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SUMMARY. The subject of this paper is the synthesis of spatial cycloidal gears, based on 
Disteli’s work, which was published at the turn of the 20th century. In particular, the properties of 
the cylindroid or Plücker’s conoid for the relative motion between a pair of skew gears are 
analyzed in order to extend Reuleaux’s principle from the planar and spherical cases to the spatial 
case with the aim of synthesizing a pair of conjugate cycloidal teeth. 

1 INTRODUCTION 
Skew gears allow the transmission of motion between gears with skew axes at either constant 

or a variable transmission ratio by means of a pair of axially symmetric or, correspondingly, non-
symmetric pitch surfaces. Consequently, gears with parallel or intersecting axes become particular 
cases. Thus, the formulation of a general algorithm for the synthesis of gears with skew axes is of 
great interest not only from a research viewpoint but also by virtue of its industrial applications. 
This formulation is quite a challenging. 

In the literature, some interesting and useful results have been obtained along these lines, as 
reported in [1-4]. However, the modeling of gears with skew axes and involute teeth is still an 
open question, as it has become apparent, for instance, that the meaning of involute teeth in the 
case of spatial gears has not been elucidated. Indeed, the extension of the concept of evolute-
involute from the planar and spherical cases to the spatial case is not straightforward. 
Consequently, the properties of the involute teeth cannot be readily extended to gears with skew 
axes. For example, Phillips [3] could define involute teeth in gears with skew axes upon assuming 
that the contact point is located, at any instant, along a line that is skew with respect to the gear 
axes. This result was proven geometrically and with the aid of useful animations by Stachel [4]. 

Therefore, our research is aimed at formulating a general algorithm for the synthesis of gears 
with skew axes by applying a fundamental procedure: 1) the hyperboloid pitch surfaces that are 
derived from the relative layout between the two skew axes and the constant transmission ratio are 
first obtained; 2) the Plücker conoid determined by the relative motion of the two meshing gears is 
then synthesized as the locus of the instant screw axis; 3) with the aid of the cylindroid, we 
introduce an auxiliary surface (AS); and 4) as the AS moves while maintaining line contact with 
the two hyperboloid pitch surfaces, a pair of conjugate flanks is synthesized. In particular, the AS 
is a helical surface in the case of skew cycloidal gears. 

This paper focuses on the synthesis of spatial cycloidal gears based on Disteli’s work, which 
was published at the turn of the 20th century [5-6]. In particular, the properties of the cylindroid or 



Plücker’s conoid for the relative motion between a pair of skew gears are analyzed in order to 
extend Reuleaux’s principle from the planar and spherical cases, as reported in [7-9], to the spatial 
case with the aim of synthesizing a pair of conjugate cycloidal teeth. 

Ongoing work related has been published by the authors [10-12]. In fact, the synthesis of the 
pitch surfaces of any pair of external and internal skew gears, using dual algebra and the principle 
of transference, was proposed in [10]. Hyperboloid pitch surfaces of the driving and driven gears 
were synthesized, along with the helicoidal pitch surfaces of their rack. 

Later, the Ball-Disteli diagram was revisited [11] using dual algebra. In fact, this diagram can 
be very useful for several applications regarding the analysis and design of gears with skew axes, 
because it allows the visualization of the relations among motion variables and geometric 
parameters regarding the relative motion between the two meshing gears. More recently, the 
authors extended the results reported by Martin Disteli at the turn of the 20th century concerning 
the general synthesis of gears with skew axes and cycloidal teeth by means of the dualization of 
the tooth profiles of spherical cycloidal gears [12]. In this way, conjugate tooth flanks, 
characterized by having the contact points located on a straight line, could be obtained. 

The novelty of this paper lies in the analysis of the relative motion between a pair of skew 
gears by means of Plücker’s conoid, in order to extend Reuleaux’s principle from the planar and 
spherical cases to the spatial case. In fact, the problem is to find the right auxiliary surface, in 
order to obtain spatial cycloidal and involute gears. In particular, this paper regards the synthesis 
of spatial cycloidal gears by resorting to Disteli’s work. 

