as a simple 
framework for the solution of several design problems with PH curves or PN surfaces 
such as surface design with parabolic Dupin cyclides. 

Recently, unexpected results on offsets of special classes of surfaces could be derived 
(Lti, 1996; Lti and Pottmann, 1996; Peternell and Pottmann, 1996, 1997; Pottmann, Lti 
and Ravani, 1996). As a generalization, we use Laguerre geometry to prove a theorem 
on rational envelopes of natural quadrics. As applications, this results yields algorithms 
for the computation of rational parametrizations of special classes of surfaces including 
canal surfaces with rational spine curve and rational radius function, offsets of rational 
ruled surfaces or quadrics, and surfaces generated by peripheral milling with a cylindrical 
or conical cutter. 

The new approach to PN surfaces enables us to determine classes of PN surfaces all 
whose principal curvature lines are rational. For example, all PN surfaces with planar 
rational lines of curvature can be determined explicitly. 

1. Rational  curves  and surfaces with rational offsets 

1.1. P H  curves and P N  surfaces in the cyclographic model 

A curve in N 2 is a P H  curve if and only if it possesses a rational parametric represen- 
tation x( t )  = (:el (t), :e2(t)) with rational parametric speed or(t) = ~ + 5:~. Then, the 
field of unit normal vectors n(t)  = (-5:2, gcl)/cr(t) and all offsets :ed(t) = x( t )  + dn(t)  
are rational. 
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Orienting the tangents of  x with n, we obtain as their image in the cyclographic 
model a rational one-parameter family of -y-planes (we exclude the trivial special case 
of a straight line x), 

E = ( - n i x 1  - n 2 x 2 , n l , n 2 ,  1). (1) 

The envelope is a rational 7-developable. It is a 5'-cone for a circle x, otherwise the 
tangent surface of a rational y-curve p(t) ,  whose normal projection p'( t)  = (Pl (t), pz(t)) 
onto R 2 is the evolute of  x. Because of  its constant inclination angle 7 = ~r/4 against 
N 2, i.e., i5~ = i5~ +/5~, the third coordinate function p3(t) equals the arclength s(t)  of 
p '( t) ,  counted from some starting point t = to. Therefore, p '  is a rational curve with 
a rational arc length parameter function. Conversely, having such a curve (Pt,P2), the 
graph curve (pl ,P:, s) is a rational -,/-curve. Let us summarize these geometric relations 
(Pottmann, 1995a). To avoid lengthy formulations, we do not worry about the trivial 
PH curves, circles and lines, and the trivial special PH curves with rational arc length, 
namely the straight lines. 

Theorem 1.1. P H  curves are the cyclographic images of  rational 7-curves in ]R 3. Their 
evolutes, the orthogonal projections o f  ")/-curves onto the reference plane, are exactly the 
planar rational curves with rational arc length parameter function. 

We recall the 'anticaustic map' (A*) -1 , which is discussed in (Pottmann and Petemell, 
1997). Let a : z~  = 0 be a fixed hyperplane in R n. We consider light rays perpendicular 
to a. The anticaustic map (A*) -1 with respect to a maps a hyperplane y -- ( y0 , . . . ,  y,,) 
to a hyperplane 

( . . . . .  ) 
z :=  ( A * ) - l ( y )  = Y0, . - . ,Yn- l ,  y ~ -  yl2 ~ Y~-I . (2) 

Let y be tangent hyperplanes of a hypersurface m ' ,  then z are tangent hyperplanes of an 
anticaustic x with respect to the mirror m ~ and light rays perpendicular to a. Further, if 
y~ are rational functions, then z possesses a rational unit normal vector. 

Intersecting the -),-developable determined by a 2,-curve p with a 7 -p lane / ' ,  we obtain 
a rational curve m. Viewing its projection m '  as mirror and considering light rays normal 
to g :=  F A]R 2, p '  is the caustic and x is an anticaustic. Conversely we see that any 
anticaustic for parallel light rays to a rational mirror m '  is a rational PH curve. In 
coordinates, let g be the or. line with coordinates (0, 0, l) and m '  determined by the 
tangent lines y(t)  = (Yo, Yl, y2)(t). Since m '  is rational, yi are rational functions in t. 
With formula (2), an anticaustic x possesses tangent lines z(t) and their unit normals are 
rational. This gives a short proof of  results by Fiorot and Gensane (1994). 

Theorem 1.2. P H  curves are exactly the anticaustics of  rational curves for  parallel 
illumination; the corresponding caustics form the family o f  rational curves with rational 
arc" length parameter function. 

Example  1.1. Let m be a parabola in a "/-plane F,  see Example 2.2 in (Pottmann and 
Peternell, 1997). Then the pencil P of  planes through the ideal line o f / "  is a component 
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of the reducible y-developable of class 4 through m. It counts with multiplicity 2, if 
the axis of the parabola is a y line, i.e., m is a p e  circle. Then, the cyclographic image 
different from F O R  2 is a cycle (see Example 2.1 in (Pottmann and Peternell, 1997)). The 
optical interpretation in Theorem 1.2 then just gives the elementary property that light 
rays parallel to the axis of a parabolic mirror are reflected through a fixed point (focal 
point = projection of the vertex of the y-cone through m). If m is not a p e  circle, P has 
multiplicity 1 and the irreducible part of the y-developable is of class 3, i.e., the tangent 
surface of a cubic "),-curve p. Its projection p '  onto II~x 2 is known to be a Tschirnhaus 
cubic (Tschirnhaus, 1690; Wunderlich, 1973); it is a polynomial PH curve (Farouki and 
Sakkalis, 1990). Theorem 1.2 yields the known result that the caustic of a parabola 
for parallel illumination (but not parallel to the axis) is a Tschirnhaus cubic and the 
anticaustics (involutes) are so-called Tschirnhaus quartics. The latter are PH curves used 
in (Pottmann, 1994) and (Ait Haddou and Biard, 1995) for curve design. 

Moreover, we can take a parabola m not in a y-plane. The y-developable through m is 
irreducible of class 4. According to Theorem 1.1, we find: the anticaustics of a parabola 
for refraction of parallel light rays are PH curves of class 4. The caustics are rational 
sextics with rational arc length parameter function. 

The most convenient representation of PH curves is the dual Bdzierform (Pottmann, 
1995a). The same holds for rational 7-developables. We start with a rational representa- 
tion of a circle, 

1 
(h i ,  n2) - -  a2 q- b2 (2ab, a 2 -- b2), 

with polynomials a(t), b(t). Eq. (1) with zj = z2 ~ 0, 

E = (0, 2abf, (a 2 - b2)f, (a 2 + b2)f),  

is a homogeneous dual representation of the y-cone F(O) with vertex at the origin O, 
degree elevated with the polynomial f ( t ) .  Expanding the polynomial coordinate func- 
tions (degree m) in the Bernstein basis over a real interval, the coefficients determine 
the B6zier planes Bi and frame planes Fi = Bi + B i +  1 of the cone (for the dual repre- 
sentation of developable surfaces, see (Pottmann and Farin, 1995)). They pass through 
O and intersect each plane z3 = const in the control lines of a circle segment. Changing 
the first coordinate function e0 from 0 to an arbitrary polynomial of degree m is equiv- 
alent to performing arbitrary translations to the control planes of the cone and yields a 
representation of a rational y-developable. 

Theorem 1.3. The dual Bdzier representation of a rational "/-developable is obtained by 
performing arbitrary translations to the B(zier and frame planes of a y-cone. 

