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1. Introduction 

Coordinates are used everywhere in Computer- 
graphics in order to bridge the gap between geometric 
objects and their graphic representation. Coordinates 
must describe the objects uniquely. Conversely neither 
each geometric object needs to define its coordinates 
uniquely nor each possible choice of coordinates 
needs to correspond to any object. 

Usually coordinates are seen as numbers selected 
from any field or at least from any algebra A. But in 
view of the determination of a solid either by its CSG- 
tree or by its boundary representation, it is obvious that 
much more complex structures than numbers can be 
necessary for (describing geometric objects precisely. 
However, in th,e following we restrict ourselves in the 
different geometries to basic objects like points, lines, 
spheres, affine or collinear transformations. And here 
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n-tuples of real numbers or of elements of any algebra 
A. over R will be sufficient. 

This means finally that all coordinatizations y under 
consideration are based on an injective mapping of a 
set S of geometric objects s into the set A” of n-tuples 
over A, to say 

y:S--,A”, SW (x ,,..., x,). 

In the standard book [ 161 no clear definition of 
“Higher Geometry” is included, but the following sec- 
tions are certainly part of it (see also the preface in 
[ 51). After a brief survey on the basic elements and 
the automorphisms of n-dimensional afflne, projec- 
tive and Euclidean spaces we present some selected 
topics. We introduce a type of redundant coordinates 
in the Euclidean space En, the kinematic mapping of 
spherical kinematics in E3, the geometry of lines in 
the projective space P3 together with its Plucker rep- 
resentation and also Study’s concept of Euclidean line 
geometry together with the representation of spatial 
motions in E3 by dual quaternions. We conclude with 
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an introduction into the group of Lie’s sphere trans- 
Formations in E3 enclosing the subgroups of Mobius 
and Laguerre. In each section we also present some 
applications, e.g. in the field of Computer Aided Ge- 
Imetric Design. 

1. The afGne space A” 

The points of the real n-dimensional aflne space 
4” can be identified with the vectors of W” (compare 
.he definition in [ 1, 2.1.11). For any n + 1 afinely 
‘ndependent points c, dl, . . . , d,, 2 there is an afine 
coordinate system A( c; dl , . . . , d,) defined by 

Yd: A” -+w”, 

r=c+f:xi(di-C) - (Xl,. . . ,&)A. 

i=l 

!,inear subspaces L c A” can be represented in the 
brm L = a + V, where V is a subspace of the vec- 
orspace JfP. This implies 

r,yEL=a+V ==+ (x-y)cV and 

:=rx+(l-r)yEL forallrEW. 

Me define the dimension dim L := dimV. Two linear 
spaces L1, L2 with Li = ai + Vi are defined parallel, 
fVi cV2orV2CV1. 

A mapping (Y : L + L’ between two linear spaces 
L, L’ is called aflne transformation, if for all x, y, z E 
53 

:=rx+(l-r)y =+ 

r(z) = rLy(x) + (1 - r)cf(y). 

1s a consequence the restriction of (Y to any linear 
,ubspace of L is again affine, and the composite (Y~o(Y~ 
if any two affine transformations is afflne too. 

It can easily be proved that any afline transformation 
Y : a + V + a’ + V’ induces a linear mapping 1 : 
J -+ V’ such that 

r(x) - or(y) = l(x - y) for all x,y E L. (1) 

* A@nely independent means that the difference vectors {dl - 
I, . , dn - c} am linearly independent. 
3 A weaker definition can be found in [ 9, p. 81. 

Hence for all pairs of coordinate systems A = 
(c;dl,. ..,d,)inLandd’=(c’;di ,..., d:)inL’ 
the affine mapping cr : L + L’ can be represented as 

x=(x1,... rXr)dHQI(X)=(X:r...r,lCIS)d’, 

where 

(2) 

Therefore the set A( L, L’) of affine mappings (Y : 
L + L’ can be coordinatized by 

Y&J’ : A( L, L’) + R” X w”S, 

a H (bl,..., bs,all ,... ,asr). 

This can be seen as a mapping of A( L, L’) onto an 
s( r + 1 )-dimensional affine space. 

Due to standard results from Linear Algebra the 
deject of a 

defcu:=defl=dimL-dimcr(L) 

equals the dimension of the jibres of (Y. Each fibre 
consists of all those points in L that share the image. 
Each two fibres of LY are parallel. 

