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ABSTRACT 
Camus' concept of Auxiliary Surface (AS) is extended to 

the case of involute gears with skew axes. In the case at 

hand, we show that the AS is an orthogonal helicoid whose 

axis a) lies in the cylindroid and b) is normal to the instant 

screw axis of one gear with respect to its meshing 

counterpart; in general, the helicoid axis is skew with 

respect to the latter. According to the spatial version of 

Camus' Theorem, any line attached to the AS, in particular 

any generator g of AS itself, can be chosen to generate a 

pair of conjugate flanks with line contact. 

While the pair of conjugate flanks is geometrically 

feasible, as they always share a line of contact and the 

tangent plane at each point of this line, there are poses 

where the flanks even have a common Disteli axis. Then 

there is a G
2
-contact at the striction point and the two 

surfaces penetrate each other. 

The outcome is that the surfaces are not realizable as tooth 

flanks. Nevertheless, this is a fundamental step towards the 

synthesis of the flanks of involute gears with skew axes. 

 

Keywords: skew-axis involute gears; Plücker conoid (a.k.a 

the cylindroid); spatial Camus' Theorem; Ball-Disteli 

diagram; osculating ruled surfaces. 

1 INTRODUCTION 
Gears of many types, cylindrical and bevel, with straight 

and helical teeth, along with hypoid and worm gears, are key 

components to transmit mechanical power in machines. 

They can be assembled to produce simple and planetary 

gear trains, which also include non-circular gears. The most 

commonly used tooth profiles are cycloidal and involute, the 

latter for assembling, manufacturing and dynamic-

performance properties. 

Camus’s theorem provides a universal approach to the 

synthesis of conjugate profiles when the relative motion 

program is assigned through the relative centrodes, or via the 

pitch circles, in the case of a constant transmission ratio. The 

main point of this approach is to choose the most convenient 

auxiliary curve, in order to trace the pair of conjugate tooth 

profiles as trajectories of a point, or to generate them using 

envelope of a second curve attached to this auxiliary curve. 

The first method is normally used to synthesize cycloidal 

gears, which has been also extended to the spatial case 

through the use of helicoids as auxiliary surfaces, while the 

second method is more suitable to generate involute gears. 

Nevertheless, the extension of Camus’ theorem to involute-

gear pairs with skew axes is an extremely complex task, 

although quite interesting, since it is based on the 

fundamentals of kinematics and thus, targeted to provide a 

unified theory to synthesize any type of gears. 

This paper aims to give a first important contribution in 

this direction by specifying and analyzing the role of the 

orthogonal helicoid in the generation of the tooth flanks of 

involute-gear pairs with skew axes. Cylindrical and bevel 

gears can be obtained as particular cases. In the planar case, 

the tooth flanks are not realizable because they are mutually 

intersecting; nevertheless, this proves that the orthogonal 

helicoid is the right extension into the space. 

mailto:angeles@cim.mcgill.ca
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2 A BIOSKETCH OF MARTIN DISTELI 
Martin Disteli was very active in geometry and kinematics. 

In particular, he introduced the concept of axis of curvature, 

which is also known as Disteli axis in his honor; 

consequently, he extended the Euler-Savary equation to the 

spatial case and, thus, he applied these concepts to the 

synthesis of spatial cycloidal gears. 

Nevertheless, he is not well known among the research 

community, specially, among the engineering community, 

even if he made many important contributions in this field. 

Referring to [1-10], a biosketch of Martin Disteli is reported 

below, with the aim to make his life and his career known 

and to spread his scientific work. 

Martin Disteli, whose picture is shown in Fig.1, was born 

on Sunday, August 5
th

, 1867 in Olten, Switzerland, the son of 

a railway-station inspector. Disteli attended elementary 

school in his hometown; then, he went on to the Cantonal 

School in Solothurn at the age of 17. The instruction that the 

young Disteli received in the latter motivated him to devote 

himself to mathematics. After completing highschool, Disteli 

registered, the same year, at the Zurich Polytechnic, where 

he studied mathematics in the Education Department. It 

didn't take too long for the freshman Disteli to discover his 

interest in geometry, and found in Wilhelm Fiedler, 

Professor at the Zurich Institute of Technology, the mentor 

from whom he would receive key enlightening in 

mathematics. After four years of study, Disteli completed the 

first part of his higher education. Right afterwards, he 

studied two more semesters at the University of Berlin, 

where Weierstrass was still teaching, followed by further 

study at the University of Geneva. 