2 RELATIVE SCREW-MOTION AND HYPERBOLOID PITCH SURFACES 
The relative screw-motion between the driving and driven gears along with the hyperboloid 

pitch surfaces and their helicoidal rack were analyzed in [10] through the application of dual 
algebra and the principle of transference. Some results are recalled below. 

With reference to Fig.1a, the driving gear 2 is assumed to be rotating about the I 2 axis, which 
is coincident with the Z-axis of the fixed frame F ( O X Y Z ), while the position of the I 3 axis of 
the driven gear 3 is given by angle 1α  and distance a 1 along the positive X-axis. The Instant Screw 
Axis I 32 , ISA for brevity, of the relative motion can be determined by means of the Aronhold-
Kennedy theorem in three dimensions. In fact, all three axes, I 2, I 3 and I 32, share the X-axis as 
their common perpendicular, while angle 2ϑ  and the coordinate b 2 determine the I 32 - axis. 
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Figure 1: Reference frames: a) relative screw motion; b) Plücker’s conoid. 



Referring to the formulation proposed in [10], the relative angular and sliding velocities 
ω  32 and V 32, respectively, can be expressed in the form 
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where 2 3/k ω ω=  is the transmission ratio between the pair of skew gears, which is negative for 
external gears and positive for internal gears. 

Likewise, the position of the ISA in the fixed frame F ( O X Y Z ) is given through the oriented 
angle 2ϑ  and the distance b2, which can be expressed as 
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The hyperboloid pitch surface of the driving gear 2 can be expressed in the form 
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where r2 is the position vector of a point of the line generating the pitch surface. 

Likewise, the hyperboloid pitch surface of the driven gear 3 is given by 
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because of the translation a1 along the X -axis and the rotation α 1 with respect to the Z -axis. 

Therefore, Eqs. (1) and (2) allow the analysis of the relative kinematics between the pair of skew 
gears, which is characterized by a screw-motion with minimum sliding velocity V32 along the ISA, 
while Eqs. (3) to (6) give geometric results, because they allow the representation, in the fixed 
frame F (O X Y Z), of the hyperboloid pitch surfaces of the driving and driven gears, 2 and 3, 
respectively. 

More details regarding the formulation of the pitch surface of their rack can be found in [10], 
along with the complete algorithm for the synthesis of the pitch surfaces of any pair of external 
and internal skew gears, which was implemented in Matlab. 



3 PLÜCKER’S CONOID 
When the relative position of the skew axes of rotation I 2 and I 3 is given through the distance 

a1 and angle α 1, the position of the instantaneous screw-axis I 32 for the relative motion between 
the skew gears, which is given by distance 2b  and angle 2ϑ , changes according to the variation of 
the transmission ratio k in the range ( + ∞ , − ∞ ). During the variation of its position, I 32 remains 
perpendicular to the common normal of I 2 and I 3, according to the Aronhold-Kennedy Theorem in 
three-dimensions, and traces a ruled surface that is named the Plücker conoid. In other words, even 
if k changes in the range ( + ∞ , − ∞ ), the locus described by the instantaneous screw-axis I 32 is 
represented by a finite ruled surface. 

In fact, solving Eq. (4) for the transmission ratio k, one obtains a second-order algebraic 
equation, whose roots are  
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Thus, the limits of the Plücker conoid can be determined by the vanishing of the discriminant 

of Eq. (7), which leads to the two extreme positions of I 32, namely, 
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which are the positions of the two torsal generators of the Plücker conoid. 

