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Abstract. When a surface of revolution with a conic as meridian is intersected
with a bitangential plane, then the curve of intersection splits into two congruent
conics. Conversely a necessary and sufficient condition is presented such that
the rotation of a conic about a non-coplanar axis gives a surface with conics as
meridians. Both results are proved by direct computation.
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1. Introduction

On August 28th 1848 Yvon Villarceau reported in [6] that a bitangential plane intersects
a ring torus along two circles.1 In the previous paper [3] A. Hirsch generalized this result
with the following

Theorem 1 Let Ψ be a surface of revolution with a conic m as meridian. Then any bitan-
gential plane τ intersects Ψ along a reducible curve v consisting of two congruent conics which
either are imaginary or of the same affine type as m.

A. Hirsch’s proof is based on the standard result of Algebraic Geometry saying that the
number of singularities of any irreducible planar algebraic curve of order 4 is less than four.
The type of the components of v is figured out by intuitive arguments. Besides, A. Hirsch

presented in [3] real representations of imaginary Villarceau sections, too.
The aim of this paper is to prove Theorem 1 without using the above mentioned result.

Direct computation of v gives also rise to a certain converse which first has been proved in
[2], p. 55.

1Y. Villarceau indicated an analytical proof in his short note [6]. An elementary proof can be found in
[1]. The most remarkable property that the Villarceau circles are isogonal trajectories of the meridian circles
has probably first been proved 1891 (see references in [7], footnotes 3 and 5).
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2. Proof of Theorem 1

We introduce a cartesian coordinate system (O;x1, x2, x3) and use the axis a of Ψ as x3-axis.
We have to distinguish two cases whether the bitangential plane τ is parallel to the axis a of
Ψ or not.

Case 1: τ not parallel a
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Figure 1: Case 1, the bitangential plane τ intersects the axis a at O

We specify the origin O of the coordinate system at the point of intersection between a and
the bitangential plane τ by the definition that τ obeys the equation

τ : x3 = kx2, k 6= 0. (1)

We furthermore assume for the meridian conic2 m in the x2x3-plane, that the polar line p of
O with respect to m (see Fig. 1 with front view in the x2x3-plane) has the equation

p : rx2 + sx3 = 1, r, s ∈ R, r 6= 0. (2)

Then m belongs to a pencil of conics which is spanned by the two tangent lines x3 = ±kx2

and the polar line p with multiplicity 2. Therefore we can set up

m : l(x2
3 − k2x2

2) + (rx2 + sx3 − 1)2 = 0 for any l ∈ R \ {0}. (3)

The condition r 6= 0 guarantees that m is not symmetric with respect to the x3-axis; otherwise
the swept surface would be part of a quadric of revolution. We assume k2 > 0 thus confining
ourselves to a real bitangential plane τ .

Eq. (3) results in the following equation of the surface of revolution

Ψ:
[

(r2 − lk2)(x2
1 + x2

2) + (l + s2)x2
3 − 2sx3 + 1

]2 − 4r2(sx3 − 1)2(x2
1 + x2

2) = 0. (4)

2Under ’conic’ we understand in the sequel an irreducible curve of second order.
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Points of the ‘Villarceau section’ v = Ψ ∩ τ fulfill the equations of τ and Ψ simultaneously.
Therefore by substituting x3 from (1) in (4) we get the equation for the top view v′ of v in
the x1x2-plane:

v′ :
[

(r2 − lk2)x2
1 + (r2 + k2s2)x2

2 − 2ksx2 + 1
]2 − 4r2(ksx2 − 1)2(x2

1 + x2
2) = 0. (5)

This equation can be rewritten as

[

(r2 − lk2)x2
1 + (r2 − k2s2)x2

2 + 2ksx2 − 1
]2 − 4lk2(ksx2 − 1)2x2

1 = 0. (6)

For verifying the identity of the left hand sides in (5) and (6) we combine the two terms with
the brackets on one side, the rest on the other. Then we decompose on each side the difference
of two squares into the product of the sum and the difference.