In 1887 Disteli went back to Zurich, where he took up a 

job as assistant of his mentor Wilhelm Fiedler. Since Disteli 

profited of his two years of travel to work on his doctoral 

thesis, already by 1888 he was granted the degree of Doctor 

of Mathematics at the Federal Institute of Technology, in 

Zurich. 

Disteli kept his assistantship still four more years, until he 

traded it, in 1893, for a professorship of descriptive 

geometry at the Cantonal Vocational School in Winterthur, 

where he moved in the same year. Besides this position, 

Disteli kept a lecturer position in Zurich, and was, 

additionally, coauthor in numerous scientific publications. 

The teaching in Winterthur was not a long-term commitment 

for Disteli, one must say, so that in Easter 1898 he gave up 

his professorship and his lecturer position in Zurich, to 

devote himself to his own scientific education. So, Disteli 

moved to Germany, to the mathematics metropolis of 

Göttingen, where, among others, David Hilbert and Felix 

Klein were teaching at the time. His experience in Göttingen 

was not that positive: not only was pure geometry there 

abandoned, but also was Disteli now married, which made 

him feel no longer unconstrained and free to move as he had 

done earlier. It thus happened that, after one semester, he 

moved again, towards the south, this time to Strassburg, 

which then was a part of the German Reich. This time he 

was accompanied by his wife. From Strassburg it was just 

one short step until he became in 1899 Assistant and in 1901 

Professor (one level below Full Professor, or Ordinarius) at 

the Karlsruhe Technische Hochschule (Karlsruhe Institute of 

Technology). In 1902 he moved again to Strassburg to take 

on a position as Professor of Applied Mathematics. 

In 1905 Disteli was granted a Full Professorship of 

Descriptive Geometry at the Dresden Technische 

Hochschule. Disteli claimed that this time was the most 

beautiful of his life. However, this period was not completely 

peaceful. Far from their hometwon, the Distelis missed their 

relatives and acquaintances in Switzerland. Martin Disteli 

must have found it especially painful that his wife and 

growing son had to spend the school holidays, which 

happened within the semester, alone in Switzerland. This 

prompted Disteli to move for the second time to Karlsruhe, 

where he occupied this time a Full Professorship in 

Descriptive Geometry. The time in Karlsruhe, however, was 

obscured by the shadow of the First World War. Disteli's 

duties at the Karlsruhe Institute of Technology changed 

dramatically, as his assistants were drafted. Matters became 

even tougher, as he became so seriously ill that an operation 

was necessary, given that by virtue of the war cost he could 

not be cured with a treatment. 

Thus decided Disteli to give up his Chair in Karlsruhe and 

move with his family to war-free Switzerland. This move 

turned out to be in 1917 harder than anticipated. It is to be 

noted that because of a call to join the Swiss Army he had to 

leave Germany and return to his motherland. However, 

Disteli did not have to enter the Army. Instead, and thanks to 

the new living conditions, the good care of his family led to 

a quick recovery. In the winter semester of 1920-21, Disteli 

succeeded in securing a position at the University of Zurich, 

where he, among other activities, was responsible for the 

education of mathematics teachers. In the fall of 1923 his old 

disease returned. In spite of an immediate operation he could 

not recover, so that in the night of October 25
th

 to 26
th

 of the 

same year, Disteli died as a consequence of his illness. 

His scientific work inspired important research lines on the 

theory of curvature and the application of dual algebra in 

spatial kinematics, [11-14]. One of these topics is the 

synthesis of skew gears, [15-18]. 
 

 
 

Figure 1. Martin Disteli 
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3 PITCH HYPERBOLOIDS AND PLÜCKER CONOID 
Referring to Fig.2, a pair of skew gears is assigned through 

their axes of rotation, I2 and I3, for the driving and driven 

gears, 2 and 3, respectively. I2 coincides with the Z-axis of 

the fixed frame 0 (X, Y, Z), while I3 is given the distance a1 

along the positive X-axis and the oriented angle 1.  

The instant screw axis I32, ISA for brevity, can be 

determined through the general Aronhold-Kennedy theorem, 

which states that I2, I3 and I32 must share a common normal, 

the X-axis in this case, as reported in [19]. Thus, the position 

of the I32-axis is given by the distance b2 along the X-axis 

and the oriented angle ϑ2.  