This has several applications. An explicit dual representation of PH curves is 

e = (9, 2abf, (a 2 - b2)f), (3) 

with arbitrary polynomials a, b, f ,  9. The intersection of the control planes with the ref- 
erence plane N 2 yields the property that the control lines of the dual representation of a 
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PH curve segment x are parallel to the corresponding lines in the dual control structure 
of  a circular arc. Intersection with x3 = d shows, that the offset x d of  x has Brzier and 
frame lines which arise from those of  x and a circle c of  radius d via Minkowski addition 
(leaving the normals unchanged and adding the signed distances from the center of  the 
circle; see (Pottmann, 1995b)). Furthermore, intersection with a ~/-plane and projecting 
the lines into IR 2 gives the dual control structure of  a mirror for parallel illumination. 
The construction of  the control points of  the edge of  regression p with the formula in 
(Pottmann, 1994) yields the control points of  a rational Brzier curve with rational arc 
length parameter function. Of course, one may treat piecewise rational 7-developables 
and PH curves in a completely analogous way. 

It is an advantage of  the present approach that the transition to rational surfaces with 
rational offsets is straightforward. A surface in R 3 is called a PN surface if and only 
if it possesses a rational parametric representation x(u,  v) = (xl (u, v ) , . . . ,  x3(u, v)) 
with rational unit normal vectors n(u , v ) ;  then all offsets Xd = x + d n  are rational. 
Excluding the trivial planes x, we orient the tangent planes of x with n and obtain in 
the cyclographic model a rational two-parameter family of  "7-hyperplanes, 

/~('/Z, V) = (--?/,IXl --  ~12X2 -- Tt3Z3, ~1, n2,/ / '3 ,  1)(u, v). (4) 

The envelope of  E(u ,  v) is a rational ?-hypersurface T,  which contains a 2-parameter 
family of  generating "y-lines g = E N E~, N E~,. The singular set s ("/-surface) of  T is 
not necessarily rational, but the generating lines 9(u, v) depend rationally on (u, v). This 
implies that the intersection of  T with a "7-hyperplane F is a rational surface m. Again 
we view its projection rrz ~ as mirror and consider light rays perpendicular to e :=  FN1R 3. 
Then, s ~ is the caustic and x is an anticaustic. Conversely, the anticaustic map (2) shows 
that any anticaustic for parallel light rays to a rational mirror surface m '  is a rational PN 
surface. Further, x U e is the cyclographic image of  m. 

It is important to note the following special case. It may happen that m = T ( s )  N F is 
just a rational curve. Its projection rn r in R 3 is interpreted as 2-parameter set of  tangent 
planes, namely the union of  tangent planes passing through each tangent line of  rrd. We 
may also perform the reflection of  light rays perpendicular to e. The anticaustic x is a 
rational canal surface with the constant tangent plane e. Again, x U e is the cyclographic 
image of m. We will later return to this case, when we construct rational parametrizations 
of  canal surfaces. The spatial extension of  the result of  Fiorot and Gensane (1994) reads 
as follows. 

Theorem 1.4. PN surfaces are exactly the anticaustics o f  rational curves or surfaces for  
parallel light rays. An anticaustic to a rational mirror curve is a rational canal surface 
which is in line contact with a plane orthogonal to the light rays. 

The discussion of  the dual control structure of  PN surfaces is completely analogous 
to the curve case (Pottmann, 1995a) and can be omitted. For later use, we just present 
the dual representation of  PN surfaces, 

e = (g,  2 a c f ,  2 b c f ,  ( a  2 + b 2 - c 2 ) f ) ,  (5) 

with polynomials a, b, c, f ,  g of  one or two variables. 



228 M. Peternell, H. Pottmann / Computer Aided Geometric Design 15 (1998) 223-249 

The present geometric setting is also well suited for the study of rational curves p'(t) 
in •3 with rational arc length s(t). The curve p '  is projection of a rational -y-curve 
p(t) = (p l ( t ) ,pz ( t ) ,p3( t ) , s ( t ) ) .  An explicit representation of all curves p(t) may be 
obtained as follows. The tangents of a 'y-curve intersect the ideal plane in a rational curve 
U(t) C ~.  Using homogeneous coordinates ( x o , . . . ,  x4) in 4-space, ~ is represented 
as x0 = 0; x 2 + x 2 + x~ - x] = 0. With the explicit form of rational spherical curves 
x(t)  C R 3 from (Dietz, Hoschek and Jtittler, 1993), we get 

U(t)  = (0, 2XoX1 - 2 X 2 X 3 ,  2XIX3 q-2XoX2, 

X~ if- X2 2 X 2 2 2 X 2 - - X 3 , X ,  + X 2 + X 2 +  3), (6) 

with relatively prime polynomials X d t  ). The osculating planes V(t )  : xo = O, vlxt + 
. . .  + v4x4 = 0 of the curve U are spanned by U(t) and the derivative points [ ; ( t ) ,  0 ( t ) .  
Setting u = ( u l , . . . ,  u4) and v = (V l , . . . ,  v4), the vector product in R 4 yields 

v(t) : u(t) x/~( t )  x ii(t). (7) 

The osculating hyperplanes of  the 'y-curve p(~) intersect the ideal plane in the osculating 
planes V(t) .  Therefore, the osculating hyperplanes H(t )  of p possess the homogeneous 
plane coordinates 

H(t) = ( h ( t ) , v , ( t ) , . . . , v a ( t ) ) ,  (8) 

with an arbitrary rational function h(t). Intersecting H(t )  with the first three deriva- 
tive hyperplanes yields p(t). Hence, the a homogeneous representation P(t )  = 
(Po ( t ) , . . . ,  Pa(t)) of rational 'y-curves is 

P(t) = H(t) x / ; / ( t )  x H(t) x H(3)(t). (9) 

So far, we did not consider the special case where the curve p lies in a hyperplane H ,  
such that it cannot be obtained with (9). Then, the ideal plane V of H must be pe, i.e., it 
intersects ~ in a real conic U. The (euclidean) unit tangent vectors n(t) of the curve p(t) 
form the constant angle 'y = 7r/4 with ]i{3, therefore their projection n ' ( t )  has constant 
length v/2/2. On the other hand, the vectors n(t)  lie in H and thus the projection n'(t)  
describes a planar section of the sphere n 2 = 1/2, i.e., a circle. The axis a of  the circle 
is normal to the plane e := H A R 3. We see, that p '  is a curve whose tangents form 
a constant angle with the axis a, or in other words, p is a rational curve of constant 
slope. From the discussion on planar curves (Pl (t) ,p2(~)) with rational arc length s(t) ,  
we see that pt has the form (Pl ,P2, As) with a real constant A # 0; the arc length of p '  
is x/1 + AZs. 

T h e o r e m  1.5. Any rational space curve p( t ) = (pl ( t ), p2 ( t ), p3 ( t ) ) with a rational arc 
length parameter function s = p4(t) is either a rational curve of constant slope or it is 
representable in the form (9) with Pi = f i / P o  and (6), (7) and (8). 

As discussed in (Pottmann and Peternell, 1997), the cyclographic image of a 'y-curve 
p is a principal curvature strip, consisting of a curve x(t) ,  the intersection of the tangent 
surface T(p) with R 3, and a tangent plane (or surface normal n(t))  at each point. The 
normals are the tangents of  p '  and therefore form a developable surface. Any surface in 
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R 3 containing x(t) and possessing the normals n(t) along x(t) possesses the curve x as 
principal curvature line. In our case, the curve 

p4(t) 
x(t) = p(t) - ~ /~(t), (10) 

as well as the unit normal field 

1 
: p ( t ) ,  (1 l )  

are rational. Hence, also the offset strips with curve x(t) + dn(t) and normals n(t) are 
rational. Thus, we have found a spatial analogue of  Theorem 1.1. 

Theorem 1.6. The cyclographic images of rational "y-curves in R 4 are rational principal 
curvature strips, with strip curve (10) and rational unit normal field (11); this implies 
rationali~ of their offsets. The normals of the strip are the tangents of a rational curve 
p'(t) with rational arc length parameter function. 

