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1. Introduction

Wanted: A gear set in order to transmit the rotary motion from wheel Σ2 about
axis a21 to the second wheel Σ3 with axis a31 such that the ratio of angular

velocities ω31/ω21 is constant.

spur gears bevel gears
skew gears

(e.g., worm gears)

a21, a31 parallel a21, a31 crossing a21, a31 skew
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2. Reuleaux’s principle of gearing in the plane
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Principle of gearing by
? . . . Ch.E.L. Camus (1733),
F. Reuleaux (1875)

Let a smooth auxiliary curve
p4 roll on the polodes p2, p3.
Then any point C attached
to p4 traces conjugate tooth
profiles c2, c3.

At cycloidal gears (see left) p4

is a circle and C ∈ p4.
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2. Reuleaux’s principle of gearing in the plane
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Adaption for 3D:

The auxiliary curve p4 defines
a system Σ4 which can move
such that for the relative poles
holds: I42 = I43 = I23.
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Comments on Reuleaux’s principle in the plane

Almost all conjugate tooth profiles can be generated by Reuleaux’s principle.
E.g., for involute gearing the auxiliary curve is p4 ⊂ Σ4 is a logarithmic spiral.

Generalization:

Instead of a point C ∈ Σ4 a smooth curve c4 ⊂ Σ4 can be given. Then the
envelopes c2, c3 of c4 under Σ4/Σ2 and Σ4/Σ3, resp., give conjugate tooth flanks.

Spherical kinematics:

Reuleaux’s principle is also valid in the spherical case, i.e., for bevel gears.
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3. Reuleaux’s principle of gearing in 3-space

Given: Rotations Σ2/Σ1, Σ3/Σ1 about fixed skew axes a21, a31 with angular
velocites ω21, ω31.

Question: Is there a frame Σ4 moving such that the instantaneous screw motions
of Σ4/Σ2, Σ4/Σ3 and Σ3/Σ2 are equal, i.e., equal axis and screw parameter, but
different velocities.

We find the answer by means of dual vectors.
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Dual vectors in spatial kinematics

bijection: Spear g 7→ dual unit vector ĝ = g + εg
0

under ε2 = 0,

ĝ · ĝ = g · g + 2g · g0 = 1 + ε 0 = 1.
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Dual vectors in spatial kinematics

bijection: Spear g 7→ dual unit vector ĝ = g + εg
0

under ε2 = 0,

ĝ · ĝ = g · g + 2g · g0 = 1 + ε 0 = 1.

ϕ̂ = ϕ + εϕ0 is called dual angle.

cos ϕ̂ = ĝ · ĥ = g ·h + ε(g0·h + g ·h0),

sin ϕ̂ n̂ = ĝ × ĥ =

= g×h + ε[(g0×h) + (g×h0)].
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x
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Dual vectors in spatial kinematics

Bijection: Instantaneous motion of Σi/Σj 7→ twist q̂ij = ω̂ij p̂ij

with p̂ij as spear of the instantaneous axis and ω̂ij = ωij + εωij0 with

ωij and ωij0 as instantaneous angular- and translatory velocity, respectively.

Aronhold-Kennedy Theorem:

Given: Σ1,Σ2, Σ3 and instantaneous twists q̂21, q̂31 of Σ2/Σ1, Σ3/Σ1, resp.,

=⇒ q̂32 = q̂31 − q̂21 is the twist of the relative motion Σ3/Σ2.
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Plücker’s conoid

Let Σ2 and Σ3 rotate about fixed skew axes p̂21, p̂31 with variable angular
velocities ω21, ω31, respectively.
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Then in any case the twist

ω̂32 p̂32 = ω31 p̂31 − ω21 p̂21

is a real linear combination of
p̂21 and p̂31 =⇒

p̂32 is located on Plücker’s
conoid Ψ (= cylindroid).

The position of p̂32 on Ψ
defines the pitch h32 =
ω320/ω32 uniquely.
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3. Reuleaux’s principle of gearing in 3-space

Given: Rotations Σ2/Σ1, Σ3/Σ1 about fixed skew axes p̂21, p̂31 with angular
velocites ω21, ω31.

