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O tetraedrima u dodekaedru

SA

�

ZETAK

60 bridova od 10 tetraedara upisanih u pravilan do-

dekaedar �cine tzv. GRÜNBAUMOVU mre�zu. Poznato je da

je ta struktura eksibilna. Postoje jednoparametarska

gibanja koja �cuvaju simetriju s obzirom na os stranice

ili na os koja prolazi vrhom. Rad se bavi analiti�ckim

reprezentacijama takvih gibanja. Osim toga dokazano

je da se oba gibanja mogu spojiti u dvoparametarska

gibanja koja ne �cuvaju simetriju.

On the Tetrahedra in the Dodecahedron

ABSTRACT

The 60 edges of the ten tetrahedra inscribed in a regular

pentagondodecahedron form the so-called GRÜNBAUM

framework. It is already known that this structure is

exible. There are one-parameter motions which pre-

serve the symmetry with respect either to a face axis or

to a vertex axis. The paper treats analytical represen-

tations of these motions. Furthermore it is proved that

both motions can blend into two-parametric motions

which do not preserve any symmetry.

MSC 1994: 53A17, 51M20

1 Introduction

Since ancient times it is known that with the vertices
of a regular pentagondodecahedronD one can build
five cubesC1; : : : ;C5. It was EUCLID’s strategy

(cf. [3], p. 69) for constructing a dodecahedron by adding
’roofs’ to each face of a cube (see Fig. 2). The edges of
such an inscribed cubeCi are diagonals of the faces ofD.
With respect toD we can distinguish between right and left
vertices ofCi depending on whether the edges through any
vertexA are the right or the left diagonals ofD in the faces
throughA, if seen from outside (see Fig. 1). For each edge
of Ci the two endpointsA;B are of different type. So, the

right vertices ofCi form aright tetrahedronRi , the left ver-
tices aleft tetrahedronLi . And of course bothLi andRi are
inscribed inCi and therefore inD.
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Fig. 1: DodecahedronD with one inscribed cubeC.
PointsA andE are right vertices,B is a left ver-
tex ofC.

Another way to identify two verticesAE of D as endpoints
of an edge of any inscribed tetrahedron is as follows: There
must be a path fromA to E along three edges ofD – via
the ’roof’ displayed in Fig. 2. If at the first crossing point
you take theright edge and at the second vertex the left one,
thenAE belongs to aright tetrahedron. The left choice at
the first vertex and the right one afterwards results in an
edge of a left tetrahedron.
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Fig. 2: Constructing a dodecahedronD by adding roofs on
a cubeC.

Each vertex ofD is a left vertex of any inscribed cubeCi ,
therefore vertex ofLi and at the same time vertex of any
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right tetrahedronR j . We havei 6= j asLi andRi are com-
plementary tetrahedra of the cubeCi . In the sequel we de-
note each vertex ofD by the ordered pairi j of different
indices of the left and the right tetrahedron meeting there.

Suppose the tetrahedra are solids. Then the union of the
right tetrahedra as well as the union of the left ones are well
known stellated icosahedra (see [2], note cover page of [8]).
They are mirror images from each other which surprisingly
share all vertices and all oriented planes spanned by their
faces (see [7]). Also the union of all ten tetrahedra is a stel-
lated icosahedron.

Let us now focus on wire-frame models of the tetrahedra:
The ten tetrahedra can be seen as the links of a kinematic
chain. Each linkLi (R j) is connected with fourR j (Li),
i 6= j, by a spherical joint at the common vertexi j . Due
to [4] this structure is called GRÜNBAUM framework. Sur-
prisingly it is finitely movable, though the structure formula
gives�6 as the degree of mobility. We start with represent-
ing the well known one-parameter motions of types I and II
of GRÜNBAUM ’s framework.

2 Motions of type I

Theorem 1 (R. CONNELLY et al., 1991): For each
face axisf of the regular dodecahedronD there is a one-
parameter motion ofGRÜNBAUM ’s framework preserving
the five-fold symmetry aboutf .
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Fig. 3: Motion of type I: The vertices 12,: : : ,15 of L1

move in the planesε2; : : : ;ε5 of symmetry.