The osculating planes Y( t )  of the strip curve x are the intersections H(t)  A R 3, and 
therefore they possess the homogeneous coordinates 

Y(t)  = (h (0 ,  v , ( t ) , . . . , v 3 ( 0 ) .  (12) 

These planes are parallel to the osculating planes of the rational spherical curve 

1 
c(t) = - - ~  (,,, (t), u: (0, u-~ (t)), (13) 

with u~ as in Eq. (6). The set of  osculating planes of  a rational curve form its dual 
representation; selecting an interval (segment), one can express it with B6zier and frame 
planes. This allows us to state the following generalization of  Theorem 1.3. 

Theorem 1.7. The dual Bgzier representation of a nonplanar strip curve to a rational 
principal curvature strip with rational offsets is obtained by performing arbitrary trans- 
lations to the Bgzier and frame planes in the dual representation of a nonplanar rational 
spherical curve c(f). The strip normals are parallel to the connections of c(t) with the 
center of the sphere. 

A curve of  constant slope p~ determines as 'involutes' planar PH curves as strip curves. 
Their dual B6zier representation is generated as described in the discussion following 
Theorem 1.3. 

It may be an interesting project to develop an algorithm which allows one to design 
a surface from a set of  curves which are supposed to be principal curvature lines of the 
final surface. We have shown here which curves are admissible for this kind of  shape 
preserving interpolation. 

R e m a r k  1.1. An example for rational space curves with rational arc length are the poly- 
nomial PH space curves in (Farouki and Sakkalis, 1994). The cubics among these curves 
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yield just planar strip curves, namely Tschirnhausen quartics (see Example 1.1). The spa- 
tial involutes of  PH quintics lead to principal curvature strips with rational strip curves 
of  degree 9. 

1.2. Using the Blaschke cylinder and the isotropic model 

In the following, we study PH curves x(t)  C IR 2 and PN surfaces x(u,  v) C R 3 in the 
Blaschke model and the isotropic model of  euclidean Laguerre plane or space, respec- 
tively. Concerning fundamentals of  euclidean Laguerre space, models and notations we 
refer to (Pottmann and Peternell, 1997). In the cyclographic model, we have the repre- 
sentations (1) and (4). Applying the Blaschke map (duality) 6, we get a rational curve 
or 2-surface in the Blaschke cylinder A in N 3 or R 4, respectively. Laguerre transforma- 
tions appear as projective maps in the Blaschke model and projective maps preserve the 
rationality of  a curve/surface. This proves the following result. 

T h e o r e m  1.8. Laguerre transformations in R 2 map PH curves (viewed as sets o f  oriented 
tangents) onto PH curves. Laguerre transformations in IR 3 map PN surfaces (as sets of  
oriented tangent planes) onto PN surfaces. 

R e m a r k  1.1. PH curves/PN surfaces are also invariant under MObius transformations 
in 2- or 3-space, respectively. For the simple proof  of  this fact, it is sufficient to show 
invariance under inversions. Together with the result above, we can state that planar 
PH curves and PN surfaces are invariant under Lie transformations. For details on Lie 
geometry, we refer the reader to Blaschke (1929) or Cecil (1992). Moreover, we can 
define PH curves in IR ~ as rational curves with rational parametric speed. Then, one can 
prove that MObius transformations in N n map PH curves onto PH curves. In particular 
we can use this in II{ 3 to map planar PH curves onto spherical PH curves (see also 
(Wagner and Ravani, 1996)). These curves possess rational geodesic offsets. 

The stereographic projection cr defines a bijective map between rational curves/surfaces 
in A and rational curves/surfaces in the isotropic model I 2 / I  3. This gives us a simple 
construction of PH curves/PN surfaces. 

T h e o r e m  1.9. Let A - j  be the geometric transformation which describes the change from 
the isotropic model o(  2- or 3-dimensional Laguerre space to the standard model. A l 
maps a rational curve in 12 onto a planar PH curve. The A- l - image  o f  a rational curve 
or surface in 13 is a developable or nondevelopable PN surface, respectively. Any PH 
curve/PN surface may be obtained in this way. 

A degenerate case should be mentioned. An isotropic line corresponds to a pencil of  
parallel oriented lines/planes in design space. A rational cylinder in 13 with isotropic 
generators belongs to a 2-parameter set of  planes that touch a rational curve at infinity. 
Moreover, if the rational surface g' C [ 3 possesses a real curve along which it is touched 
by an isotropic cylinder (occluding contour for projection in isotropic direction), the 
corresponding PN surface contains a real curve at infinity. 
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As discussed in (Pottmann and Peternell, 1997), the mapping (A*) - l  from the 
dual isotropic model  to the standard model is a geometric transformation that maps 
a curve/surface in I 2 / [  3 onto an anticaustic for parallel illumination. Therefore, Theo- 
rem 1.9 is dual to the interpretation of  PH curves/PN surfaces as anticaustics in Theo- 
rems 1.2 and 1.4. 

Let us recall that A maps an or. hyperplane e in R n with normalized coordinates 
2 = 1, onto the point + " -  + 

1 
- -  - -  ( e l , . . . , e n - j , t o ) .  (14) A ( e )  1 - 

The preimage of  a point y ---- (Yl,. • . ,  yn) E I "  is a hyperplane z in ]R n 

z : - ~ A - l ( y )  

1 2 - l ) .  ( 1 5 )  
: 2 (2y,,., 2yl ,  • • •, 2y,,_ 1, Y~ + ' ' "  + Y n -  I 

y~ + . .. + y,~_~ + 1 

Let y~ be rational functions, it follows that the unit normals of  z are rational. With (14) 
it follows that the A-image of  a PH curve (3) is 

y =  ~, 2b2 f . (16) 

Let us now consider those PH curves which are constructed in the sense of  Theorem 1.3 
from a quadratic circle representation (including a possible degree elevation). This means 
that we insert linear polynomials  a, b. After a linear fractional reparameterization which 
leaves the degree unchanged, these may be chosen as a = t, b = 1. Then (16) shows 
that in the isotropic model  we get the graph of  the function h = g / 2 f .  For a PH curve 
of  class m, f and g have to be polynomials  of  degree m - 2 and m, respectively. 

T h e o r e m  1.10. A rational PH curve o f  class m, derived from a dual quadratic repre- 
sentation o f  a circular arc via degree elevation and translations o f  the control lines, 
appears in the isotropic model as graph o f  a rational function with numerator degree m 
and denominator degree m - 2. 

The simplest example of  such a PH curve is a circle (m = 2), which is mapped onto 
the graph of  a quadratic polynomial  (see Pottmann and Peternell, 1997). For  m = 3 we 
get the Tschirnhausen quartics from Example 1.1. 

Analogously,  a PN surface (5) appears in the isotropic model as 

Y =  c ' c ' 2 ~ - f  ' (17) 

Nondevelopable surfaces derived from a quadratic spherical representation (via reparam- 
eterization simplified to a = u, b = v, c = 1) are mapped to graphs of  rational functions 
in i3. 

E x a m p l e  1.2. Let us consider as surface y(u,  v) C 13 the graph of  a quadratic polyno- 
mial. From (Pottmann and Peternell, 1997) we know already that a plane or paraboloid 
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of revolution (isotropic sphere) y corresponds to a sphere in design space. Otherwise, 
we obtain a well-known class of PN surfaces, namely parabolic Dupin cyclides. For 
a discussion of this important special case, see (Peternell and Pottmann, 1996), where 
it has also been shown how to derive a modeling scheme with cyclides from bivariate 
quadratic spline algorithms. 

As PN surfaces, parabolic Dupin cyclides may also be generated with help of the 
optical interpretation in Theorem 1.4 and to do so, we have to convert them to the 
dual isotropic model. Transforming y under the polarity of an isotropic sphere, yields in 
general a paraboloid y*; a special case occurs for a parabolic cylinder y, whose points are 
mapped onto the planes tangent to a parabola with y3-parallel axis. Using Theorem 1.4, 
we recognize parabolic Dupin cyclides as anticaustics of paraboloids or parabolas.for 
light rays parallel to the axis of the mirror curve or surface (Wunderlich, 1948). 