In particular, referring to Fig. 2a, when α 1 = 0°, which means cylindrical gears, one obtains 
from Eq. (8) that b 2 can take on any value in the range ( + ∞ , − ∞ ). In this case the Plücker 
conoid, becomes unbounded, namely, a plane containing both axes of rotation, I 2 and I 3. When 
α 1 = 90°, one obtains from Eq. (8) that b 2 can vary in the range [0 , a1 ], as shown in Fig. 2b. 
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Figure 2: Hyperboloid pitch surfaces for k = − 1 and Plücker’s conoid: a) α  1 = 0° and a 1 = 50 mm 
with b 2 ∈  ( + ∞ , − ∞ ); b) α 1 = 90° and a 1 = 50 mm with b 2 ∈  [ 0 , a1 ]. 

a) b) 



The equation of the Plücker conoid in F (O X Y Z) can be expressed in the form 
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where the limits of λ can be chosen arbitrarily, because they define only the extension of the 
Plücker conoid, while the parameters 2ϑ  and 2b  are obtained from Eqs. (3) and (4), respectively, 
when the transmission ratio k varies in the range ( + ∞ , − ∞ ). For instance, the limits of λ can be 
chosen equal to the width of the pitch surfaces, as shown in Fig. 2. 

Specific kinematic and geometric properties of the Plücker conoid are useful for understanding 
the basic concepts related to the synthesis of spatial gears, as described below. 

There must exist two special screws of zero pitch on the Plücker conoid, since the pitch varies 
continuously and periodically as the ratio k increases from − ∞ to + ∞. Since any two screws on a 
given Plücker’s conoid define the same cubic surface, it is convenient to discuss the Plücker 
conoid in terms of its two screws of zero pitch. In fact, in the case of spatial gears, these two 
screws are the two axes of rotation I 2 and I 3. This property can be demonstrated by expressing the 
pitch p 32 = V 32 / ω 32 of the screw with axis I 32 as 
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which can be done by recalling Eqs. (1) and (2). Thus, the two zero-pitch screws are obtained for 
k = 0 and k → ± ∞, which give I 3 and I 2 , respectively, from Eqs. (3) and (4). 

Then, referring to what is reported in [11] about the Ball-Disteli diagram, a plane that contains 
one of the screws of the Plücker conoid intersects it along a cubic curve that decomposes into a 
conic and the line of the screw itself. This conic is an ellipse because the general Plücker conoid is 
bounded by two parallel planes and, hence, the conic must be finite everywhere except when the 
plane is perpendicular to the nodal line or common normal between I 2 and I 3, in which case the 
intersection degenerates into two lines or generators along with the line at infinity of the plane 
itself. Referring to Fig. 1b, this property can be demonstrated by expressing the Plücker conoid in 
the fixed frame (Ω, x1, x2, x3 ) as 
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where Eq. (11) represents the cubic surface of the Plücker conoid, while Eq. (12) represents a 
cylinder having its axis coinciding with the x1 - axis. The intersection between these surfaces gives 
the skew curve of Fig. 3. 

Moreover, the intersection of the Plücker conoid with a plane that contains one of its screws 
can be obtained as the intersection of the conoid with a cylinder of diameter a1, which passes 
through the nodal line (x1-axis) of the Plücker conoid. This cylinder can be expressed as 
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where γ is an oriented angle with respect to the x2 - axis, which gives the position of the cylinder of 
Eq. (13) in the fixed frame (Ω, x1, x2, x3 ) of Fig. 1b. Figure 3 shows a rendering of the results. 



             
 

Figure 3: Skew ellipse as intersection of the Plücker conoid with a circular cylinder of diameter 
a1 = 100 mm, which passes through the nodal line of the cubic surface: a) γ  = 30°; b) γ = 60°. 

 

4 REULEAUX’S PRINCIPLE 
Reuleaux’s principle in the planar case, which sometimes is attributed to Camus [13], states 

that “If an auxiliary curve is rolling on the pitch circles of circular gears, any point attached to this 
curve traces conjugate profiles”. In particular, when the auxiliary curve is a circle or a logarithmic 
spiral, cycloidal and involute gears are obtained, respectively, as reported in [7]. 