Referring to the formulation proposed in [20-23] and 

briefly recalled here, the relative angular and point  

velocities,  32 and v32, respectively, can be expressed in the 

forms 

 

2
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where k =  2 /  3 is the transmission ratio between the pair 

of skew gears, which is negative for external and positive for 

internal gears. 

Likewise, the position of the ISA in the fixed frame 0 (X, 

Y, Z) is given through the oriented angle ϑ2 and the distance 

b2, namely,  
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Figure 2. Positions of the I 2 and I 3 axes of both skew gears, 
along with the I32-axis (ISA) and the IAS-axis of the 

orthogonal helicoid with respect to the fixed frame 0 (X,Y,Z) 

The hyperboloid pitch surface 2 of the driving gear 2 can 

be expressed via two-parameter,  and λ, position vector r2, 

namely,in the form 
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where   and r2 refers to a point of the line generating 

the pitch surface. 

Likewise, the hyperboloid pitch surface 3 is given by 
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where d = (b2 – a1) and β 1 = (ϑ2 – 1), which takes into 

account the translation a1 along the X-axis and the rotation 

1 with respect to the Z-axis. 

Still referring to the formulation proposed in [29-31], the 

Plücker conoid  can be expressed in 0 (X, Y, Z) as 
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where the range of λ can be chosen arbitraly, because it 

defines only the extension of the Plücker conoid, while the 

parameters ϑ2 and b2 are obtained from Eqs. (3) and (4), 

respectively, when the transmission ratio k varies in the 

range (+ ∞; – ∞). An example is shown in Fig. 3. 
 

 
Figure 3. Hyperboloid pitch surfaces 2 and 3 along with 

their Plücker conoid  for a1 = 100 mm, 1 = 90°, k = – 1. 

zAS 

yAS 

xAS 
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4 SYNTHESIS OF THE ORTHOGONAL HELICOID 
According to Camus’ theorem for skew gears, a pair of 

conjugate ruled surfaces with line contact can be obtained by 

referring to both hyperboloid pitch surfaces 2 and 3 of the 

driving and driven gears, respectively, by choosing a suitable 

auxiliary surface (AS), which must be tangent to both 

hyperboloids along the I32-axis, i.e. the ISA of their relative 

motion, and must have its instant screw axis, IAS, located on 

the Plücker conoid .  

Thus, the choice of the auxiliary surface is not free, since 

the spatial version of Camus’s theorem must be satisfied, but 

there are infinitely many canditates, which should be 

evaluated in terms of specific critera, as reported in [20-25]. 

For example, even in the planar case, whose hyperboloid 

pitch surfaces can be substituted by the well-known pitch 

circles, which represent the centrodes of the relative motion 

between the pair of gears, infinitely many auxiliary curves 

can be chosen in agreement with Camus’ theorem, but only 

two types of auxiliary curves are chosen in practice. These 

curves are circles in the case of cycloidal gears or the pole-

tangent line for involute gears.  

Morever, in order to generate a pair of conjugate profiles, 

Camus’ theorem can be also applied by considering both 

envelopes of another curve that is attached to the auxiliary 

curve during its pure-rolling motion on both centrodes, or 

pitch circles, respectively. This approach is applied in 

practice to the manufacture of many types of gears, 

cylindrical and bevel, circular and non-circular, with 

cycloidal or involute tooth profiles. This approach and 

pertinent methods can be also extended and applied to bevel 

and spatial gears, but the auxiliary surface must be chosen in 

agreement with Camus’ theorem.  

This paper focuses on the generation of the tooth flanks of 

involute-gear pairs with skew axes. Thus, the choice of the 

auxiliary surface must be addressed to extend the cylindrical 

and bevel gears with involute tooth profiles to the most 

general case of skew gears. 

Furthermore, the auxiliary surface is represented by a pole-

tangent plane for involute cylindrical gears and by a pole-

tangent great disk for involute bevel gears, both auxiliary 

surfaces showing an instant screw axis IAS orthogonal to the 

I32-axis (ISA) and located on their Plücker conoid. These 

auxiliary surfaces degenerate into a plane and a disk, 

respectively. Consequently, the same condition to generate 

involute gears must be satisfied in the spatial case, which can 

be proven by applying dual algebra and the Principle of 

Transference to the spherical case [19] to generate the 

helicoid-rack. The latter cannot be used as auxiliary surface, 

because its IAS is not located on the Plücker conoid, even if 

orthogonal to the ISA and, thus, Camus’ theorem is not 

respected. 