The presented results can be used for modeling with PH curves and PN surfaces 
based on the geometric transformation A. A preserves the order of geometric contact, 
but one has to take into account that we are working with the dual representation in 
design space. This means that an inflection of a curve in ]I~ 2 appears as a cusp in the 
isotropic model. Parabolic points of a surface in IR 3 correspond to singularities of the 
Gauss map and therefore to singularities in the isotropic model. Conversely, having 
a regular curve/surface in the isotropic model, then the preimage in design space is 
regular as line/plane set, but not necessarily as point set. Note also that in Laguerre 
geometry a curve/surface and its offsets are equivalent, since they are related by Laguerre 
transformations. But clearly, the offsets of a regular curve/surface need not be regular. 

2. P H  curves  

The oriented tangents of a planar PH curve x(t) appear in the Blaschke model as 
rational curve X( t )  on the cylinder A (see Fig. 1). Transforming the B6zier points Bi 
(homogeneous coordinates (bi,o,.. . ,  hi,3)) of a segment of X with the duality 6 -1, we 
obtain the B6zier planes ui = (bi,3, bi,l, bi,2, bi,o) of a 7-developable. Intersecting the 
developable and the planes ui with the reference plane x3 = 0 yields the curve x and 
the B6zier lines bi = (bi,3, bi,l, bi,2) in its dual representation. 

As an example for the transfer between the standard model and the Blaschke model 
we consider a PH curve of class 4. The curve X on ,6 is a rational quartic. We pick a 
segment of it with B6zier points /30,. . . , /34. Let C~o = BoBIB2 and cq = B2B3B4 be 
the osculating planes of X at the end points /3o and Be. The middle B6zier point/32 
lies on the intersection line a = C~o N cq (Fig. 1). Assume that the osculating planes are 
not tangent to A. Then, they intersect ,6 in ellipses Ko, K1. They have contact of order 
2 with X and therefore are the Blaschke images of the oriented osculating circles ko, kl 
at the endpoints xo, xl of the corresponding segment of x. Transforming a back to the 
cyclographic model, we obtain the line connecting the vertices of the ~/-cones ~(ko) and 
~(kl). This line intersects the reference plane in the center s of similarity of the two 
osculating cycles ko, kl. Since a passes through B2, b2 contains s (Fig. 2). Thus, we have 
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Fig. 1. Osculating planes of a rational curve on a quadratic cylinder. 

.> 

t 

Y 

Fig. 2. Two osculating circles of a PH curve of class 4. 

found a result that has been proved in a different way in (Pottmann, 1995b), where it 
forms the basis of  the construction of  G 2 PH splines of  class 4. 

Proposition 2.1. The middle B&ier line b2 of the dual representation of a PH curve 
segment x of class 4 passes through the center of similarity s of the oriented osculating 
circles k0, kl at its end points. 

Rational curves X( t )  C ,4 may be written as 

( X 0 , . . . ,  X3) = (p~ + p2, p~ _ p02, -2p3P0, 2(p3pz - p2Po)), (18) 

with polynomials Pi (t). Let Pi be coordinate functions in a projective 3-space I? 3. For- 
mula (18) may be interpreted as quadratic mapping a : l ?  3 ~ A, which is called 'gen- 
eralized stereographic projection' (Dietz, 1995). Note that the preimage of each point 
X E A is a line of  a parabolic net in 173. Mapping a curve segment p C I? 3 together 
with its B6zier points Pi and frame points Qi onto A, we get X with an intrinsic con- 
trol structure. It consists of  control points Si = cr(Pi) and frame points Ti = a (Qi ) .  
The image of  the projective control polygon of p (cf. (Pottmann and Farin, 1995)), is a 
curved control polygon consisting of elliptic or straight line segments SiSi+I that carry 
Ti (Fig. 3). 
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s~ 

Fig. 3. Intrinsic control structure of a rational curve on a quadratic cylinder. 

s~ t 

Fig. 4. Laguerre geometric control structures of a PH curve and an offset. 

The intrinsic control structure is useful for interactive design, since control and frame 
points may be chosen interactively. However, if two of the three points S~, Si+l ,  Ti 
lie on the same generator, all three must be collinear. To compute p and X ,  choose 
Po E a - l ( S o )  and compute the remaining B6zier points P~ E ~r - l  (S~) and frame points 
Qi E a -1 (Ti) by maintaining collinearity of  P~, P~+l, Q~. 

This curve design technique, which works on other quadrics as well, has been used in 
(Wallner and Pottmann, 1997) for the construction of rational blending surfaces between 
quadrics. Here, we interpret it as Laguerre geometric control structure and transform it 
to the standard model. We obtain a sequence of or. control lines si and frame lines t~ 
of  the Laguerre geometric control structure o f  the PH curve x. They may be chosen 
arbitrarily. However,  if two of the three or. lines si, ti, Si+l are parallel, also the third 
must be chosen parallel to them. Otherwise, s~, t~, s~+~ are tangent to a cycle c~ and the 
segment with end tangents s~:, s~+l and interior tangent ti corresponds to a segment of  
the control polygon of X .  The cycles c~ (maybe degenerate to parts of  a pencil of  parallel 
or. lines) form the complete Laguerre geometric control structure o f  x (Fig. 4). 

Theorem 2.2. Any PH curve x possesses a Laguerre geometric control structure, con- 

sisting o f  oriented control lines so,. • •, sm and oriented frame lines to,. • . ,  t m - i .  The 

lines may be chosen arbitrarily; however, i f  two o f  the three or. lines s~, ti, si+l are par- 
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Fig. 5. Control structure of a PH curve of class 4 and convex hull property. 

allel, also the third must be parallel to them. The connection between the curve x and 
the control structure C(x)  is invariant under Laguerre transformations. Particularly, the 
offset of  x at distance d is controlled by the offset of  C(x)  at distance d. 

Some well-known properties of  the Bdzier polygon of  p may be translated into properties 
of  C(x).  For example, the cycle co touches so at an end point of  x and the other end 
point is determined by cm-1 and sm (Fig. 5). 

The most interesting case for applications is m = 2 and concerns PH curves x of  
class 4. The corresponding curve X on the Blaschke cylinder A is a rational quartic 
with intrinsic control points So, $1, $2. We assume that the points Si lie on different 
generators. The control conic arcs Ci between Si and Si+l (i = 0, 1) intersect at S1 and 
a second point, say V. The point V is a double point of  the quartic X (parameterized over 
R) and V is also the vertex of  a quadratic cone F through X.  The cone is determined 
by the generators VSo and VS2, the tangent planes VSoSI and VSI $2 along them and 
the tangent plane VToT1. Therefore, we can formulate a convex hull property (illustrated 
in Fig. 3) and a variation diminishing property of the intrinsic control polygon as in the 
plane; but straight lines are replaced by conics on ,4 passing through V. 

Converting to the standard model, we have three or. control lines so, s l ,s2 and 2 
or. frame lines to, tl. They determine the control cycles co, cl. Apart from Sl, the 2 
cycles co, cl have a second common or. tangent v (corresponding to the point V). To 
formulate a convex hull and variation diminishing property, we have to consider the 
cycles touching v. The curve then lies in the region bounded by so, co, sl, cl, s2, r, where 
the cycle r is tangent to so, s2, v (Fig. 5). The variation diminishing property reads: 
Consider a cycle c tangent to v. Then, the number of  or. lines in the complete Laguerre 
geometric control structure of  a PH curve x of  class 4, which touch c, is greater or equal 
than the number of  or. tangents of  x that are tangent to c. 