Over C the quartic v′ with eq. (6) splits into the two conics c′1, c
′
2 obeying

c′j : (r2 − lk2)x2
1 + (r2 − k2s2)x2

2 ± 2k
√
l(ksx2 − 1)x1 + 2ksx2 − 1 = 0. (7)

c′2 is symmetric to c′1 with respect to the x1-axis.
Only under l > 0 the equations of these conics have real coefficients. If τ is real, i.e.,

k2 > 0, then the points of contact with Ψ are real, too. Hence, under l > 0 and k2 > 0
the components c1, c2 of v are ellipses, parabolas or hyperbolas according to the sign of the
discriminant Dc of the quadratic form included in the left hand side of eq. (7). We compute

Dc = r2(k2s2 + k2l − r2).

On the other hand the discriminant Dm for the meridian conic with equation (3) reads

Dm = l(k2s2 + k2l − r2) =
l

r2
Dc .

This reveals that the components of v are either imaginary (l < 0) or they share their affine
type with m.

Case 2: τ parallel a

We set up the equation of the bitangential plane τ as

τ : x1 = k , k 6= 0, (8)

thus excluding the trivial case with m tangent to a. The meridian m in the x2x3-plane belongs
to a pencil of conics which is spanned by the pair of tangent lines x2 = ±k and the double-line
p polar to the point at infinity of the axis a (see Fig. 2). Therefore we can set up

m : l(x2
2 − k2)− (x3 − rx2)

2 = 0 for any l, r ∈ R \ {0}. (9)

In analogy to (4) we obtain the equation of Ψ,

Ψ:
[

l(x2
1 + x2

2 − k2)− x2
3 − r2(x2

1 + x2
2)
]2

= 4r2x2
3(x

2
1 + x2

2). (10)

By setting x1 = k we get for the Villarceau section v = Ψ ∩ τ

v :
[

(r2 − l)x2
2 + x2

3 + r2k2
]2 − 4r2(k2 + x2

2)x
2
3 = 0. (11)
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Figure 2: Case 2, the bitangential plane τ is parallel to a (special case l = r2)

This can be rewritten as

v :
[

(r2 − l)x2
2 − x2

3 + r2k2
]2 − 4lx2

2x
2
3 = 0 (12)

which proves that v splits into the two conics c1, c2 with equations

cj : (r2 − l)x2
2 − x2

3 + r2k2 ± 2
√
l x2x3 = 0. (13)

Only under l > 0 these equations have real coefficients, and in analogy to Case 1 the discrim-
inants Dm = l of m and Dc = r2 of cj obey again

Dm =
l

r2
Dc .

cj is either imaginary (l < 0) or it is a hyperbola like m. 2
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3. A converse of Theorem 1

The same quartic surface Ψ — or at least a portion of it — can also be generated when we
rotate any component cj of v about the axis a. Beside the parallel circles in planes orthogonal
to a the surface Ψ contains three families of conics, the meridian curves in planes through a

and the two families generated by c1 and c2, respectively. The latter two are mirror images
from each other with respect to any meridian plane.

When in the generic case any conic is revolved about an axis a then it constitutes a surface
of 4th order with irreducible quartics in the meridian planes (see [2] or [8], vol. I, p. 143).3

Hence the previously defined curves cj must have any specific property. This is clarified in
the following theorem which dates back to [2], p. 55: 4

Theorem 2 Let c be any conic in the plane τ . Suppose that c is rotated about an axis a

which is neither perpendicular to τ nor located in τ . We further exclude that c is symmetric
with respect to any plane through the axis a.

Then the swept surface Ψ has conics as meridian curves if and only if both isotropic planes
through a are tangent to c.5 This means for Case 1 (τ, a intersecting) that orthogonal projec-
tion parallel to a maps c onto a conic c′ with a focal point on the axis a.