An affine mapping 7~ : A” + A” is called parallel 
projection, if T is idempotent, i.e. rr o 7r = T. In this 
case the image T(X) of each point x is obtained by 
intersecting the fibre passing through x with the image 
space n-( A”). 

3. The projective space P” 

Originally the concepts of Projective Geometry 
were developed in order to explain the distortions that 
arise from central projections (see e.g. [ 131). We 
obtain the real n-dimensional projective space P” as 
follows: 

We extend the affine space A” by adding improper 
points of intersection between parallel lines. For this 
purpose we replace the afflne coordinates (XI, . . . , n,) 
by homogeneous coordinates ( 1 : xi : . . . : x,) and 
we add all (n + I)-tuples (0 : xi : . . . : x,) up 
to the zero vector o. So finally the points of I”’ can 
be identified with the one-dimensional subspaces of 
an (n + 1 )-dimensional real vector space V”+‘. We 
denote the points of I”’ by Rx for any x E V”+’ \ {o}. 
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Any n $- 1 projectively independent points 
B&h. . . , I&z,, 4 together with a unit point Re define 
a projective coo&hate system P(W@, . . . , Ra,; Re) 

by 

yP:p”--tR”+l\{o}/~\{o}, 

(Rp,Rq,lRt,Rs) := z 

is preserved under collineations, provided the four im- 
age points are defined and pairwise different. 

Coordinate systems P( JR& . . . , l&z,; Re) in P and 
P’(Ra& . . . , JRa:; Re’) in P’ enable to represent the 
collineation K : P H P’ as 

i=O 

provided, point Re is independent from each n-tuple 
of base points Rai and the vectors U+J, . . . , a,, repre- 
senting the base points meet the norming condition 

K: (X0: ,. . : x,)p t-+ <x; : . . . : x:>pf, 

where 

(3) 

e=ao-t-...+a,. 

Projective subspaces P of P” are obtained by factoriz- 
ing the at least one-dimensional subspaces V of Vn+‘. 
We define dim P := dim V - 1. In this sense the inter- 
section and the sum of any two sub-vectorspaces can 
be interpreted as the intersection and the join of the 
corresponding projective subspaces. This reveals that 
the structure of projective spaces is even simpler than 
that of affine spaces. 

The matrix (aij) is unique up to a nonvanishing con- 
stant factor. Hence there is a bijection 

yp,pr : K( P, P’) --+ P(r+l)(s+l)-‘, 

K H (am : . . . : a,) 

It turns out that in P” the hyperplanes, i.e. the 
(n - 1 )-dimensional subspaces, form again an n- 
dimensional projective space F”‘, the dual space, 
which is isomorphic to P. This implies that each 
valid result in lP” holds in the dual version too, where 
the terms “point” and “hyperplane” as well as “in- 
tersection” and: “join” are exchanged. The dual of a 
k-dimensional subspace, seen as a point set, is the 
k-dimensional bundle of hyperplanes passing through 
an (n - k) -dimensional space. 

of the set K( P, P’) of projective transformations K : 

P ++ P’ onto a [(r + l)(s + 1) - II-dimensional 
projective space. 6 

A mapping h: from a projective space P into a pro- 
jective space P is called projective transformation or 
colfineution, if it is induced by a linear mapping 1 : 
V -+ V’ between the underlying vector spaces. Reg- 
ular collineations can be characterized as bijections 
that preserve collinearity. Singular collineations 5 are 
never global as the kernel of 1 defines a projective sub- 
space called center 2, consisting of points for which 
no image is defined under K. Fibres of K are projective 
spaces of dimension def K := def I through the center 
2. For any four collinear points I@, Rq, IRr, Ws meet- 
ing r = rip + rzq and s = sip + s2q the cross ratio 

Idempotent collineations K : P” ++ P” are called 
centralprojections. Here again the image K( Rx) is the 
point of intersection between the image space K(P) 

and the fibre of K passing through RX. 
The regular collineations K : P -+ P” form a group 

FGL( n, R) . Many important geometric groups are iso- 
morphic to subgroups of PGL(n, R). In the sequel 
this will be shown in three-dimensional spaces for the 
fundamental groups of projective line geometry and 
of different sphere geometries. 

Collineations that preserve a regular quadric Q,“-’ 
of signature n- 1 in P” form a subgroup of PGL( n, R) 
which is isomorphic to the group of motions in the 
hyperbolic space H” (see [ IO] or [ 1, 19.41, and note 
recent applications of hyperbolic geometry in [ 241) . 