According to R. CONNELLY et al. [1] (compare also [6])
the motion of one tetrahedron, sayL1, is defined as fol-
lows: Letε1; : : : ;ε5 be the five planes of symmetry through
the face axisf (see view in direction off in Fig. 3). Then
the vertices 12, 13, 14, 15 ofL1 move withinε2;ε3;ε4;ε5,
respectively. The trivial translation in direction off can
be ruled out by the additional condition that the center of

L1 remains in a plane orthogonal tof . The resulting one-
parameter motion ofL1 turns out to split into two rational
motions of order 4. By iterated 72�-rotations aboutf these
motions of L1 are transformed into those ofL2; : : : ;L5,
resp., provided the notation is specified according to Fig. 3.
The motions ofR1; : : : ;R5 are obtained by reflecting those
of L1 in ε1; : : : ;ε5, respectively.

Let (x;y;z) be Cartesian coordinates in the moving frame
— attached toL1 — and let(x0;y0;z0) be coordinates in
the fixed frame. Then we can set up the motion ofL1 as
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with an orthogonal matrix(ai j ). For the representation of
(ai j ) we use quaternions: Each nontrivial homogeneous
quadruple(q0; : : : ;q3) defines an orthogonal matrix accord-
ing to

(aik) =
1

q2
0+q2

1+q2
2+q2

3
� (2)
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and vice versa.

With regard to the fixed frame, we specify thez0-axis on f
and thex0-axis inε1. By the conditionw= 0 the origin of
the moving frame remains in thex0y0-plane.

The vertices of the moving tetrahedronL1 with edge length
2
p

2 can be set up as

12= (1;�1;�1); 14= (�1; 1;�1);
13= (1; 1; 1); 15= (�1;�1; 1):

(3)

Now for j = 2; : : : ;5 the vertex 1j is supposed to move in
the planeε j of symmetry. According to (1) this results
in four linear equations for the coordinates(u;v;0) of the
translation vector and the entriesai j of the orthogonal ma-
trix. Setting

si := sin
2iπ
5

; ci := cos
2iπ
5

for i = 1;2 (4)

we obtain

s2(u+a11�a12�a13)+

+c2(v+a21�a22�a23) = 0;

�s1(u+a11+a12+a13)+

+c1(v+a21+a22+a23) = 0;

s1(u�a11+a12�a13)+

+c1(v�a21+a22�a23) = 0;

�s2(u�a11�a12+a13)+

+c2(v�a21�a22+a23) = 0:

(5)
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We eliminateu;v by multiplying the equations in (5) either
with �s1, �s2, s2, s1 or with �c1, c2, c2, �c1, resp., and
summing up. This gives two linear equations

4s1c1a12+2c1a21�a23= 0
4s1c1a11+2s1a13�a22= 0

(6)

when we pay attention to the identities

4c2
i +2ci �1= 0; c2

i +s2
i = 1;

s1c2+s2c1 =�s2; s1c2�s2c1 =�s1;

s2 = 2s1c1; c1c2 =�

1
4 ;

4c2
1(4s2

1�1) = (1�2c1)(2+2c1) = 1:

(7)

Now we substitute in (6) the representation (2) of theai j .
By settingk := 1�4s1c1 we obtain

[2c1(1�2s1)q0�q2] [2c1(1+2s1)q1�q3]=0; (8)

[kq0� (2s1+2)q2] [kq0� (2s1�2)q2]�

�[(2s1+2)q1+kq3] [(2s1�2)q1+kq3]=0:
(9)

We start with the second factor in (8) and express in (9)
q3 in terms ofq1. This results in a quadratic equation for
(q0 : q1 : q2)

[kq0� (2s1+2)q2] [kq0� (2s1�2)q2]+

+4(8c1�4s1+16s1c1�3)q2
1 = 0:

(10)

We introduce homogeneous motion parameters(σ;τ) 2
R

2
nf(0;0)g for this “conic” by setting

[kq0� (2s1+2)q2] �c2
1(2s1�1)2

= σ2
;

[kq0� (2s1�2)q2] =

= 4(�8c1+4s1�16s1c1+3)τ2
;

c1(2s1�1)q1 = στ;

(11)

and obtain after some simplifications due to (7) the repre-
sentation

q0 =�(2s1�1)σ2
+2s1(1+4s1c1)τ2

;

q1 = 2(2s1�1)στ;
q2 =�(2c1+1)σ2

+2s1(2s1�2)τ2
;

q3 = 2(2c1+1)στ :

(12)

From (2) we get the orthogonal matrix in (1). The transla-
tion vector(u;v;0) is given by

u=�a12+c1(a21+a32)=s1;

v=�a22+s1(a11+a13)=c1
(13)

resulting from (5).