Example  2.1. Let x be a sufficiently smooth curve in ~2 and p not an inflection point 
of  x. In a neighborhood of  p one may represent x by a dual normalized parameterization 

2t 1 - -  t 2 ) 
x(t)  = f ( t ) ,  1 ~ t  2' i-~-~- " 
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The point p shall correspond to the parameter value t = 0, that means p = x(0) n :i:(0). 
We want to determine a rational planar PH curve y of  class m, which has maximum 
order of  contact with x in p. We restrict y to be contained in the family of  PH curves, 
which are derived from a quadratic representation of  a circular arc. With Theorem 1.10 
and formula (16) one obtains 

A(x)= ( t , f - ~ )  and A(y)= (t,~-~-) = (t, e(t) "~ 
2d(t) J' 

with polynomials e of  degree m and d of  degree m - 2. One has to determine a rational 
function g(t) such that the condition ( f  - g ) ( 0 )  = O(t  2"~-1) holds. Usually g(t) is called 
a Padd approximant of f of  order (m, m - 2). An introduction to this topic is given 
by Brezinski (1993). This condition results in a linear homogeneous system of 2m - 1 
equations 

f (0)  = g(0), i f (0)  = 9 ' ( 0 ) , . . . ,  f(2m-2)(0) = g(2m-2)(0), 

for the 2m coefficients e~, i = 0 , . . . ,  m and di, i = 0 , . . . ,  m - 2, of  the polynomials e 
and d. This system has at least one nontrivial solution. Applying A -1 yields in a dual 
representation of  y. 

Example  2.2. Let x be a sufficiently smooth curve in ]1( 2 and p, q two distinct points in 
x, which define a segment c C x. Assume c does not contain inflection points. Then c 
can be represented by a dual normalized parameterization as given in Example 2.1 

( c(t)= f ( t ) , l + t 2 ,  1 

The points p and q shall correspond to parameter values tp -- 0 and tq -- 1. We want to 
determine a rational planar PH curve y of  class m, which has maximal order of  contact 
with x in p and q. Assume m = 4, then x and y should be in contact of  order 2 in p and 
q. Further we require y to be contained in the same family described in Example 2.1. 
Using analogous arguments one has to determine a rational function 9(t), satisfying 

f (0)  = 9(0), f ' ( 0 )  = g '(0) ,  f " ( 0 )  = g"(0),  

f (1 )  = 9 ( 1 ) ,  i f ( l )  = g '(1) ,  f i t ( l )  = 9 " ( 1 ) .  

Above conditions lead to a homogeneous system of 6 linear equations for 8 coefficients 
ei, di of  the polynomials e and d with 9 = e/d. This system has at least a one parameter 
set of  nontrivial solutions. To obtain a unique curve one may require f(to) = 9(to) for a 
to :/: 0, 1. Applying A -1 results in a dual parameterization of  the PH curve y which has 
order of  contact 2 in p and q and interpolates a further tangent line e(to). 

Example  2.3. Let (Pl, h )  and (P2, t2) be two oriented line elements and let a be a cycle 
in IR 2. A rational planar PH curve x of  class 3 should be determined, which is tangent to 
ti in p~ and touches a. Problems of  this kind have been studied by Hoffmann and Peters 
(1995). We may assume that x has a dual parameterization 

x(t)= (eo+elt +e2t2 +e3t3 2t 1 - - t  2 )  
do+dlt ' 1 + t  2' l ~ t  2 " 
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Fig. 6. PH curve of class 3 passing through two line elements and tangent to a cycle. 
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One may choose a coordinate system in IR 2 such that a = (0, - r a ,  r~,) with ra as radius of  
the cycle a. That implies that A maps a to a line parallel to the yl axis in /2 .  The line ele- 
ments (pi, t~) are mapped to line elements (qi, s~) where qi = A(ti) and si is the tangent 
of  the parabola A(pi) in qi. The interpolation problem in I 2 reads as follows: determine 
a graph of  a rational function e/d  with degrees 3 and 1, which interpolates the two given 
line elements (qi, si) and is tangent to A(a) anywhere. This results in a system of  poly- 
nomial equations, which has in general 4 solutions. A real solution is displayed in Fig. 6. 

3. PN surfaces 

3.1. Rational parametrizations for envelopes of natural quadrics 

In CAD, spheres, and cones and cylinders of  revolution are often called natural 
quadrics. We define here real rational one-parameter sets of natural quadrics as fol- 
lows. A one-parameter set c(t) of cycles with a rational center curve re(t) and a rational 
radius function r(t) is called rational. Given two rational sets cl (t), c2(t), we may form 
the common tangent cone A(t)  to the cycles cl (t), c2(t) for each t. We assume that A( t )  
is real for all t E N. Otherwise, we would reparametrize each interval [a, b], in which 
this is true, by a quadratic function t = (a + bs2)/(1 + s 2) and then A(s)  is real for all 
s C ~.  Note that A(t)  may be a cylinder or a line, as a pencil of  planes. For isolated 
parameter values ti, the degeneracy to a surface element is allowed, which occurs for 
tangent cycles cl (t~), c2 (t~). 

A one-parameter set c(t) of cycles possesses a canal surface as envelope. This canal 
surface is also the envelope of  a rational set of  cones of  revolution. The canal surface 
and the set of  cones is real, if rh(t) 2 - ÷(t) 2 ~> 0 for all t, where equality shall hold only 
for isolated parameter values. Only those sets of  cycles are called real rational sets. 

With the cyclographic map, we may define a real rational one-parameter set of natural 
quadrics A( t )  as cyclographic image of a rational ruled surface 4) = e(t) in R 4 with only 
hyperbolic generators e( t), except for isolated parabolic generators. Real rational sets of  
cycles are cyclographic images of  rational curves without elliptic and with only isolated 
parabolic tangents. Only these are discussed in the sequel. The cones of  revolution Al(t) 
occur as cyclographic images of  the generators e(t). 

The image of  the entire surface is the envelope of  the set of  cones A(t) .  In general, A(t)  
is tangent to the envelope in points of  a rational quartic curve obtained by A(t)  N A(t). 
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We omit the discussion of all cases here, but note that the quartic can be reducible, for 
instance contain a conic and two, not necessarily real generating lines of  A(t) .  Thus, the 
envelope is reducible and contains for instance a surface generated by a one parameter 
family of  conics and additionally two developable surfaces. In view of applications, we 
require that the envelope contains a surface, which is regular as set of tangent planes. 
This means that the tangent planes and its first derivatives are linearly independent. The 
technique we use is based on the dual representation and the parametrizations only works 
for the part of  the envelope, which possesses a two parameter set of  tangent planes. It 
is clear that the possibly occurring developables possess tangent planes contained in this 
two-parameter family. 

T h e o r e m  3.1. The envelope of  a real rational one-parameter set of natural quadrics is 
a PN surface. 

Proof. It is sufficient to consider the set A( t )  generated by two rational cycle sets ci(t) 
with centers (rni,l (t), rni,2(t), mi,3(t)) and radius ri(t), i = 1,2. The cycles, as sets of  
oriented tangent planes, appear in the isotropic model as isotropic spheres (see (Pottmann 
and Peternell, 1997)), 

k~(t): 2y3 + (y~ + y2)(r~ + mi,3) + 2ylrrZi,l + 2y2mi,2 + ri -- mi,3 = 0. (19) 

For each t, the two surfaces Oi(t) intersect in an isotropic M6bius circle d(t), the image 
of A( t )  in 13. Its projection onto Y3 = 0 is 

d '( t) :  (y2 + y2)( R + M3) + 2y, M, + 2y2M2 + R - M3 = 0, (20) 

with Mj := mj , j  - m2,j and R := rl - r2. For R + M3 7/= O, d~(t) is a euclidean circle 
with center 

- 1  
(nl 'n2)(t)  -- R ~--~3 (MI, M2). (21) 

The radius function p(t) is not rational, however we have 

p 2  1 
( n  + 2 + + - R2). (22) 