Referring to Fig. 4a, when two circles ε 1 and ε 2 with equal radii m are chosen as auxiliary 
curves, their rolling on each pitch circle P  generates a pair of conjugate tooth profiles, which are 
cycloidal curves C in this particular case. In general, instead of a point, a smooth curve can be 
given as attached to the auxiliary curve. Consequently, during the pure rolling motion of the 
auxiliary curve on the pitch circles, two families of curves are obtained, their envelopes giving two 
conjugate profiles. In fact, referring to Fig. 4b, each involute tooth profile I can be obtained as 
envelope of the line η, which is attached to the line ε  that is tangent to each pitch circle P. Of 
course, the same involute tooth profile can be also obtained by rolling without sliding the line N, 
which is normal to I and η, and passes through the instant center of rotation I, on the base circle B 
that is also the evolute of I. Point T is the center of curvature of I at the contact point P, rb and rp 
are the radii of the base and pitch circles, respectively, and angle φ  is the pressure angle. 

 

   
 

Figure 4: Application of the Reuleaux principle: a) cycloidal gears; b) involute gears. 

a) b) 

a) b) 



 Reuleaux’s principle is also valid in the spherical case and, thus, it can be applied to the 
synthesis of bevel gears with cycloidal and involute tooth profiles. 
 Nevertheless, the generalization of Reuleaux’s principle to the spatial case and, in particular, to 
the synthesis of involute conjugate teeth of skew gears, is not available. Phillips proposed in his 
book [3] a procedure for the synthesis of “involute” spatial gearing by using a different approach, 
which was geometrically validated by Stachel [4], but this procedure is not based on Reuleaux’s 
principle; even the meaning of “involute” is lost under Phillips’ hypothesis. 

In particular, a suitable algorithm for the synthesis of cycloidal skew gears, simpler than their 
involute counterparts, is proposed here, with first results reported in the accompanying figures, 
where the hyperboloid pitch surfaces of a pair of skew gears are shown, along with their Plücker 
conoid. Moreover, particular attention is given to the helicoids, which are tangent to both 
hyperboloids along the Instant Screw Axis, because these surfaces represent the auxiliary surfaces 
for generating a pair of conjugate cycloidal teeth. 
 

5 SYNTHESIS OF SPATIAL CYCLOIDAL GEARS 
According to Reuleaux’s principle and referring to Fig. 5, both auxiliary surfaces for the 

synthesis of the conjugate tooth flanks of spatial cycloidal gears with line contact, can be 
determined by defining the positions of their axes I5 and I6 on the Plücker conoid.  

Thus, taking into account the common rule to assume equal radii for both circles ε 1 and ε 2 of 
Fig. 4a for the synthesis of planar cycloidal gears, even in the spatial case, the same distance m 
from the instant screw axis I 32 and along their common normal (X - axis) can be chosen, in order 
to determine both auxiliary surfaces AS 5 and AS 6, which take the place of the circles ε 1 and ε 2 of 
the planar case, respectively. 

The positions on the Plücker conoid of both instant screw axes I 5 and I 6 of the auxiliary 
surfaces AS5 and AS6, respectively, can be determined by assuming a suitable value of the 
transmission ratio k5 and calculating both distance b5 and angle 5ϑ from the Eqs. (3) and (4), 
respectively, as shown in the sketch of Fig. 5a and numerical example of Fig. 5b. 
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Figure 5: Positions of the axes I2, I3, I32, I5 and I6 in the fixed frame F ( O X Y Z ): a) kinematic 
sketch; b) example for α 1 = 70°, a1 = 50 mm, k = − 1, b2 = 25 mm, 2ϑ = 35°, k5 = − 3, b5 = 8,4054 
mm, 5ϑ = 15,7047°, m = 16,5946 mm, b6 = 41,5946, k6 = − 0,3333, 6ϑ  = 54,2953°. 
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In fact, for example, when α 1 = 70°, a1 = 50 mm and k = − 1, the position of the ISA is 
determined from Eqs. (3) and (4), which give 2ϑ = 35° and b2 = 25 mm. Moreover, assuming a 
transmission ratio k5 = − 3, the position of the instant screw axis I 5 of AS5 is still obtained through 
Eqs. (3) and (4), which give 5ϑ = 15,7047° and b5 = 8,4054 mm, respectively. 