Due to the last equation in (7), the involutive projective
transformation

(q0 : q1 : q2 : q3) 7! (q0

0 : q0

1 : q0

2 : q0

3)

obeying

q0

0 =�q3; q0

2 = q1;

q0

1 =�q2; q0

3 = q0

switches the two factors in (8) while (9) is preserved. On
the other hand the first two rows in the orthogonal matrix
(2) change signs. So a 180�-rotation about thez0-axis trans-
forms the one-parameter motion represented in (12) and
(13) into that stemming from the first factor in (8).
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Fig. 4: The trajectories of the vertices ofL1 under the mo-
tion of type I as defined in Fig. 3 and represented
in (12) and (13).

Theorem 2: For a given face axisf of D the motion of type
I of any tetrahedron splits into two rational motions which
can be transformed into each other by a halfturn aboutf .
Both components are of order 4 and type a) according to
the classification given byO. RÖSCHEL in [5].

Fig. 4 shows the trajectories of the vertices ofL1 under the
motion with the quaternion representation (12). When the
motion parameters(σ : τ) are replaced by(�σ : τ), then
q1 andq3 change signs. The same effect appears when the
moving frame performs a halfturn about they-axis (switch-
ing 12 with 15 and 13 with 14) while at the same time the
fixed frame rotates about they0-axis through 180� exchang-
ing ε2 with ε5 andε3 with ε4. This is the reason why the
trajectories of the vertices 12 and 15 are congruent as well
as that of 13 and 14. The dotted curve in Fig. 4 shows the
trajectory of the center ofL1.

A real GRÜNBAUM framework will not perform the full
motion since one vertex can’t move “through” the other.
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But one can dissolve some joints and reassamble the struc-
ture in another position.1 Then one will realize that during
the motion of type I the ten tetrahedra fall apart and form
a ring with a diameter which approximately doubles that of
the initial position in the interior of the dodecahedronD.
Fig. 5 shows the extended position in comparison withD.
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Fig. 5: GRÜNBAUM ’s framework forming a ring during
the motion of type I. Note the size ofD (dotted
lines) which encloses the initial position of the
framework.

3 Motions of type II

Theorem 3 (H. S., 1991): For each vertex axisv of the
regular dodecahedron there is a one-parameter motion of
GRÜNBAUM ’s framework preserving the three-fold sym-
metry aboutv.

Supposev connects the vertices 45 and 54. Thenv is a com-
mon axis of symmetry forL4, R4, L5 andR5. When this
axis v is kept fixed, then the vertices 41, 42, 43, 51, 52,
53, 14, 15, 24, 25, 34 and 35 can only move on a cylinder
Φ of rotation with axisv (see view in Fig. 6 showingv as
a point). According to [6] we define the motion ofL1 by
the additional condition that 12 and 13 remain in the planes
ϕ2;ϕ3 of symmetry passing throughv . After ruling out the
translations alongv we again end up with a one-parameter
motion ofL1.

The movements ofL2 andL3 are obtained by iterated 120�-
rotations aboutv. Reflections inϕ1;ϕ2;ϕ3 transform the
motion ofL1 into those ofR1, R2, R3, resp., provided the
notation is specified as in Fig. 6.

In order to represent the motion of type II analytically we
define thez0-axis onv and thex0-axis inϕ1. We specify the
moving frame(x;y;z) attached toL1 by

12= (

p

2;0;1); 14= (0;
p

2;�1);
13= (�

p

2;0;1); 15= (0;�
p

2;�1):
(14)
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Fig. 6: Motion of type II: The vertices 12, 13 ofL1 move
in the planesϕ2;ϕ3 of symmetry. 14 and 15 remain
on the cylinderΦ of rotation.

Then the constraints defined above result in four equations

(u+a11
p

2+a13)
p

3� (v+a21
p

2+a23) = 0;

(u�a11
p

2+a13)
p

3+(v�a21
p

2+a23) = 0;

(u+a12
p

2�a13)
2
+(v+a22

p

2�a23)
2
=

8
3;

(u�a12
p

2�a13)
2
+(v�a22

p

2�a23)
2
=

8
3:

(15)

From the two linear equations we obtain

u= a21

q

2
3 �a13; v= a11

p

6�a23: (16)

We substitute this in the difference and sum of the last two
equations in (15). So we end up with

Aa12+Ba22= 0;

A2
+B2

+2a2
12+2a2

22=
8
3 for

A := a21

q

2
3 �2a13; B := a11

p

6�2a23:

(17)

Together with the orthogonality conditions

a2
11+a2

12+a2
13= a2

21+a2
22+a2

23= 1;

a11a21+a12a22+a13a23= 0

we have five equations for the six entries in the first two
rows of the matrix(aik). When in (17) theai j are replaced
by q0; : : : ;q3 according to (2) we obtain two homogeneous
equations of degree 4.