In the case n = 2 each collineation which preserves 
the conic c : ~0x2 - XT = 0 can be represented accord- 
ing to Eq. (3) by a matrix 

al 2hobol b;, 
(q) = b;ho boohl + hh b;hl 

10 2hoh 1 11 

4Projectively independent in P means that the vectors 6 In [ 51 this space is discussed as the span of the Segre manifold 
{a~, . . , a,,} are linearly independent in Vn+‘. P x P’ consisting of all pairs of points. In [ 19 J this space is used 
5 For a geometric definition see e.g. [ 41. in the case r = s for obtaining re~u1t.s in projective kinematics. 
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obeying bc&li - botbte Z 0. This proves that the 
group of hyperbolic motions in the plane is isomorphic 
to PGL( 1,W). 

The group of collineations P3 ---) P3 preserving each 
regulus of a ruled quadric Q,’ turns out to be isomor- 
phic to the direct product PGL( 1, R) 18 PGL( 1, W) . 
In the case of a quadric Q,’ with signature 2, the cor- 
responding subgroup of PGL( 3, W) is isomorphic to 
the group of projective collineations PGL( 1, e). This 
can be derived from the fact that under stereographic 
projection the direct automorphisms of Qf are mapped 
onto direct Mobius transformations in the plane (see 
last section). 

4. The Euclidean space E” 

We now define on the vectorspace Iw” related to the 
affine space A” a positive definite symmetric bilinear 
form 

b:R”xlR”--+lR, (U,U)HU*U. 

Then A” alters into the n-dimensional Euclidean 
space E”. 

For any two points a, b E En there is a distance 
defined by 

i6=~~a--b~~ :=-\/(a-b) ‘(a-b). 

Two linear spaces a + U and b + V are called totally 
orthogonal, if II . v = 0 for all u E U and u E V. 7 

An afline coordinate system A( c; dl , . . . , d,,) is 
called Cartesian, if 

In this case the line segments cdl, . . . , cd, are of unit 
length and pairwise orthogonal. 

An affine transformation cy : L --t L’ is called sim- 
ilarity, if each two orthogonal lines in L are mapped 
onto orthogonal lines. This implies def (Y = 0. It turns 
out that the affine transformation (Y : a + V -+ a’ + V’ 
is a similarity if and only, if the induced linear map- 
ping 1: V --+ V’ obeys 

Z(u)~Z(v)=c,(u~v) forallu,vEV (4) 

’ In the case of two lines we say orthogonal only. 

with any positive constant c,. Hence for each pair of 
lines a + Ru, b + WY the enclosed angle 4 is preserved 
under similarities, as 4 is defined by 

cos + := ,,uy, ,;,, . 
There is also a characterization of similarities based on 
distances only: A mapping (T : L -+ L’ is a similarity 
if and only, if there is a constant dilatation factor k > 
0 such that 

lb(x) - 4~) II = k 11~ - YII 

for all points X, y E L. A length-preserving mapping 
(k = 1) is called isometry. When Cartesian coordinate 
systems C and C’ are used in Eq. (2), then the affine 
transformation a is an isometry if and only, if 

(aij)T = (Uij)-‘, 

i.e. (aij) is an orthogonal matrix. Just in this case the 
matrix (aij) has orthonomtal row vectors, to say, the 
row vectors are pairwise orthogonal unit vectors. 

A parallel projection r : E” -+ Em is calIed orrhog- 
onal projection, if the fibres of rr are totally orthog- 
onal to the image space and m < n. Based on carte- 
Sian coordinate systems C in E” and C’ in rr(E”) the 
(m x n) -matrix (aij) of an orthogonal projection ac- 
cording to Eq. (2) is characterized by m orthonormal 
row vectors. 

A more general question reads: For which affine 
transformations (Y with def (Y > 0 each object in E” has 
an image similar to that under a parallel projection? 
This is related to the classical Pohlke theorem. For the 
n-dimensional version see e.g. [ 201 and the references 
given there. The characterization of such (Y depends on 
the singular values of the corresponding matrix (aij) . 

In the projectively completed E” there is a similar 
criterion for those singular collinear transformations K 
which produce images congruent to that under a proper 
central projection (see [ 12 3 ). For a sufficiently high 
defect of K it can happen that even a continuum of dif- 
ferent central projections produces congruent images 
1211. 