Due to our assumptions on a real rational set A(t) ,  we have p2 ~> 0, i.e., real circles 
only. The surface d(t) contains a one parameter family of  isotropic circles. Our task is 
to parametrize this surface rationally. We first construct two rational functions pl (t) and 
p2(t), satisfying 

p2(t) + p22(t ) = p2(t). (23) 

This is done by factorization over the complex field, and is equivalent to determine all 
roots of  the nonnegative polynomial p2, which is of  even degree. We note that in several 
applications there is not only a numerical solution of the factorization, but Pl and p2 can 
be calculated explicitly. With a solution of (23), we form the planar rational curve 

f ( t )  = (hi + Pl,/z2 -/-/92), (24) 
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Fig. 7. Canal surface with cubic spine curve and radius function; the displayed curves are rational 
parameter lines. 

whose points lie on the circles dt(t). For fixed t, let the normals of  the diameters of 
the circle d'(t) be parametrized as c(u) = (u, 1). To get all diameters, the domain for 
u has to be the projective line y l ;  appropriate sampling techniques for yl are described 
in (DeRose, 1991). We reflect f ( t )  at all diameters and get a rational parametrization of 
the projection of  the circle surface d(t) as 

(zl, z2)(t ,u) = f ( t )  + 2 (n(t) - f ( t ) )  . e(u) c(u) .  c(u) c(u). (25) 

We insert y~ = zi(t, u), i = 1,2, in (19) and compute ?/3 = z3(t, u). Thus, we have found 
a rational parametrization z(t,  u) of the envelope in the isotropic model. The special case 
R + M3 = 0 is much simpler, since the rational one-parameter set of  lines d'(t) is easily 
parametrized in rational form and again we obtain a rational parametrization for the 
A-image of  the envelope. By Theorem 1.9, the envelope of  A(t)  is a PN surface. [] 

As a first application of  the theorem, we get a proof for Theorem 2.1 in (Pottmann 
and Peternell, 1997), which states the rationality of canal surfaces with rational spine 
curve and rational radius function. In particular, we have shown that pipe surfaces (canal 
surfaces with constant radius) to a rational spine curve are always rational. Another proof 
of  this result may be found in (Lti and Pottmann, 1996). It seems to be an interesting 
topic for future research to derive conditions under which the degree of  the canal surface 
parametrization is reduced. The important special case of  a polynomial cubic spine curve 
and radius function yields a representation of  degree five in t and two in u (Fig. 7). Details 
on the parametrization and on an appropriate calculation can be found in (Peternell and 
Pottmann, 1997). 

Furthermore, we may consider a set A(t)  with generating lines, interpreted as pencils 
of  planes. Due to Theorem 3.1 they can be parametrized by inserting radius functions 
r~ = 0. We obtain rational PN parametrizations of  rational ruled surfaces. However, for a 
developable surface, we parametrize just the edge of  regression 1 as set of  tangent planes. 
The offsets are pipe surfaces with spine curve 1. Otherwise, we obtain the following result 
which has been derived in a different way in (Pottmann et al., 1996). 

Corollary 3.1. The offsets of nondevelopable rational ruled surfaces are rational. 
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Applications of this result lie in NC milling. With a spherical cutter one can use 
rational cutter paths to generate a rational ruled surface. For example, the curves on the 
offsets to the generators of the progenitor surface are rational quartics and may be chosen 
as cutter paths (for details, see (Pottmann et al., 1996)). Clearly, the offsets of a ruled 
surface x at distances d, - d  are envelopes of a cylinder of revolution with radius d, 
whose axis traces out the progenitor surface x. Hence, offsets of rational ruled surfaces 
are generated during peripheral milling with a cylindrical cutter. 

Assume that we are leading a conical or cylindrical cutter under a rational motion. 
For a rational motion, there exists a parameter t such that the paths of all points in the 
moving space are rational in t. Hence, a moving cone or cylinder of revolution generates 
a real rational set A(t),  and we recognize the envelope (surface generated with peripheral 
milling) as rational. 

Corollary 3.2. The envelope of a cone or cylinder of revolution under a rational motion 
is a PN surface. 

Note that as envelope of a moving cylinder, whose axis runs on a developable surface 
z, we get the pipe surface around the cuspidal edge of z and not the offset of z. More 
generally, one can show that any moving developable surface has a rational envelope 
(Jtittler and Wagner, 1996). Note, that for a moving cylinder, Corollary 3.1 is more 
general than Corollary 3.2: only special rational ruled surfaces can be generated by a 
line under a rational motion, namely those whose unit vectors of the generators describe 
a rational spherical curve. 

3.2. Hypercyclides 

Let H be a hyperplane in ~4 and s C H a quadric in it. Then, the cyclographic 
image c(s) of s is called a hypercyclide. A brief discussion of these surfaces is given 
in (Blaschke, 1910). To generate c(s) one forms the 7-hypersurface T(s) ,  which is the 
envelope of the two parameter set of 7-hyperplanes, passing through the tangent planes 
of s. Then, the hypercyclide c(s) is the intersection T(s)  N R 3. 

Let Y2 be the quadric defined by :co = 0, z 2 + z~ + z~ - z42 = 0. The hypersurface 
T(s)  can be interpreted as envelope of common tangent hyperplanes of a pencil of 
dual hyperquadrics As + #Y2 in R 4, where s and Y2 are considered as sets of tangent 
hyperplanes. They are singular hypersurfaces in this pencil. 

From classical geometry we know that the intersection surface of a pencil of hyper- 
quadrics in ~4 is rational, and usually called a del Pezzo surface. But a del Pezzo surface 
is dual to the hypersurface T(s) ,  such that also T(s)  possesses a rational two parameter 
set of tangent hyperplanes. This proves the following result. 

Proposition 3.1. Hypercyclides are rational surfaces. 

Hypercyclides are natural generalizations of Dupin cyclides and contain interesting sur- 
faces such as the offsets of quadrics. Those occur if H is parallel to R 3. The cyclographic 
image of a quadric in any euclidean hyperplane H (see Pottmann and Peternell, 1997) 
is related to the offset of a quadric by a Laguerre transformation. 
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To obtain rational parametrizations of  hypercyclides one can follow ideas of  classical 
geometry, which provides parametrizations of  a del Pezzo surface. We will construct 
rational parametrizations of  these surfaces, if s is regular (i.e., nondevelopable) in another 
way. We consider the case where H containing s is a euclidean hyperplane. Here it is 
sufficient to study offsets of  regular quadrics. Their rationality is a recent result by Lti 
(1996). We will present a new geometric proof  based on Theorem 3.1. 

T h e o r e m  3.2. All  regular quadrics are P N  surfaces. 

Proof .  We show that any regular quadric x is the envelope of a real rational one- 
parameter set of  natural quadrics. For quadrics of  revolution this follows from the inter- 
pretation as canal surfaces. Ruled quadrics are subsumed in Corollary 3.1. Otherwise, we 
note that the quadric is the envelope of a one-parameter set of  cones of  revolution. The 
vertices of  the cones lie on a focal curve of x. Real cones correspond to the focal conic 
f that intersects the quadric orthogonally at its umbilic points. For an ellipsoid, f is a 
hyperbola (Fig. 8) and the ideal points of  f correspond to two circumscribed cylinders 
of  revolution. A hyperboloid of  two sheets possesses a focal ellipse f and an elliptic 
paraboloid has a focal parabola f .  