Therefore, the instant screw axis IAS of the auxiliary 

surface for generating a pair of conjugate tooth flanks of 

skew gears, which can be considered the extension to the 

spatial case of planar and spherical involute gears, must be 

orthogonal to the ISA and located on the Plücker conoid, 

according to the spatial version of Camus’ theorem. Under 

these conditions, there is only one axis, which is usually 

skew with respect to the ISA. This axis and the ISA intersect 

each other only when the ISA falls in the midpoint between 

the two torsal generators of the Plücker conoid,  which  is  

obtained  in practice when k = – 1. 

The orientation of IAS can be obtained by imposing the 

orthogonality condition with the ISA:  
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which is substituted into Eq. (3) to yield the transmission 

ratio kAS in the form 
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In turn, kAS yields the position bAS of IAS along the X-axis, 

namely, 
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Equations (1) to (10) have been implemented in Matlab 

code to provide some examples, as those shown in Fig. 4, 

where IAS and the ISA intersect each other (Fig.4a) and are 

mutually orthogonal (Fig.4b), and in Fig. 5, where IAS and 

the ISA are orthogonal and skew. Both IAS and I32 (ISA) are 

shown in blue and red, respectively. 

In particular, Figs. 4 and 5 show both hyperboloid pitch 

surfaces 2 (pink) and 3 (green) of the driving and driven 

gears, respectively, along with their Plücker conoid (grey) 

for the same distance a1 = 100 mm between the I2 and I3 axes 

of rotation (black) and different angles 1 and transmission 

ratio k. The other data are: 1 = 45° and k = – 1 for the 

example of Fig. 4, and 1 = 90° and k = – 2 for that of Fig.5. 

Moreover, the top view of Figs. 4b and 5b illustrate that IAS 

is orthogonal to the ISA, which makes an angle ϑ2 with the 

positive Z-axis (I2-axis). 

 

 
a) 
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b) 

 
Figure 4. Pitch surfaces, Plücker conoid, the ISA and the IAS 

of the orthogonal helicoid for a1 = 100 mm, 1 = 45°, k = – 1: 

a) axonometric view; b) top view. 

 

 
a) 

 

 
b) 

 
Figure 5. Hyperboloid pitch surfaces, Plücker conoid, the 
ISA and the IAS of the orthogonal helicoid for a1 = 100 mm, 

1 = 90°, k = – 2: a) axonometric view; b) top view. 

 

According to Camus’ theorem, the auxiliary surface to 

generate the tooth flanks of involute-gear pairs with skew 

axes is characterized by the instant screw axis IAS, which is 

orthogonal the ISA and located on the Plücker conoid.  

However, in addition to these geometric properties and in 

agreement with screw theory, each axis of the Plücker conoid 

is also associated with a specific pitch p = v / , where v and 

 are the point and angular velocities, along and around the 

same axis, respectively. As reported in [19-22], the only two 

axes with zero pitch are represented by the I2 and I3 axes of 

the gear pair. Thus, the pitch p32 of the ISA is given by Eqs. 

(1) and (2), while the pitch pAS can be obtained by the same 

equations for k = kAS of Eq. (9). 

Consequently, the auxiliary surface to generate the tooth 

flanks of involute-gear pairs with skew axes takes the form 

of a right helicoid, since it is generated by the rotation and 

translation of the ISA around and along the IAS-axis, with 

angular and point velocities, AS and vAS, respectively. 

Referring to Fig. 1 and considering a frame AS (xAS, yAS, 

zAS), whose zAS and IAS axes, along with the xAS and X axes, 

coincide between them, respectively, the homogeneous 

transformation matrix 
0
TAS from AS to 0 is expressed as 

 

1 0 0

0 cos sin 0
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0 0 0 1

AS

AS AS

AS
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b
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 
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(10) 

 

where ϑAS and bAS are given by Eqs. (8) and (10), 

respectively.  

Thus, the central curve of this orthogonal helicoid (AS), 

which is a helix in general and a straight line in particular, 

can be obtained by referring the intersection point between 

the ISA and the X-axis with respect to the AS frame, through 

the position vector pAS, which can be expressed in 

homogeneous form as 
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where the angle γ and the displacement μ represent the 

rotation and the translation of pAS, around and along the IAS-

axis, respectively. These parameters depend both on time 

through the constant angular and point velocities AS and vAS, 

respectively. 

