Gears and belt drives for non-uniform transmission

 $Hellmuth \ {\rm Stachel}$

stachel@dmg.tuwien.ac.at — http://www.geometrie.tuwien.ac.at/stachel

EUCOMES08 – Second European Conference on Mechanism Science, Cassino/Italy, September 18, 2008

Table of contents

- 1. Revisiting S. Finsterwalder's principle of gearing
- 2. Non-uniform belt drives
- 3. On the existence of *strict* non-uniform belt drives

1. Revisiting S. Finsterwalder's principle of gearing

The driving wheel Σ_1 rotates about O_1 through φ_1 , the out-put wheel Σ_2 rotates about O_2 through φ_2 .

Then the relative pole 12 divides the segment O_1O_2 in the ratio of instantaneous angular velocities, i.e.,

$$\overline{O_1 \, 12} : \overline{O_2 \, 12} = \dot{\varphi}_2 : \dot{\varphi}_1 = \omega_2 : \omega_1.$$

EUCOMES08 - Second European Conference on Mechanism Science, Cassino/Italy, September 18, 2008

Non-uniform transmission

REQUIRED: Gears that transmit rotary motion according to some *Transmission function*: $\varphi_2 = f(\varphi_1)$ for $0 \le \varphi_1 \le 2\pi$.

Function f is assumed to be strictly monotonic, quite often differentiable, and

$$f(\varphi_1 + 2\pi) = f(\varphi_1) + 2\pi/n \text{ for } n \in \mathbb{Z} \setminus \{0\}.$$

(*n* full input rotations \leftrightarrow 1 output rotation). *n* is called *global transmission ratio*.

Non-uniform transmission

The transmission function $f(\varphi_1)$ defines the associated *perturbation function*

$$g(\varphi_1) := nf(\varphi_1) - \varphi_1$$
 or $f(\varphi_1) = \frac{1}{n}[\varphi_1 + g(\varphi_1)].$

Because of

$$g(\varphi_1 + 2\pi) = nf(\varphi_1 + 2\pi) - \varphi_1 - 2\pi = nf(\varphi_1) - \varphi_1 = g(\varphi_1)$$

function $g(\varphi_1)$ is periodic and can be set up as a Fourier series.

Law of gearing

 c_1 and c_2 are conjugate tooth profiles \iff

the common normal line at the point C of contact passes always through the relative pole 12.

Law of gearing

S. Finsterwalder's principle of gearing

As the two polodes p_1, p_2 are in contact at 12, the coordinates (ρ, ψ) of $C \in c_i$ are the same with respect to p_1 and p_2 .

We imagine the polode p_1 as a flexible metal band and replace c_1 by a discrete set of line elements, each attached to the polode p_1 by fixing the angle ψ and the distance ρ .

For any flex p_2 of p_1 the curve c_2 formed by the attached line elements is conjugate to c_1 if the relative motion Σ_2/Σ_1 is defined by p_2 rolling along p_1 .

S. FINSTERWALDER, 1862-1951, professor for geometry Technische Universität München

EUCOMES08 – Second European Conference on Mechanism Science, Cassino/Italy, September 18, 2008

A straight line at the rack defines general involute gearing. Photos: courtesy H. Hartl (TU Munich)

A particular initial profile is a point

Bending the metal band transforms the point into particular conjugate profiles

EUCOMES08 – Second European Conference on Mechanism Science, Cassino/Italy, September 18, 2008

Algorithm for computing conjugate tooth profiles

- 1. Compute the polodes p_1 and p_2 for the relative motion Σ_2/Σ_1 .
- 2. Rectify p_1 , i.e., stretch it into the straight line p_0 . Freely choose the corresponding rack tooth profile c_0 as long as it is nowhere orthogonal to p_0 and compute the polar coordinates (ρ, ψ) with respect to p_0 .
- 3. Bend p_0 back into p_1 and p_2 and use (ρ, ψ) with respect to the polodes to compute c_1 and c_2 .
- 4. The applicable segments of c_1 and c_2 are arrived at by inspecting their relative movement in view of the contact ratio under avoidance of local and global undercuts.