Let rr~t (t) be an improper rational parametrization over N of a segment of  f ,  outside x 
and bounded by umbilics (Fig. 8). The envelope of the corresponding cones A(t)  is the 
entire quadric x. Furthermore, pick a fixed circumscribed cone or cylinder Ao. Its axis is 
intersected by the axes of  A(t)  at points m2(t).  Since rrq(t)  ~ mz(t)  is a projectivity, 
also m2(t)  is rational. Each of the two cones A(t)  and Ao touches x along a conic. 
At the two intersection points of  these conics, A( t )  and Ao are tangent to each other 
and therefore they possess a common inscribed sphere c2(t). Its radius r2(t)  is rational 
in t, since the spheres c2(t) generate Ao. Finally, we have generated A(t)  according 
to our definition of a real rational set with the sets cl(t)  = (ml( t ) ,  Vl(t) = 0) and 
c2(t) = ( m z ( t ) , r z ( t ) ) .  [] 

Example  3.1. Let • be an ellipsoid 

x~ x~ x~ 
7 + + 77 = 1, 

where xi are cartesian coordinates in ~;~3 and a >~ b >/ c > 0 are constant. First we 
assume a > b > c, which implies that one focal conic is a hyperbola f defined by 

X2 x 2 
3 1 and x2 = 0. 

f :  a 2 7  b 2 b 2 _ c2 = 

If  a = b or b = c, f degenerates to a segment of  a line and • is an ellipsoid of  revolution. 
We discuss this later. To obtain low degree representations, we apply a rotation of the 
frame with axis z2. The new z3 axis shall be parallel to the normal to • at one umbilic 
point. With respect to this coordinate system and by the substitution a = v/-ff ff - c2,fl = 

-- c 2, ")/ = X / ~ -  b 2 a rational parametrization of an appropriate segment of  f is 

1 
f = m l ( t )  - b(t4 _ 1) (C~(t4 -t- 1),O, ac( t  4 + 1) + 2b2t2). 
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x 3  

a(t) m,(t) = ~,(t) 

_ _x~,. I 

7 
Z \ 

Fig. 8. Ellipsoid as envelope of a rational set of cones of revolution. 

It defines the vertices of  the cones A ( t )  and also the cycles cl (t) in accordance with 
Theorems 3.1 and 3.2. Let A0 be a cylinder of  revolution, tangent to • along /co (see 
Fig. 8). The intersection points of  the tangent lines of  f with the axis of  A0 are the 
centers 

( t  - l )  
- 7- 13 a c -  b 2) 

of the cycles c2(t) with constant radius r2 = b. Applying A one finds according to 
formulae (21) and (22) 

_ &,,yt2 \ 
(h i ,  h i )  ~-~ gc--'~- 7 ~ ,  O) ,  

b21; 2 
t92 -- (gc(t  4 l) re(a2 -}- c2)), 

(act 2 + b2) 2 + + 

be ( v / ~ ( t  2 + 1), (a - c)t).  
(Pl, P2) - (act 2 + b2 ) 

With formula (25) one constructs a rational parametrization of  ~b as set of tangent planes, 
in general of  degrees 6 and 2 in t and u. It is not difficult to see that ellipsoids of 
revolution gi can be treated in the same way. For instance, let a = b. A dual rational 
parametfization of  the one-sided offset ~d at distance d is 

¢0 = - ( 1  + u2)(a(ct  4 + 2at  2 + c) + d(a t  4 + 2ct 2 + a)) ,  

¢, ---- - 2 t  ( v / ~ ( t  2 + 1)(u 2 -- 1) + 2 t u ( a  - e)) ,  
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q52 = 2t(  - V / - ~ ( t  2 q- 1 ) u  Jr- t (zt  2 - l ) ( a  - c ) ) ,  

~3 = a ( 1  -}- z t2) ( t  4 - 1). 

Intersecting the planes Cox0 + -.-  + 053x3 = 0 with the derivative planes with respect to 
t and u leads to a point representation of  dSd 

xo = - ( 1  + u2)(ct 4 + 2at 2 + c)(at  4 -~- 2ct 2 + a), 

xl = - 2 t ( d ( c t  4 + 2at 2 + c) + a(at 4 + 2ct 2 + a)) 

((u 2 - l )v / -~( t  2 + 1) + 2ut(a - c)), 

xe = 2t(d(ct  4 + 2ate + c) + a(at 4 + 2ct 2 + a)) 

(t(a - c)(u 2 - 1) - 2v/-~u(t  2 + l)) ,  

X3 = - - ( 1  q- U2) ( t  4 --  1) (ad(c t  4 q- 2at e + c) + c2(at 4 q- 2 c t  2 q- a ) ) .  

The t-lines on • are rational quartics, containing an isolated double point. The t-lines 
on ~ba are rational curves of  degree 8. 

4. Principal  PN surfaces  

The extensive study of  Dupin cyclides in geometric design was initiated by the disser- 
tation of  Martin (1982), in which he studied principal patches. These are rational patches 
whose parameter lines are principal curvature lines. Curvature lines are sometimes used 
as cutter paths and thus they are interesting on the offsets of  the designed surface. There- 
fore, we will now study principal PN surfaces. These surfaces and all their offsets are 
principal surfaces. Dupin cyclides are a special case of principal PN surfaces; we will 
derive a much larger class of  such surfaces. 

Let x(u,  v) be a surface and y(u,  v) the corresponding surface in the isotropic model. 
We can map a curve c on x to a curve d on y in the following way: consider the set of 
oriented tangent planes of  x along c and map it with A to 13. It follows easily from well 
known properties of  principal curvature lines (Blaschke, 1929), that principal curvature 
lines of  x are mapped onto isotropic principal curvature lines of  y. The isotropic principal 
curvature directions at a surface point y are those conjugate directions, whose orthogonal 
projection onto Y3 = 0 is orthogonal. In view of  Theorem 1.9, our approach is based on 
the following fact. 

Theorem 4.1. Any principal PN surface appears in the isotropic model of  Laguerre 
space as a rational surface with rational isotropic curvature lines. 

In 13 we have to construct rational surfaces y(u,  v), such that the parameter lines are 
isotopically orthogonal, 

(yu, y.~,)~ = 0, (26) 

where the isotropic inner product of two vectors a, b E IR 3 is (a, b)i :=  albl + aeb2. 
Furthermore, the parameter lines have to be conjugate, 

det(y~,, y~, y~,~,) -- 0. (27) 
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The determination of all principal PN surfaces is still a difficult problem. One could 
try to construct all orthogonal nets of rational curves in the plane first and then solve 
the partial differential equation (27) for the third component Y3 (U, V). Even the first part 
seems to be unsolved so far. 

However, we can determine all PN surfaces whose parameter lines are planar princi- 
pal curvature lines. Surfaces with planar principal curvature lines have been studied in the 
classical literature (see (Blaschke, 1929, pp. 278-283)). We use here the following known 
facts: The Gaussian spherical image of a planar principal curvature line is a circle. If the 
surface possesses only planar curvature lines, their Gaussian images form an orthogonal 
net of circles on the unit sphere 2?. This can be the set of circles through 2 fixed points 
A, B and their orthogonal trajectories (whose planes pass through the polar line of A B  
with respect to £7); we refer to it as type 1. The second type is the limit case, where the 
circles pass through a fixed point A E 2? and touch orthogonal tangents there. The two 
cases are now studied separately. Note that the class of surfaces to be constructed is invari- 
ant under Laguerre transformations, since a Laguerre transformation induces a Mrbius 
transformation in the Gaussian image and the latter preserves orthogonal nets of circles. 

Type 1. We apply a Laguerre transformation and choose an appropriate coordinate 
system to get A = (0,0, l) and t3 = (0 ,0 , -1 ) .  The circular net is now the usual 
'geographic net' on the unit sphere. Then the principal curvature lines appear in the 
isotropic model as curve net whose projection onto Y3 ~--- 0 is the set of circles with 
center (0, 0, 0) plus the pencil of lines through the origin. We do not yet consider the 
rational parametrization y(u, v) of the desired surfaces and use the polar coordinate 
representation 

y(r, ¢) = (r cos ¢, r sin ¢, z(r, ¢)). 

Its parameter lines possess the derived projection onto y3 = 0. They are conjugate iff 

det(yr, y~, YrV) = 0 ¢==~ z¢ - rZr¢ = O. 