5. Redundant coordinates in E” 

Let C(c;&,. . . , d,,) be a Cartesian coordinate sys- 
tem in E”. Then the vectors 
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el := dl - c, . . . , e, := d,, - c 

form an orthonormal basis of the underlying vec- 
torspace IL?“. As a consequence the coordinates 
(x19. . . , x,, )C of each point x E E” obey 

Xi=(X-C)'ei fOri=l,...,n. 

Hence for each vector u := x - c E W” we get 
” n n 

u=~(ueei)ej=Cv(e~ei) =uC[eiei]. (5) 
i=l i=l i=l 

Here we use the matrix notation: ei is seen as row vec- 
tor; the superscript T indicates the transposed matrix. 
The matrix [im] := uTw is called dyadicproduct of 
vectors u, w  . 

We conclude from Eq. (5) that the sum of dyadic 
squares of the orthonormal basis equals the identity 
matrix, i.e. 

n 

c [ eiei] = I,,. 
i=I 

It is surprising that there are more general systems 
of vectors fI,...,fm with m > n that still share 
many properties of an orthonormal basis. Such almost- 
orthonormal systems can be characterized by 

(6) 
j=l 

This gives rise to redundant coordinates (xl,. . . , x,) 
for each x = v + c E E” such that 

m 
x-l!=u= 1 1 xj.fj. 

j= 1 

Beside the distinguished solution Xj := Y * f j there is 
an (m - n)-dimensional set of solutions 

(Xl -I- r1,. ..,.hn$.~m) with 2 rj fj = 0. 
j=l 

Each linear maipping 1: W” + IR” has a distinguished 
matrix representation 

(ajk) = (fj . ICfk)). 

For selfadjoint linear mappings this distinguished ma- 
trix is always symmetric, just as in Cartesian coordi- 
nates. 

A more general redundant matrix representation of 
the same linear mapping E reads 

(ajk + r,ik) with 2 rjk[fjfk] = On, 
j,k=l 

where 0, denotes the zero-matrix. However, the mul- 
tiplication with this matrix (ajk + rjk) transforms only 
the distinguished coordinates of v into redundant co- 
ordinates of 1 (v). In many cases this matrix can even 
be diagonalized. Further it can be proved that each 
isometric mapping 1 obeying 1(u) . I(U) = u . u (cf. 
Eq. (4) ) has also a redundant representation in form 
of an orthogonal matrix. 

Systems of particularly normed vectors with rota- 
tional symmetry fulfill the condition in Eq. (6). Hence 
the use of such redundant coordinates is recommended 
whenever structures with high symmetry are to be 
described analytically. For further details the reader 
is referred to [ 111. In this paper it is proved that a 
vector-system is almost-orthonormal if and only, if it 
coincides with the image of an orthonormal frame in 
E” under orthogonal projection onto an n-dimensional 
subspace. This means that the distinguished redun- 
dant coordinates of any point in E” equal the carte- 
sian coordinates of the same point after the space 
E” has been isometrically embedded into the higher- 
dimensional Em. 

6. Spherical motions in E3 

An isometry /3 in E” is called spherical, if there is a 
point fixed under /3. Then the unit sphere S2 centered 
at the fixed point c is mapped onto itself, We choose 
c as origin of our Cartesian coordinate system C. Then 
in the representation of ,0 according to EZq. (2) only 
the orthogonal matrix (aij) shows up. Suppose the 
isometry is direct, i.e. orientation preserving, which is 
equivalent to 

det(aij) = +l. 

Then p is called spherical motion. These motions form 
a group S03. The following quatemion representa- 
tion of spherical motions in E3 reveals that there is a 
one-to-one mapping between SO3 and the projective 
space P3: 
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The skew field Q of quufemions is a four- 
dimensional algebra over R with a basis ( 1, i, j, k). 
Each quatemion 

Q:=u+bi+cj+dk=:a+q 

with (a,. . . , d) E lR4, is sum of the scalar part a and 
the vector part 4. Hence Q contains R and the three- 
dimensional vector space Ri + JRj + IRk as subspaces. 
R is even a subfield. 