Proof: We again discuss the two previously defined cases separately: In Case 1 we rewrite
eq. (7) in the form

c′j : r2(x2
1 + x2

2)−
(

±
√
l kx1 − ksx2 + 1

)2

= 0 (14)

which (in comparison with (3)) reveals that the top view c′j of cj in the x1x2-plane is tangent
to the isotropic lines x2 ± ix2 = 0, i2 = −1, passing through the origin O. This characterizes
O as a focal point of c′j and the line

f : ±
√
l kx1 − ksx2 + 1 = 0

as its polar, the so-called directrix of c′j. Alternatively, we conclude from eq. (14) that the
distances of any point X ∈ c′j from the focal point O and from the directrix f are proportional.
More precisely, we obtain the Apollonian property

X ∈ c′j ⇐⇒ XO =

∣

∣

∣

∣

∣

k
√
l + s2

r

∣

∣

∣

∣

∣

Xf.

In Case 2 we rewrite eq. (13) as

cj : r2(x2
2 + k2)− (x3 ∓

√
l x2)

2 = 0. (15)

The isotropic planes through a intersect τ : x1 = k along the lines x2 = ±ik. Eq. (15) reveals
in analogy to (9) that cj contacts these lines at points on the diameter x3 = ±

√
l x2. Note

that the replacement of the constants (k2, r) in (9) by (−k2,±
√
l) exchanges m and cj.

3In the generic case Ψ contains even four real and two imaginary families of conics (see [2], p. 17ff).
4The first part of Theorem 2 has already been stated in [4].
5This necessary and sufficient condition is equivalent to the statement: Any pair of orthogonal planes

through the axis a intersects the plane τ at lines which are conjugate with respect to c. This formulation has
the advantage to avoid the complex extension of the Euclidean space.
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Conversely: Let a conic c ⊂ τ be given according to the conditions of Theorem 2. In Case 1
(τ not parallel a) we set up

c′ : λ(x2
1 + x2

2)− (ρkx1 − σkx2 + 1)2 = 0
c ⊂ τ : x3 = kx2

}

k, ρ 6= 0, λ > 0. (16)

The comparison with (14) gives

l = ρ2, r =
√
λ, s = −σ.

Now we only need to follow the computation above in the reverse order. c generates the
surface Ψ of revolution. Its complete meridian in the x2x3-plane consists of the conics

m1,2 : ρ2(x2
3 − k2x2

2) +
(

±
√
λx2 − σx3 − 1

)2

= 0. (17)

In Case 2 (τ parallel a) we can set up the equation of c as

c : ρ(x2
2 + k2)− (x3 − λx2)

2 = 0, τ : x1 = k , k, λ 6= 0, ρ > 0 . (18)

We compare this equation with (15) and notice that the swept surface Ψ has a meridian m

obeying (9) for
r =

√
ρ, l = λ2. 2

Remarks: 1) By the conditions ρ 6= 0 in (16) and λ 6= 0 in (18) we exclude that a symmetry
plane of c passes through the axis a of rotation. Otherwise the swept surface Ψ would be
quadratic. And then proofs of Dandelin type (see e.g. [8], vol. I, p. 65) give rise to metrical
properties of conics (cf. [5]).

2) There is another way to conclude that the condition given in Theorem 2 is necessary for
meridian conics:
Any rotation R about a 6 keeps the two isotropic planes µj : x1 ± ix2 = 0 through a fixed.
Each point in these planes preserves its x3-coordinate under R and traces a line under the
continuous rotation. When therefore the conic c intersects µj at the point (ξ1,±iξ1, ξ3),
ξ1, ξ3 ∈ C, then the swept surface Ψ meets the axis a at the point (0, 0, ξ3).
For the required type of quartic surface Ψ the points of intersection with a must pairwise
coincide with the points where any meridian conic mj meets the axis. Since any symmetry
has been excluded (cf. Remark 1), the x3-coordinates of the points of intersection c∩µ1 differ
from those of c ∩ µ2 . Therefore c must intersect each µj at two coinciding points.
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centre. Nouvelles Annales de Mathématiques 18, 258–261 (1859).
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