However, explicit representations for the motions of type II
have not yet been found.

1 The author thanks Elisabeth ZACH for producing a model of
GRÜNBAUM ’s framework. This was the key for dedecting the
two-parametric mobility presented in Section 4.
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4 Two-parametric motions of GRÜNBAUM ’s
framework

During the motion of type I as defined in Fig. 3 the moving
tetrahedronL1 reaches positions which are symmetric with
respect toε3 (see Fig. 7): Sinceε3 bisects the angle between
ε2 andε4, we can choose 122 ε2 and 142 ε4 in symmetric
position. This implies 13;152 ε3, hence 152 f .
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Fig. 7: Position of GRÜNBAUM ’s framework with pair-
wise coinciding tetrahedra and two-parametric mo-
bility.

In this particular position the reflection ofL1 in ε3 gives
R3=L1. The iterated 72�-rotations aboutf and the reflec-
tions in εi , i = 2; : : : ;5, reveal that all tetrahedra are pair-
wise concident: We haveR4=L2, R5=L3, R1=L4, and
R2=L5. All tetrahedra share the vertexS:=15=21=32=
43=54.
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Fig. 8: GRÜNBAUM framework seen as a flexing pyramid
with five triangular faces as bases for tetrahedra.

Because of 14=23, 25=34, 31=45, 42=51, and 53=12
any two consecutive tetrahedra in the cycle(L1L2L3L4L5)

have an edge throughS in common.

So the whole structure can be seen as a five-sided pyramid
built of five regular triangles which are the bases for the
tetrahedra (Fig. 8). Such a pyramid with revolute joints at
its edges flexes with mobility 2 like a spherical pentagon
with hinges at its vertices.

During motions of type I the tetrahedronL1 also occupies
positions symmetric with respect toε2 (Fig. 9). This time
14 and 15 are mutual mirror images inε2 which implies
132 f . Hence the ten tetrahedra are again pairwise coincid-
ing: L1=R2, L2=R3, L3=R4, L4=R5, andL5=R1. The
five tetrahedra share one vertex (13=24=35=41=52);any
two consecutive tetrahedra in this closed kinematic chain
with five links L1; : : : ;L5 share an edge, passing through
14= 32, 25= 43, 31= 54, 42= 15, and 53= 21, respec-
tively. This time the five-sided pyramid formed by the rev-
olute axes is two-times wound aroundf (see Fig. 9).
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Fig. 9: Another position of GRÜNBAUM ’s framework
with pairwise coinciding tetrahedra and degree 2
of mobility.

After interchanging 12 with 15 and 13 with 14 we obtain
analogous cases whereL1 occupies positions symmetric
with respect toε4 or ε5, henceL1=R4 or L1=R5.

Also the motions of type II can blend into a two-parametric
mobility: When during the motion displayed in Fig. 6 the
vertex 12 crosses the axisv of symmetry, then because of
the given edge length ofL1 the vertices 14 and 15 are lo-
cated on the same circle of the cylinderΦ. Hence 13 must
be located onΦ too. This implies that in this position
L1 is symmetric with respect toϕ1, ϕ2 and ϕ3. We get
L1=L2=L3=R1=R2=R3 (see Fig. 10). Even two of the
remaining tetrahedra, sayL4 andR5, coincide withL1. The
two last coinciding tetrahedraL5=R4 share a face withL1.
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Fig. 10: In this position of GRÜNBAUM ’s framework a
motion of type II can blend into two-parametric
flexibility.

The same collapsed position can be reached when the flex-
ing five-sided pyramid (Fig. 8) is folded such that three
faces coincide.

Theorem 4: TheGRÜNBAUM framework admits also two-
parametric motions: Here tetrahedra of different type are
coupled into pairs such that – in cyclic order – each two
consecutive tetrahedra share an edge, and all these edges
pass through a common vertex.
The motions of type I can blend into this two-parametric
flexes whenever one tetrahedron occupies a position sym-
metric with respect to any fixed planeεi of symmetry. Mo-
tions of type II can bifurcate into two-parametric mobility
when one vertex ofL1 crosses the fixed axisv of symmetry.
Then even eight of the ten tetrahedra are coinciding.

It is still open whether these two-parametric motions com-
plete the list of nontrivial flexes of the GRÜNBAUM frame-
work.
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