The product of two quatemions Qi = ui + qi, i = 
1,2, is defined 

Q, 0 Q2 = t411~2 - (41 + @)I 
+[~lf72+~2!?1 +c4* x42)1* 

Also the dot product and cross product of two vec- 
tors (al = u2 = 0) can be expressed in terms of the 
quatemion product, since 

X-Y =-;(xoy+yox), 

x xy=;(xoy-yox). 

The conjugate quatemion of Q = a + q reads 

ij := u-bi-cj-dk=u-q. 

It leads to the quatemion norm 

llQll := +I/Q o 8 = +j/u2 + b2 + c2 + d2 

and - for nonvanishing quatemions - to the inverse 

Q-l= j&Q- 

Quatemions with norm 1 are called unit quaremions. 
They can be expressed as 

E=cos~~+esin(~ with [Jell = 1 (7) 

and they fulfill E-i = B. 
The mapping 

&: Et3 4-x3, x I-+ x’ :=EoxoE-’ (8) 

is linear and preserves all dot products, as 

-2x’.y’=x’oy’+y’ox’ 

=Eo(xoy+yox)oE-’ 

=-2x-y. 

Hence all distances are preserved. The isometry 6s is 
direct for z := xx = y is mapped on 

z’=EozoE-’ =Eo(xxy)oE-I 

=$&o(xoy-yox)oE-‘=x’xy’, 

It can be proved that for E according to Eq. (7) the 
spherical motion 6~ is the rotation about an axis par- 
allel e through the angle 2cw. Without changing 8~ we 
may replace E by any proportional t-E, I # 0. Con- 
versely each spherical motion is a rotation. Hence the 
mapping 

K,:SO~+P, &++X=E%E (9) 

is bijective and called kinematic mapping. Now we 
can transfer the group structure of SO3 into P3. This 
converts the projective space into a kinematic space 
with an invariant elliptic metric (see e.g. [ 31 or [ 171). 

Let a point e of the unit sphere S2 be fixed. Then for 
each point X in P3 the motion KY’ (X) carries e into 
a point ex E S2. This gives rise to a rational mapping 
of second order 

A:P3+S2, X H ex = tc;‘(X)(e). 

In homogeneous coordinates we obtain 

A: [ij H [;ij$z:;[). 

This mapping has been used in order to produce ratio- 
nal B-spline-curves and surfaces on S2 (see e.g. [ 81) . 
The fibres of A build a net of left-purullel lines in the 
elliptic space P3 (cf. [ 1, 19.1.41) . 

7. Line geometry in p and E3 

The h-dimensional subspaces of P” form a Gruss- 
manniunmanifoldforl<h<n-l(cf.[5]).The 
simplest example is the set L of lines in P3. Each line 
g can be spanned by two of its points, say by 

lr@Jz=(uf):... : u3)p and ll%b = (bo : . . . : b3)p. 

Then the so-called Pliicker coordinates of g with re- 
spect to the projective coordinate system P are defined 

gij , i,jE{0,...,3). 
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These homogeneous coordinates of line g are inde- 
pendent from the choice of the points Ra, Wb E g. 
However, only six of these coordinates are essential, 
e.g. those in 

rws := (go1 : go2 : go3 : g12 : g13 : 823hJ9 

and these obey the Plucker condition 

(ST g)r := go1,p23 - go2g13 + go3g12 = 0. (10) 

This reveals that there is a bijection 

Al : L -+ Qf c p5 (11) 

between the set L of lines in P3 and a quadric Qf of 
signature 0 in P5, the Pliicker quudric. 

When line g is seen as the intersection of the two 
planesuoxo+..,+U3X3=Oanduoxo+...+U3x3 =0, 
then the determinants 

are related to the previous gij according to 

= (g23 : - g13 : g12 : go3 : -go2 : go1>. 

It turns out that two lines g, h are intersecting if 
and only, if the corresponding points Rg, Rh on the 
Plticker quadric Qf are conjugate with respect to Qf, 
to say 

(gv h)l= go1h:13 - g02h3 + g03h2 

+ g12h03 - g13h02 + g23ho1 = 0. (12) 

Due to Eq. ( 11) the geometry of lines in Ps is equiv- 
alent to the geometry of points at Qf c Ps. There 
is an isomorphism between the group of collineations 
and correlations in Ps and the group of Qf preserving 
mappings of PGL(5, R). The linear one-, two- and 
three-dimensional sets of lines correspond to sections 
of Qf with projective 2-, 3- and 4-dimensional spaces 
in Ps. Hence the dual space B can be identified with 
the set of linear line complexes in Ps. 

