Strophoids, a family of cubic curves with remarkable properties

Hellmuth Stachel

stachel@dmg.tuwien.ac.at — http://www.geometrie.tuwien.ac.at/stachel
Table of contents

1. Definition of Strophoids
2. Associated Points
3. Strophoids as a Geometric Locus
1. Definition of Strophoids

Definition: An irreducible cubic is called **circular** if it passes through the absolute circle-points. A circular cubic is called **strophoid** if it has a double point (= node) with orthogonal tangents. A strophoid without an axis of symmetry is called **oblique**, otherwise **right**.

\[S: (x^2 + y^2)(ax + by) - xy = 0 \]

with \(a, b \in \mathbb{R}, (a, b) \neq (0, 0) \). In fact, \(S \) intersects the line at infinity at \((0 : 1 : \pm i)\) and \((0 : b : -a)\).
1. Definition of Strophoids

The line through N with inclination angle φ intersects S in the point

$$X = \left(\frac{s \varphi \ c^{2} \varphi}{a \ c \varphi + b \ s \varphi}, \ \frac{s^{2} \varphi \ c \varphi}{a \ c \varphi + b \ s \varphi} \right).$$

This yields a parametrization of S. $\varphi = \pm 45^\circ$ gives the points G, G'. The tangents at the absolute circle-points intersect in the focus F.
1. Definition of Strophoids

The polar equation of \(S \) is

\[
S: \quad r = \frac{1}{a \sin \varphi + b \cos \varphi}.
\]

The inversion in the circle \(K \) transforms \(S \) into the curve \(H \) with the polar equation

\[
H: \quad r = \frac{a}{\sin \varphi} + \frac{b}{\cos \varphi}.
\]

This is an equilateral hyperbola which satisfies

\[
H: \quad (x - b)(y - a) = ab.
\]
1. Definition of Strophoids

The curve \mathcal{H} has two axes of symmetry $mF \leftrightarrow N$ which implies that the inverse curve S is self-invers with respect to two circles through N with centers G, G'. The curve S is the envelope of circles centered on confocal parabolas P_1 and P_2.
1. Definition of Strophoids

The product of the polarity and the inversion in \mathcal{K} is the pedal transformation $t \mapsto T$ w.r.t. N.

Polar to \mathcal{H} is the parabola \mathcal{P}.

Theorem: The strophoid S is the pedal curve of the parabola \mathcal{P} with respect to N.

The parabola’s directrix m is parallel to the asymptote of S. F is the midpoint between N and the parabola’s focus F_p.
1. Definition of Strophoids

Tangents \(t \) of the parabola \(\mathcal{P} \) intersect \(S \) beside the pedal point \(T \) in two real or conjugate complex points \(Q \) and \(Q' \).

Definition: \(Q \) and \(Q' \) are called associated points of \(S \).

\(Q \) and \(Q' \) are associated iff the lines \(QN \) and \(Q'N \) are harmonic w.r.t. the tangents at \(\overline{A} \).

For given \(t \) the points \(Q \) and \(Q' \) lie on a circle centered on \(g \).
2. Associated Points

Projective properties of cubics with a node:

There is a 1-1 correspondence between S and lines through N, except N corresponds to t_1 and t_2.

The involution α which fixes t_1, t_2 determines pairs X, X' of associated points.

Involutions which exchange t_1 and t_2 determine involutions β on S with $N \mapsto N$ and several properties, e.g., there exists an ‘associated’ involution $\beta' = \alpha \circ \beta = \beta \circ \alpha$.
2. Associated Points

• β has a center Z such that $X, X\beta, Z$ are collinear.

• The centers Z of β and Z' of β' are associated.

• The lines $Z'X, Z'X\beta$ correspond in an involution which fixes $Z'N$ and the line through the fixed points Y, Y' of β.

• For associated points, the diagonal points $XY \cap X'Y'$ and $XY' \cap X'Y$ are again on S. The tangents at corresponding points intersect on S.
2. Associated Points

On the equicevian cubic S, the following pairs of points are associated:

- Q, Q',
- the absolute circle-points,
- The focal point F and the point F' at infinity,
- G, G' on the line $g \perp NF$.
2. Associated Points

Theorem:

- For each pair \((Q, Q')\) of associated points, the lines \(NQ, NQ'\) are symmetric w.r.t. the bisectors \(t_1, t_2\) of \(\triangle BNC\).
- The **midpoint** of associated points \(Q, Q'\) lies on the **median** \(m = NF'\).
- The **tangents** of \(S\) at associated points meet each other at the point \(T' \in S\) associated to the pedal point \(T\) on \(t = QQ'\).
- For each point \(P \in S\), the lines \(PQ\) and \(PQ'\) are symmetric w.r.t. \(PN\).
2. Associated Points

We recall:

Theorem: Given three aligned points A, A' and N, the locus of points X such that the line XN bisects the angle between XA and XA', is the Apollonian circle.