Question: Is there a frame Σ4 moving such that the instantaneous screw motions
of Σ4/Σ2, Σ4/Σ3 and Σ3/Σ2 are equal, i.e., equal axis and screw parameter, but
different velocities.

q̂42 = λ2q̂32, q̂43 = λ3q̂32, λ1, λ2 ∈ R, =⇒ q̂41 − q̂i1 = λi(q̂31 − q̂21),

q̂41 = λ1q̂31 + (1 − λ1)q̂21 = (1 + λ2)q̂31 − λ2q̂21

Necessary and sufficient: The instantaneous axes p̂41 of Σ4/Σ1 are located on
Plücker’s conoid Ψ and the pitch h41 is corresponding to this position.
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A tribute to Martin Disteli

M. Disteli: Über die Verzahnung der

Hyperboloidräder mit geradlinigem Eingriff.

Z. Math. Phys. 59, 244–298 (1911)

Martin Disteli, (1862–1923)
Dresden, Karlsruhe
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4. Consequences for skew gearing

In analogy to cycloid gearing in the plane, we specify the axis p̂
41

of Σ4/Σ1 on
Plücker’s conoid and keep it fixed in the machine frame Σ1.

Then we move simultaneously Σ2 with the twist q̂21, Σ3 with twist q̂31 and Σ4

with twist q̂41 (axis p̂41 and pitch h41) such that the relative axes p̂42, p̂43 and
p̂32 coincide.

Main Theorem: For each line ĝ attached to Σ4 the ruled surfaces Φ2, Φ3 traced
by ĝ under Σ4/Σ2 and Σ4/Σ3, resp., are conjugate tooth flanks.

The contact takes place at of points of ĝ.
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4. Consequences for skew gearing

Proof: The distribution of tangent planes of Φ2 and Φ3 along the line ĝ is defined
by the derivatives ˙̂g, i.e., by

Σ4/Σ2 : ˙̂g = ĝ × q̂42, Σ4/Σ3 : ˙̂g = ĝ × q̂43.

Since q̂42 and q̂43 are real multiples of q̂32, the same holds for ˙̂g. They have the
same distribution of tangent planes.

The axodes of Σ3/Σ2 are one-sheet hyperboloids of revolution Π2, Π3.
Under Σ4/Σ2 and Σ4/Σ3 a ruled helical surface Π4 (auxiliary surface) is sliding
and rolling (German: schroten) along the hyperboloids.

In analogy to planar are spherical cycloidal gearing we start with the generator
ĝ = p̂32 = ISA.
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4. Consequences for skew gearing

α
α

α
0

α
0

ϕ

β

ϕ0

β0

O

x1

x2

x3

bp32

bp21

bp31

bp41

There are 4 axes involved — all located
on Plücker’s conoid

• Axes p̂21, p̂31 of the wheels,

• the ISA p̂32, and

• the axis p̂41 of the auxiliary system
Σ4.
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4. Consequences for skew gearing
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4. Consequences for skew gearing
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4. Consequences for skew gearing
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These are conjugate cycloidal tooth flanks
Φ2, Φ3.

The displayed red and blue curves
are the intersections with planes
orthogonal to the line g of contact.

In this particular case g is the ISA and
therefore a singular line of the ruled surface
— like a cusp in the plane.

Each tooth flank is composed from two
parts glued together along g. In can be
proved that such pairs of surfaces have a
common tangent plane at each point of g.
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4. Consequences for skew gearing

Theorem: For each surface Φ4 attached to Σ4 the envelopes Φ2,Φ3 of under
Σ4/Σ2 and Σ4/Σ3, resp., are conjugate tooth flanks.

Proof: For any pose of Φ4, a point C is a point of contact between Φ4 and its
envelope Φi under Σ4/Σi, i = 2, 3, if and only if the surface normal n̂ of Φ4 at
C belongs to the linear line complex

q
4i0·n + q

4i·n0 = 0.

Twists differing by a real factor define the same linear line complex.
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5. Conclusions

The main goal of this paper is to shed light on the geometry of the tooth flanks
of gears with skew axes.

To this end, the authors follow and extend results reported by Martin Disteli,
thereby deriving ruled surfaces as conjugate tooth flanks in contact along a line.

A detailed analysis of the tooth flanks obtained for constant and for variable axis
p̂41 ∈ Ψ is left for future research.

Conjecture: Any pair of conjugate ruled tooth flanks with contact along lines can
be obtained by this principle.
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