Therefore, the central helix of the orthogonal helicoid (AS) 

can be expressed with respect to the fixed 0 frame by 

0 0

AS AS ASp T p

                       

(12) 

 

where 
0
TAS and pAS are given by Eqs. (10) and (11), 

respectively. In particular, when k = kAS = ± 1, one has b2 = 

bAS and the central helix takes the shape of a straight line. 
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Likewise, the orthogonal helicoid that represents the ruled 

auxiliary surface, can be expressed in point coordinates and 

with respect to the AS frame by introducing the parameter 

 . Moreover, the position vector *

ASp  of a point of the 

ISA, during its relative motion around and along the IAS-axis, 

takes the form 

2

2*

( )cos sin

( )sin cos

0

1 1
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AS

AS

b b

b b
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(13) 

 

In particular, the central helix is obtained for λ = 0, while 

the equation of the ISA is given for γ = μ = 0 because the 

ISA is parallel to the yAS-axis at the starting position of the 

generating motion, as shown in Fig. 2. 

Finally, the orthogonal helicoid can be expressed with 

respect to the fixed frame 0 by the position vector *

ASp  

upon multiplication by the transformation matrix 
0
TAS. 

Equations (10) to (13) have been implemented in Matlab 

code in order to test and visualize the orthogonal helicoid to 

generate the tooth flanks of involute-gear pairs with skew 

gears. This ruled surface is shown (yellow) in the examples 

of Figs. 6 and 7 for different input data. In particular, Fig. 6 

shows the case in which IAS intersects the ISA at the 

midpoint of the common normal between the I2 and I3 axes 

and, consequently, the central helix takes the form of a 

straight line that coincides with IAS. This condition is 

satisfied for k = ± 1. 

Conversely, the example of Fig. 7 shows a different case 

for k = – 2, which yields a central helix (black) with IAS skew 

and orthogonal to the ISA. Consequently, the orthogonal 

helicoid is tangent to a cylinder of axis IAS and radius r = | b2 

– bAS | by assuming the typical shape of a spiral staircase. 

Figures 8 and 9 refer to the cylindrical and bevel gears, 

where the cylindroid degenerates into a plane and a disk, 

respectively. 

 
Figure 6. Orthogonal helicoid (AS), along with both 
hyperboloid pitch  surfaces  and  their  Plücker  conoid  for 

a1 = 100 mm, 1 = 45°, k = – 1. 

 
 

Figure 7. Orthogonal helicoid (AS), along with both 
hyperboloid pitch  surfaces  and  their  Plücker  conoid  for 

a1 = 100 mm, 1 = – 60°, k = – 2. 

 

 
 

Figure 8. Cylindrical gears: a1 = 100 mm, 1 = 0°, k = + 2. 

 

 

 
 

Figure 9. Bevel gears: a1 = 100 mm, 1 = 45°, k = – 1. 
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4   SYNTHESIS OF THE INVOLUTE TOOTH FLANKS 
The synthesis of the tooth flanks of involute-gear pairs 

with skew axes is conducted by applying the spatial version 

of Camus’s theorem when the synthesized orthogonal 

helicoid of Eq. (13) is used as auxiliary surface. 

Involute gears were discovered by Leonhard Euler by 

means of the original sketch of Fig. 10, as reported and 

extensively described in [26] and [27]. In particular, A and B 

are the centers of rotation of the wheels, while Q and P are 

the centers of curvature of the conjugate profiles in contact 

at point O, NOF and EOM, respectively. Euler argued that 

the common normal at the contact point O intersects the 

joining line across the centers A and B in the fixed point T, 

in order to respect the condition of a constant velocity ratio.  

Consequently, Euler discovered the involute gears and an 

expression that is nowadays known as the Euler-Savary 

equation, which finds many more applications in all 

kinematics than expected by Euler himself. In particular, 

when the centers of curvature Q and P become coincident 

with points S and R, respectively, the conjugate profiles 

EOM and NOF become involute arcs of the pitch circles of 

the two wheels of centers A and B, respectively. 