The Plucker quadric Qf is best for treating the pro- 
jective geometry of lines. However, the Euclidean ge- 
ometry of lines deals with angle measures and dis- 
tances. For this purpose there is a more appropri- 
ate representation, which dates back to E. Study (see 
e.g. [2]): 

Each otiented line g in E3 is uniquely defined by its 
normed direction vector g and by any point u. It turns 
out that the momentum vector or 2nd Plucker vector 

L? A := a x g, 

which obeys g. 2 = 0, is independent from the choice 
of point Q E g. Conversely, a pair (g, f) of vectors 
with IJgJJ = 1 and g . 3 = 0 determines an unique 
oriented line g since p := g x 2 is the pedal point of 
8 with respect to the origin. 8 

In the following we use the dual unit E obeying 
e2 = 0 in order to combine the two vectors g,g in a 
dual vector 

s := g + &s^. 

Because of the norming condition 

we call g a dual unit vector. Hence there is a bijection - 

AiIZ’~2* g”g (13) - 

between the oriented lines g in E3 and the points g of 
the dual unit sphere s”, which is the extension of the 
unit sphere S2 into the ring D of dual numbers. 

Actually this is more than a pure formalism. Many 
results of the geometry on the sphere S2 can immedi- 
ately be extended into the geometry of oriented lines, 
for example the following two trigonometric formu- 
las: 9 

For any two oriented lines g, & the dual angle C$ := - - 
4+.$ combines the angle 4 and the shortest distance 
3. This gives rise to a geometric interpretation of the 
dot product and vector product of g, h: lo 

~.12:=(g.h)+E(~.h+g.i;) 

=cosf$-er$sin4=:co&, 

* Obviously the six coordinates of the pair (g,;) of vectors 
represent particularly normed Pliicker coordinates. 

’ From now on we identify each oriented line with its dual unit 
vector. 
lo The dual extension f(x) of any analytic function f(x) reads 
f(x+G) := f(x) +.Gf’(x). This can be. seen as the beginning 
of a Taylor series. 
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= (sin4 +e#cos4)(n + eii) 

= s&lf& 

Here n denotes an oriented common perpendicular of 
the given lines g,h, and the signs of 4 and 4 are 
related to the orientation of 3. For details see [ 221. 

The most impressive example for the efficiency of 
STUDYS principle of transference can be found in 
kinematics by extending the quatemion representation 
of spherical motions given in Eq. (7) and (8) : When 
the dual unit quatemion 

E=coscv+esincu withe.e=l 

is used for the mapping 

(14) 

t&g +*, g++g’:=Eogo& (15) - - - 

then the oriented line g’ is the image of g under a 
screwing motion BE wit6 axis e. The dual number g := 
cy + eiYh combines half the angle of rotation and half 
the length of translation. The signs of these measures 
(Y and Z are related to the orientation of the screwing 
axis e. 

This gives rise to a mapping of spatial motions BE 
onto points l@ of a quadric of signature 0 in the pro- 
jective space P7 (cf. [ 251). This kinematic mapping 
is essential for the design of spatial B-spline-motions 
(cf. [ 151) . Another recent application on direct kine- 
matics for platforms is given in [ 141. 

8. Geometry of spheres in E3 

Based on a cartesian coordinate system C the points 
of a sphere (T in E3 obey 

x*+y*+z* - 2mx - 2ny - 2pz 

+m*+n*+p*-r*=O 

with constants m, n,p, r E R under r # 0. We endow 
this sphere with an orientation by defining its radius 
r either positive or negative. This gives rise to the 
following mapping into p5 

o~Rs=(xo:...:~s)c with 

x0 = 1, x3 =p, 

x1 =m, x4 =m*+n*+p*-r*, 

x2=n, xg=r. 

The image point Rs of (T fulfills 

(s, s), := x; +x; + x; - x0x4 - x: = 0 (16) 

and is therefore located on a quadric Qf of signature 
2 in Ps. Conversely, each point of Q% with ~0x5 # 0 
is the image of an oriented sphere in E3 with the so- 
called hewspherical coordinates (x0 : . . . : x5)~. ’ 1 

Each zero-sphere with x5 = r = 0, x0 # 0, can be 
identified with a point (m, n,p)c in E3. It turns out 
that the remaining points of Q,” with xa = 0 can be 
seen as images of oriented planes 4 in E3: For the 
plane c5 in E3 with the Hesse equation 

t+ux+uy+wz =o, u* + u* + w* = 1 

the image point 

Rs := (0 : --u : -u : -w : 2t : 1)c 

belongs again to Q,“. Thus all points of Qi with xc = 
0,~s # 0 are obtained. The only remaining point 
(0 : 0 : 0 : 0 : 1 : 0)~ is seen as the image of an 
improper zero-sphere representing at the same time 
also an improper plane, as x0 = 0. 