A real world example

13

Equivalence to the principle of Camus

FINSTERWALDER's method is the discretized version of general cycloid gearing (principle of CAMUS)

Equivalence to the principle of Camus

Choose p_0 as auxiliary curve with c_0 attached. Then c_i , i = 1, 2, can be seen as envelope of c_0 while p_0 is rolling along p_i .

This is exactly the principle of CAMUS in the general form.

Choose for any flex p_0 the profile c_0 as a point P_0 . Then c_i is the path of P_0 while p_0 is rolling along p_i .

This is the more popular principle of CAMUS and basis for cycloid gearing.

2. Non-uniform belt drives

Belt drives offer another option to transmit rotary motion by a given transmission function $\varphi_2 = f(\varphi_1)$.

We call corresponding pully profiles b_1, b_2 conjugate.

The *upper belt span* between the contact points B_1 and B_2 defines a new system Σ_3 .

As line b_3 rolls on b_1 and b_2 , points B_1 and B_2 are the relative poles 13 and 23, respectively.

This implies

Theorem 1: At each instant the upper belt span must be aligned with the relative pole 12.

Under the relative motion Σ_3/Σ_1 an arbitrary point C attached to line b_3 traces an involute c_1 of b_1 .

The path of C under Σ_3/Σ_2 is an involute c_2 of b_2 , which contacts c_1 at C.

Theorem 2: b_1 and b_2 are conjugate pulley profiles $\iff b_1, b_2$ are evolutes of conjugate tooth profiles c_1, c_2 .

 B_1 and B_2 are curvature centers of c_1 , c_2 , resp., at point C.

 c_1 envelopes c_2 under the relative motion Σ_1/Σ_2 .

 $\implies B_2$ results from B_1 under BOBILLIER's construction.

Theorem 3: The endpoints B_1 and B_2 are corresponding under the curvature transformation of the relative motion Σ_1/Σ_2 .

Pulley profiles b_1, b_2 must be closed curves — contrary to the tooth profiles c_1, c_2 .

Recalling FINSTERWALDER's method, we focus on the envelopes of the attached normal lines making angle ψ with the polodes. These envelopes b_1, b_2 are conjugate pulley profiles.

Theorem 4: For any transmission function $\varphi_2 = f(\varphi_1)$ and any driving pulley b_1 there is a unique conjugate profile b_2 . However, b_2 needs not be convex.

3. Strict non-uniform belt drives

A belt drive with belt slack zero, i.e., when length of the surrounding belt with taut spans remains constant, is called *strict*.

In this case the lower belt span rolls on b_1 and b_2 , too.

Theorem 5 [J. HOSCHEK 1982]:

Conjugate pulley profiles b_1, b_2 operate without needing a tightener \iff at each instant both the upper and the lower belt span are aligned with the relative pole 12.

3. Strict non-uniform belt drives

Strict belt drive for the transmission function $f(\varphi_1) = 0.5 \left[\varphi_1 + 0.2 \sin \varphi_1 + 0.16 \sin 2\varphi_1 + 0.008 \cos 2\varphi_1\right].$ The length of the belt varies within approx. 0.002%.

Exact strict belt drives

The following nontrivial — but more academic — example of a non-uniformly transmitting strict belt drive is known:

W. WUNDERLICH and P. ZENOW discovered 1975 that for the line-symmetric motion with ellipses as polodes p_1, p_2 two congruent ellipses b_1, b_2 confocal with p_1 and p_2 , resp., are pulley profiles for a strict belt drive and with global gear ratio -1:1.

Remark: In the uniform 1:1-case any convex disk together with a translated copy constitute a strict belt drive.