Likewise, in the spatial case, during the engagement of 

both hyperboloid pitch surfaces 1 and 2, the orthogonal 

helicoid (AS) will move accordingly by remaining tangent to 

them along the ISA, which is fixed in space for constant 

values of the transmission ratio k. Their instant screw axes 

I2, I3 and IAS, along with the ISA (I32), will remain located in 

the same position on the Plücker conoid.  

Moreover, while 1 and 2 undergo pure rotation around 

their I2 and I3 axes, the orthogonal helicoid moves through a 

screw motion with pitch pAS, thus producing rotation and 

sliding along the ISA. 

Thus, according to Camus’ theorem, a pair of conjugate 

tooth flanks can be generated by considering a tracing line of 

the orthogonal helicoid during its relative motion with 

respect to 1 and 2, respectively.  

Referring to the sketch of Fig. 11, different reference 

frames have been chosen in order to express the position 

vector of the central helix of the orthogonal helicoid with 

respect to the driving and driven gears, respectively. 
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Figure 10. Euler’s sketch to find a pair of conjugate profiles 
(involutes of circles) that yield a constant transmission ratio. 
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Figure 11. Orthogonal helicoid (AS), along with both 
hyperboloid pitch  surfaces  and  their  Plücker  conoid  for 

a1 = 100 mm, 1 = 45°, k = – 1. 

 

 

In fact, during their engagement, a point of the central 

helix will trace two skew profiles, which represent the 

central curves of the conjugate tooth flanks. 

Thus, the position vector of this point can be expressed as 

 

s m

0 1 32 *

f 1 32 m AS   p = T T T p                     (14) 

 

with the transformation matrices 
0
T1 , 

1
T32  and 

32
Tm given 

below: 

 

0

1

cos( ) sin( ) 0 0

sin( ) cos( ) 0 0

0 0 1 0

0 0 0 1

 

 

   
 

 
 
 
 
 

T                 (15) 

 

2 21

32

2 2

1 0 0 0

0 cos sin 0

0 sin  cos 0

0 0 0 1

 

 

 
 


 
 
 
 

T                    (16) 

 

and 

 

32

m

cos 0 sin

0 1 0

sin 0 cos 0

0 0 0 1

ASb 



 

 
 
 
 
 
 

T                    (17) 

 
Likewise, the position vector of the same point can be 

expressed as 

 
C

S C mC

320 3 1C *

f 3 1C 32 m AS    p = T T T T p             (18) 
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the transformation matrices 
0
T3 , 

3
T1C , 

1C
T32C and 

32C
Tm 

being, in turn,  

 

1

1 10

3

1 1

1 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

a

 

 

 
 


 
 
 
 

T  ,                  (19) 

 

   

   3

1C

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

 

 

   
 

  
 
 
 

T ,               (20) 

 

   

   C

2 1 2 11C

32

2 1 2 1

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

   

   

 
 

  
 
  
 
 

T          (21) 

 

and 

 

C

1

32

m

cos 0 sin ( )

0 1 0

sin 0 cos 0

0 0 0 1

ASb a 



 

  
 
 
 
 
 

T                 (22) 

 

Similar to the derivation of the orthogonal helicoid, both 

ruled surfaces are obtained through the parameter λ. 

5 OSCULATING RULED SURFACES 
Two ruled surfaces are osculating when they share the 

same contact line and tangent plane, but they may intersect 

each other when they also share the same axis of curvature, 

which is also known as the Disteli axis, as discovered by 

Martin Disteli at the turn of the 20
th

 century. This condition 

is verified when there is a second-order, or three-line contact 

(G 
2
-continuity). 

These properties are better understood by referring to 

cylindrical ruled surfaces because they can be analyzed by 

considering planar curves. In fact, two curves are osculating 

when they share the same osculating circle and, thus, the 

same center of curvature, which shows three-point contact 

with the curve. These two curves osculate, or kiss each other, 

by giving a more intimate contact than the simple tangency 

that gives only two-point contact.  

Usually, the osculating circle intersects the curve because 

of the second-order contact, which is even, but they do not 

intersect each other when the evolute of the curve shows a 

cusp or the curvature is stationary, because also the first 

derivatives of the curvature are equal in this case. This 

means that a third-order contact, which is of odd order, 

occurs. This concept can be extended to yield the Four-

Vertex Theorem, which states that the curvature function of a 

simple, closed, smooth planar curve, as the ellipse, has at 

least two local maxima and two local minima.  