The solution of this equation is 

z(r, ¢) = g(r) + r f ( ¢ ) ,  

with two arbitrary C: functions f (¢ ) ,  g(r). We see that the surface y(r, ¢) is the 'sum' 
of the surface of revolution L~I to z = 9(r) and the cone ~2 with z = r f (¢ ) .  For a 
rational parametrization y(u, v) the two components ~Pl, ~2 must be rational and thus we 
get 

( a2( u )2a(u)b(u) a2(u)-b2(u)  v ) 
y ( u , v ) =  r(v) +b2(u),r(V) a2(u)Tb~(u) ,9(  ) + r ( v ) f ( u )  , (28) 

with polynomials a, b and rational functions r, f ,9 .  Application of A -~ (15) yields the 
nonnormalized dual representation of the desired surfaces, 

e(r, ¢) = (2r f (¢)  + 2g(r), 2r cos ¢, 2r sin ¢, 7 ̀2 - -  1) ,  

e(u, v) = (2r(v) f (u)  + 29(v), 2r(v) 2a(u)b(u) 
a 2 ( u )  + ' 

a2(u) -- b2(u) 2 1"~ 
2r(v) (v)-). (29) 
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Fig. 9. Kinematic generation of a profile surface. 

Surface ~l = A - l ( ~ l )  ( f  -- 0) is a surface of revolution, obtained by rotating a 
PH curve, e.g., in the plane xl = 0, around the x3-axis. The surface ¢2 degenerates to 
a PH curve c in the plane x3 = 0. The general solution • is obtained by Minkowski 
addition of ~bl and ~b2; thereby one picks all pairs of parallel or. tangent planes of the two 
surfaces and constructs a new tangent plane by keeping their normal and adding their 
distances from the origin. This shows immediately that • is a profile surface with the 
following kinematical generation: choose a planar PH curve c and consider the motion 
of its Frenet frame (t, n, x3). A PH curve d in the normal plane of the moving frame 
then generates the surface ~. Note that the positions of the moving PH curve d and the 
trajectories of its points form the principal curvature lines on ~; the offsets of ~b are 
generated by the offsets of d. The motion of the Frenet frame is rational in the sense that 
all point paths are rational in the curve parameter u of c (rational Frenet frame motions 
have been studied by (Wagner and Ravani, 1996)). The motion can also be generated as 
rolling of a plane along a cylinder which has a rational curve c* with rational arc length 
parameter function (evolute of e) as cross section (Fig. 9). Note that we have applied a 
Laguerre transformation to get the present solution and therefore the type 1 surfaces can 
be described as follows. 

Theorem 4.2. Type 1 of PN surfaces whose parameter lines are planar rational curvature 
lines, are Laguerre transforms of profile surfaces, kinematically generated during the 
Frenet frame motion of a planar PH curve c by another PH curve which lies in the 
normal plane of e. 

In the simplest example, both PH curves are circles. The kinematic generation yields 
a torus and the Laguerre transformation a (nonparabolic) Dupin cyclide 4~. A surface 
generated by Tschirnhausen quartics is shown in Fig. 10. 

Type 2. Again we set A = (0, 0, 1) and obtain an orthogonal net of straight lines 
as projection of the isotropic curvature line net of y. Inserting the ansatz y(r, s) = 
(r, s, z(r, s)) into the conjugacy condition (27) we find z = f ( r )  + g(s) and thus y(u, v) 
is a rational translational surface, 

y(u, v) = (a(u), b(v), c(u) + d(v)), (30) 
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Fig. 10. PN surface with planar rational principal curvature lines. 

with rational functions a, b, c, d. Conversion to the standard model can be done with (15), 
and delivers the nonnormalized dual form 

e (u , v )  = ( 2 c ( u ) + 2 d ( v ) , 2 a ( u ) , 2 b ( v ) , a 2 ( u ) + b 2 ( v )  - 1). (31) 

For the geometric interpretation, we first transform y into the dual isotropic model and 
find again a surface y* of type (30). The desired surface is then anticaustic of y* for 
y3-parallel illumination. 

Theorem 4.3. Type 2 PN surfaces whose parameter lines are planar rational curvature 
lines, are Laguerre transforms o f  anticaustics o f  rational translational surfaces. The 
translational surfaces are generated by translating planar rational curves in orthogonal 
planes along each other and the light direction is parallel to these planes. 

A simple example is found with 

a = u, b ~- v, c = cou 2, d = dov 2 

and yields paraboloids y and y* and a parabolic Dupin cyclide as PN surface (cf. Exam- 
ple 1.2). 

If one wants to model a surface with principal PN patches, the surfaces from Theo- 
rems 4.2 and 4.3 offer more flexibility than Dupin cyclides, but still possess the limitations 
which arise from the very special spherical image. Therefore, it is desirable to derive a 
larger class of principal PN surfaces. We will now determine all principal PN surfaces 
with one family o f  planar principal curvature lines whose Gaussian image is a family 
o f  circles through a f ixed point A. We set A = (0, 0, 1). Then the projections of the 
corresponding family of isotropic curvature lines are straight lines. Their orthogonal tra- 
jectories form a family of offset curves and must be rational. Hence, the projection of 
the complete isotropic curvature line net of y consists of an offset family o f  P H  curves 
and their common normals. As before, it is simpler to use the rational parameterization 
later, and thus we write y as 

y(d, s) = (e(s) + (d - s )e ' (s) ,  f ( s )  + (d - s ) f ' ( s ) ,  z(d, s ) ) ,  (32) 
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with a planar curve (e(s), f ( s ) )  parametrized with respect to arc length s. This curve 
is the common evolute of the offset curve family. The condition on z(s, d) to get a 
conjugate net of parameter lines is 

z, = (d - s)zns, 

with the solution 

z(d, s) = 9(d) + h(s) + (d - s)h '(s) .  (33) 

With z = 9(d) we obtain a profile surface ~Pl, generated by a curve in a y3-parallel plane 
that rolls on the cylinder with cross section (e, f ) ;  in accordance with type 1 surfaces 
above, k01 is a surface of revolution when the cylinder degenerates to a line. The second 
component O2 of the solution to 9 -= 0 is a developable surface with cuspidal edge 
(e (s ) , f ( s ) ,h(s ) ) .  

For a rational solution, the profile surface is generated by an arbitrary rational curve 
in the normal plane of a planar PH curve e during the Frenet frame motion along c. 
O2 is rational exactly for a rational cuspidal edge. An explicit representation y(u, v) for 
the general solution is found by inserting the representation formula for rational curves 
(e(u), f (u) )  with rational arc length parameter function s(u) (see (Pottmann, 1995a)) 
and rational functions d(v), 9(v), h(u) with (33) into (32). 

The transformation A-1 maps the surface g'2 into a canal surface q/2 which is formed 
by spheres that touch a fixed plane; the spheres are the A-~ images of the tangent planes 
of ~P2. It is harder to develop a simple geometric construction of the other component ~1 
in the general solution ~. It is however easy to see from the isotropic model, that the 
rational developables of constant slope, which touch • along its planar principal curvature 
lines (planar PH curves), are Laguerre transforms of each other. Thus, the surface may be 
generated as envelope of a rational developable of constant slope during an appropriate 
Laguerre motion (curve in the Lie group of Laguerre transformations). For further details 
and connections to kinematics we refer to (Pottmann and Wagner, 1997). 

Conclusion and future research 

We have shown that classical Laguerre geometry provides a theoretical framework 
in which several geometric design problems can be elegantly treated. Here, we focused 
on special rational curves and surfaces and on algebraic properties. However, it can 
be expected that Laguerre differential geometry (Blaschke, 1929) may be applicable 
as well, for example in variational curve and surface design. Furthermore, we plan to 
investigate whether the other classical sphere geometries, in particular M6bius geometry, 
are similarly useful in CAGD. 
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