The value of m is obtained from the difference between b2 and b5, which allows the 
determination of b6 as the sum of b2 and m by giving in this case m = 16,5946 mm and 
b6 = 41,5946 mm, respectively. Finally, the transmission ratio k6 can be obtained from Eq. (7) by 
referring to b6 instead of b2, which allows the determination of 6ϑ  from Eq. (3) by referring to k6 
instead of k. For the proposed example, one obtains k6 = − 0,3333 and 6ϑ  = 54,2953°, 
respectively. Therefore, I 5 and I 6 are the screw axes of the auxiliary surfaces AS 5 and AS 6, 
respectively, which can be determined by rotating and translating the ISA across and along these 
axes respectively in order to generate two helicoids, as AS of spatial cycloidal gears. 

However, this rigid motion of the ISA requires a spatial kinematic analysis that is aimed at 
determining the absolute angular velocities ω 5 and ω 6 and the sliding velocities V5 and V6 of both 
screws with axes I 5 and I 6. This can be done by imposing that both axes I 52 and I 62 for the relative 
motion of AS 5 and AS 6 with respect to the driving gear 2 are coincident with the ISA [12, 
Theorem 3]. Thus, taking into account that ω5 and ω2 are the angular velocity vectors of the AS 5 
and the driving gear 2, respectively, their relative angular velocity vector ω52 is obtained by 
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which gives the expression of the magnitude ω 5 of ω5 in the form 
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Likewise, taking into account that V5 is the velocity vector of the AS 5 along its I5 - axis, while 
b = b2 i and m = m i are the position vectors of point M with respect to O and O5, along the X-axis 
of Fig. 5a, their relative velocity vector V52 is obtained by 

 

52 2 5 5 5 2

2 5

0 0
sin sin
cos cos

m bV Vϑ ϑ
ϑ ϑ

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= + × − ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎝ ⎠

ω ω ,           (16) 

 

which gives the expression of the magnitude V 5 of V5 in the form 
 

2 2 2 5 2 5
5

2 5

cos cos ( )
sin( )

b m
V

ω ϑ ω ϑ ϑ
ϑ ϑ

− −
=

−
.        (17) 

 

Therefore, the knowledge of both angular and sliding velocities ω 5 and V 5, which pertain to the 
screw axis I 5, allow the determination of the helicoidal AS 5 that is tangent to the two pitch 
surfaces of the gears 2 and 3 along the ISA. Similarly, both angular and sliding velocities ω 6 and 
V6 allowed the determination of the helicoidal AS 6. Examples of Figs. 6 to 13 show the AS 5 and 
AS 6, the Plücker conoid and the hyperboloid pitch surfaces, along with their helicoid rack. 



         
 

Fig. 6: k = − 1, α 1 = 45°, a1 = 50 mm, k5 = − 3         Fig. 7: k = − 1, α 1 = 30°, a1 = 50 mm, k5 = − 3 
 

          
 

Fig. 8: : k = − 1, α 1 = 70°, a1 = 50 mm, k5 = − 3      Fig. 9: k = − 2, α 1 =  90°, a1 = 50 mm, k5 = − 3 
 

         
 

Fig. 10: k = − 1, α 1 = 0°, a1 = 50 mm, k5 = − 3         Fig. 11: k = − 2, α 1 = 0°, a1 = 50 mm, k5 = − 5 



          
 

Fig. 12: k = − 1, α 1 = 45°, a1 = 0 mm, k5 = − 3         Fig. 13: k = − 2, α 1 = 70°, a1 = 0 mm, k5 = − 5 
 

6 CONCLUSIONS 
Franz Reulaux’s principle was extended to the case of skew cycloidal gears. This approach 

could be extended further, to the case of involute skew gears, but the extension is challenging 
because each tooth flank should be obtained as the envelope of a given surface attached to the 
auxiliary surface. 
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