The second angle bisector passes through the point \tilde{N} harmonic to N w.r.t. A, A'.
2. Associated Points

Theorem: Given the non-collinear points A, A' and N, the locus of points X such that the line XN bisects the angle between XA and XA', is a strophoid with node N and associated points A, A'.

The respectively second angle bisectors are tangent to the parabola \mathcal{P}.
Theorem: The strophoid S is the locus of focal points (Q, Q') of conics \mathcal{N} which contact line AN at A and line $A'N$ at A'.

The axes of these conics are tangent to the parabola \mathcal{P}.
Let the tangents to C at T and T' intersect at Q. Then
\[\alpha = \angle TF_2Q = \angle QF_2\overline{T}. \]

On the other hand, the tangent t at T bisects the angle between TF_1 and TF_2.
3. Strophoids as a Geometric Locus

The points of contact of tangents drawn from a fixed point N to confocal conics as well as the foot points of normals through N lie on a strophoid.
3. Strophoids as a Geometric Locus

The curve \mathcal{V} of intersection between the sphere (radius $2r$) and the vertical right cylinder (radius r) is called Viviani’s window.

Central projections with center $C \in \mathcal{V}$ and a horizontal image planes map \mathcal{V} onto a strophoid.
3. Strophoids as a Geometric Locus

\[\psi \]

\[\psi' \]

\[\psi'' \]

\[\psi''' \]

\[N' \]

\[N'' \]

\[N''' \]

\[X' \]

\[X'' \]

\[X''' \]

\[\lambda \]

\[\lambda' \]

\[\lambda'' \]

\[45^\circ \]

\[xy \]

\[z \]

\[y \]

\[x \]

\[\psi \] lies also on a **cone of revolution** and on a **torus**.

Points of \(\psi \) have **equal geographic longitude and latitude**.
3. Strophoids as a Geometric Locus

Two particular examples of flexible octahedra where two faces are omitted. Both have an axial symmetry (types 1 and 2)

Below: Nets of the two octahedra.
According to R. Bricard there are 3 types of **flexible octahedra** (four-sided double-pyramids). Those of type 3 admit two flat poses. In each such pose, the pairs \((A, A')\), \((B, B')\), and \((C, C')\) of **opposite vertices** are associated points of a strophoid \(S\).
3. Strophoids as a Geometric Locus

In plane kinematics, points with trajectories of stationary curvature is a strophoid S as well as the locus C of corresponding centers of curvature.
3. Strophoids as a Geometric Locus

The *elementary geometry of triangles* seems to be an endless story.

- Clark Kimberling’s *Encyclopedia of Triangle Centers* shows a list of 7,622 remarkable points (available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html)

- Bernard Gibert’s *Cubics in the Triangle Plane* shows a list of 721 related cubics (available at http://bernard.gibert.pagesperso-orange.fr/index.html)
3. Strophoids as a Geometric Locus

For any point \(P \neq A, B, C \) the segments \(AA_P, BB_P, \) and \(CC_P \), are called **cevians** of the point \(P \).

Giovanni Ceva, 1647-1734, Milan/Italy.
3. Strophoids as a Geometric Locus

The point E is called **equicevian**, if its three cevians have the same lengths, i.e., $AA_E = BB_E = CC_E$.

An equicevian point is called **improper** if it lies on one side line of the triangle (like P), otherwise **proper** (like E).

There exist ≤ 6 improper equicevian points. We focus in the sequel on proper ones.
3. Strophoids as a Geometric Locus

A point P is called A-equicevian iff $\overline{BB_P} = \overline{CC_P}$.

Theorem: All A-equicevian points lie on the line BC or on the A-equicevian cubic $S_A : H_A(X, Y) = 0$, where

$$H_A(X, Y) = (vX - uY)(X^2 + Y^2) + uv(X^2 - Y^2) - (u^2 - v^2 + 1)XY - (vX + uY) - uv.$$

Analogue B-equicevian points ($\overline{AB_P} = \overline{CC_P}$) and C-equicevian points ($\overline{AB_P} = \overline{BC_P}$).
3. Strophoids as a Geometric Locus

All equicevian cubics are strophoids. $E_1, E_2 \in S_A \cap S_B \cap S_C$ are proper equicevian points.
Theorem: For each triangle ABC, the remaining equicevian points are identical with the two real and two complex conjugate focal points of the Steiner circumellipse S.

The Steiner circumellipse S of ABC is the (unique) ellipse centered at the centroid G and passing through its vertices.
Theorem: When a and b, with $a \geq b$, denote the semiaxes of the Steiner circumellipse S of ABC, the cevians of the real foci have the length $3a/2$. The length of the cevians through the imaginary foci is $3b/2$.

Thank you for your attention!

• S. Abu-Saymeh, M. Hajja: *Equicevian points on the medians of a triangle.* preprint.