Referring to [28-32], and according to Camus’ theorem, a 

pair of conjugate profiles can be generated by choosing a 

tracing point of the pole-tangent, which plays the role of the 

auxiliary curve to produce involute teeth. These profiles are 

involutes of the pitch circles and share the same center of 

curvature, which coincides with the instant center of rotation 

for the relative motion between the gear pair. This is also the 

tangent point among the pitch circles and the pole-tangent.  

These involute tooth profiles show a G 
2
-continuity while 

intersecting each other, and cannot be used in practice 

because of penetration. This is why the synthesis of involute 

gears is conducted by means of the extended version of 

Camus’ theorem, which considers the envelope profiles of a 

second curve that is attached to the auxiliary curve. The 

simplest choice in practice is a straight line attached to the 

pole-tangent (auxiliary curve) to generate involute profiles 

of the base circles instead of the pitch circles.  

This approach can be extended to the spatial case by 

considering the orthogonal helicoid as auxiliary surface and 

by choosing on it a tracing line analogy with the planar case. 

However, the same problem of the osculating curves appears 

in the involute tooth flanks, as osculating ruled surfaces. 

This aspect is made apparent in Section 6 through the 

examples below, obtained with the procedure described here. 
 

6 EXAMPLES 
The described procedure was implemented in Matlab to 

generate the tooth flanks of involute gear pairs with skew 

axes, the orthogonal helicoid, the Plücker conoid and both 

hyperboloid pitch surfaces, along with their helicoid-rack. In 

order to illustrate only the objects of interest, each of them 

can become transparent because of suitable sliders that 

appear on the screen when the program runs. 

Likewise, the input parameters a1, 1 and k can be set and 

changed in real-time via software through similar sliders and 

congruent animations of all objects can be run, while 

showing their relative engagement. In fact, while 

hyperboloids rotate by touching along the ISA and move 

both the helicoid-rack and the orthogonal helicoid, the 

involute tooth flanks engage upon sharing the same tangent 

plane along a line of contact, which lies on the orthogonal 

helicoid. 

These tooth flanks penetrate each other because of the G 
2
-

continuity and, thus, they are not realizable in practice, but 

this formulation represents a fundamental step toward the 

synthesis of involute skew gears with line contact and in 

agreement with Camus’ theorem. 

Some examples are shown in Figs. 12 to 17 by setting 

different values of the input parameters and with the aim to 

illustrate the line of contact between the tooth flanks. 

Moreover, as expected, the well-known condition of 

intersecting flanks or profiles in the case of cylindrical gears 

is verified by referring to Figs. 15 and 16. 

In fact, both involute profiles have the same center of 

curvature that coincides with the instant center of rotation 

because these profiles osculate each other by showing a third 

order of contact without intersecting the osculating circle. 
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Figure 12. Involute tooth flanks, orthogonal helicoid and 

both pitch hyperboloids for a1 = 100 mm, 1 = 30°, k = – 1. 

 

 
Figure 13. Involute tooth flanks, orthogonal helicoid and 

both pitch hyperboloids for a1 = 100 mm, 1 = 60°, k = – 2. 

 

 
Figure 14. Involute tooth flanks, orthogonal helicoid and 

both pitch hyperboloids for a1 = 120 mm, 1 = 70°, k = – 3. 

         
Figure 15. Involute tooth flanks, orthogonal helicoid and 

both pitch hyperboloids for a1 = 100 mm, 1 = 0°, k = – 1. 

 
 

Figure 16. Involute tooth flanks, orthogonal helicoid and 

both pitch hyperboloids for a1 = 100 mm, 1 = 0°, k = + 2. 

 

 
Figure 17. Involute tooth flanks, orthogonal helicoid and 

both pitch hyperboloids for a1 = 0, 1 = 45°, k = – 2. 
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7 CONCLUSIONS 
The role of the orthogonal helicoid in the generation of the 

tooth flanks of involute gear pairs with skew axes is 

explained and analyzed through the formulation of a 

pertinent procedure, implemented in Matlab, and applied to 

representative examples.  

Similar to the planar and spherical cases, the use of a 

tracing line of the orthogonal helicoid to generate a pair of 

involute tooth flanks gives conjugate ruled surfaces with line 

contact, but they are even osculating at particular points (G
2
-

contact). Thus, these profiles are not realizable in practice. 

Nevertheless, this is a fundamental step towards the 

synthesis of the flanks of involute gears with skew axes. 
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