Hence we have obtained a bijcction 

&:S+Q;c~, UHRS (17) 

of the union S of all oriented spheres and planes in 
E3, completed with the improper zero-sphere, onto the 
Lie quadric Qf. I2 

Two points lws, Rs’ are conjugate with respect to 
Qf if and only, if 

lt The analogous mapping exists for all dimensions n > 2. The 
coordinates for the planar version are called pentacyclic. Note 
that the polyspheric coordinates presented in [ 1, 20.71, refer to 
non-oriented spheres in Ea. These coordinates are appropriate for 
Mobius sphere geometry only. 
l2 The analogy to the Plticker model of the set I: of lines in P3 
is obvious. Over C the quadrics Q,’ and Qf can be identified. 
This gave rise to Lie’s line-sphere-transfortion (see e.g. [16, 
Sections 70 and 7 11, or [ 25, Chapter 41). This transformations 
maps ruled quadrics onto Dupin’s cyclides, for example. 
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(s, s’) s = Xl x; + x2x; + x3x; 

- &K: + x4x;)) - x5x; = 0. (18) 

When these two points are the images of two spheres 
or zero-spheres (T, cr’ with centers m, m' and radii r, r’, 
then Eq. ( lgl) is equivalent to 

Ilrn - rn'll = (r - r’j. 

This characterizes the otiented contact between (T and 
cr’. There is also such a contact when Ws’ is supposed 
to be the image of a plane d’, as due to Eq. ( 18) the 
radius r of cr equals the distance q. In the case of 
two planes this condition expresses direct parallelity. 
When finally IRS is the image of the improper zero- 
sphere, then the conjugate Rs’ must be the image of 
any plane. 

Due to this property the hexaspherical coordinates 
provide a useful tool for solving the Apollonian sphere 
problem: Determine all spheres u that touch four given 
spheres (+I, . . . , ~4. We suppose the spheres to be ori- 
ented. Then ,the oriented contact between all ai and u 
is equivalent to four linear equations 

(X,Si)s=O fori= l,..., 4, 

if JRsi = A,( ui) and RX = A,( a). Hence, in the 
generic case this problem has been reduced to the com- 
putation of tlhe points of intersection between the Lie 
quadric Q,” and a line. This line is polar with respect 
to Q$ to the span [Rst . . . I&]. For a recent appli- 
cation of this classical problem in the field of satellite 
geodesy see [23]. 

Transformations on S, which correspond to 
collineations in Ps that map Q,” onto itself, are called 
SC Lie’s sphere transformations. These are bijec- 
tions that preserve oriented contact. The subgroup of 
Miibius transjofamzations is characterized by the condi- 
tion that the corresponding collineation in p fixes the 
hyperplane X=J = 0. Each Mobius transformation is a 
point transformation, and complementary orientations 
of a plane or sphere remain complementary. Since 
the angle (I, of intersection between two spheres or 
planes A; 1 (IRS) and A;’ (Ws’) obeys (cf. e.g. [ 71) 

sin2 !!! = -- -(s, s’), 
2 2x54 9 

the Mobius transformations turn out to be confor- 
mal, i.e. angle-preserving. It can even be proved that 

all conformal transformations of E3 are of Mobius 
type’? 

Finally, Lie’s sphere transformations which pre- 
serve the linear complex no = 0 of planes are called 
Laguerw transformations. There is a subgroup of 
index 1 of proper Laguerre transformations which 
preserve the tangential distance for each two oriented 
spheres u, u’. The tangential distance t of the spheres 
(+ = h;‘(Rs) and o-’ = &‘(Rs’) obeys 

t2 = -qs, s’), 
x0x; 

For details see e.g. [ 161 or [6, Chapters 1 and 21. 
Applications of these transformations in the field of 
CAGD can be found in [ 181. Only similarities are at 
the same time Mobius and Laguerre transformations. 
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