Algorithm for computing strict belt drives

Theorem 5 implies an algorithm for computing strict belt drives — a slight modification of J. HOSCHEK's method (1982):

Algorithm for computing strict belt drives

- 1. In an arbitrary initial position $(\varphi_1 = \varphi_1^{(0)})$ we specify an upper belt span passing through 12. We attach this line to Σ_1 .
- 2. We rotate Σ_1 and simultanously Σ_2 until this line becomes a lower belt span $(\varphi_1 = \varphi_1^{(1)})$. This must be tangent to the conjugate profile b_2 , too, and we attach it to Σ_2 .
- 3. We rotate Σ_2 and simultaneously Σ_1 until this line again covers an upper belt span $(\varphi_1 = \varphi_1^{(2)})$. In general, this gives a new tangent line of b_1 .

Iteration gives a finite set of lines tangent to b_1 .

Algorithm for computing strict belt drives

In contrast to HOSCHEK's method using Bézier curves, we represent the tangent lines by their support function $h_1 = h_1(\alpha_1)$.

By a least square method the best approximating Fourier series (of given order) is computed.

The same is done for tangent lines of b_2 .

On the existence of non-uniform belt drives

This algorithm works well in all examples with global transmission ratio $n \neq 1$. The computed lines obviously envelope a unique curve b_1 .

This observation together with some arguments give rise to

Conjecture 1: For a given non-uniform transmission function $\varphi_2 = f(\varphi_1)$ with global transmission ratio $n \neq 1$ there is a one-parametric set of pairs of conjugate pulley profiles b_1, b_2 for a strict belt drive. However, these profiles are convex only if the given transmission lies sufficiently close to the uniform case with the same global ratio n.

A rigorous mathematical proof is open but there is some supporting evidence:

On the existence of non-uniform belt drives

For relative convex polodes and analytic $\varphi_2 = f(\varphi_1)$ the mapping $\psi(\varphi_1^{(0)}) \mapsto \psi(\varphi_1^{(2)})$ of lines is analytic, too. Lines tangent to p_1 are fixed. Passing through the center $(\psi = \gamma)$ is preserved. And the

EUCOMES08 - Second European Conference on Mechanism Science, Cassino/Italy, September 18, 2008

On the existence of non-uniform belt drives

The excluded case n = 1 shows a strange behavior that was observed – but not reported – by J. HOSCHEK:

The lines obtained by the above algorithm do not envelope any curve.

It can be proved that in this case a starting line passing through O_1 after iteration does not rotate fully about O_1 but approaches a limiting position. By continuity, this seems to contradict the required convexity of b_1 and leads to

Conjecture 2: There is no strict belt drive for non-uniform transmission with global transmission ratio n = 1.

References

- BAIER O.: Über die Abstandsempfindlichkeit ebener Verzahnungen. Konstruktion **5**, Heft 8, 242–245 (1953).
- BAIR BIING-WEN: *Computer aided design of elliptical gears with circular-arc teeth*. Mechanism and Machine Theory,**39**, 153-168 (2004).
- CAO L.X., LIU J.: Research on the mapping models and designing methods of variable-ratio chain/belt drives. Mechanism and Machine Theory **37**, 955-970 (2002).
- CHANG S.-L., TSAY C.-B., WU L.-I.: Mathematical model and undercutting-analysis of elliptical gears generated by rack cutters. Mech. Math. Theory **31**, 879–890 (1996).

- FRAULOB S., NAGEL T.: Ungleichförmig übersetzende und hochübersetzende Zahnriemen-Getriebe. VDI-Berichte 1845, 2004, pp. 249–261.
- FREUDENSTEIN F., CHEN CH.-K.: Variable-Ratio Chain Drives With Noncircular Sprockets and Minimum Slack – Theory and Application. J. of Mechanical Design **113**, 253–262 (1991).
- HOSCHEK J.: Konstruktion von Kettengetrieben mit veränderlicher Übersetzung mit Hilfe von Bézier-Kurven. Forsch. Ing,-Wes. **48**, 81–87 (1982).
- HOHENBERG F.: *Konstruktive Geometrie in der Technik*. 2. Aufl., Springer-Verlag, Wien 1961.
- LITVIN F.L., A. FUENTES: *Gear Geometry and Applied Theory*. 2nd ed., Cambridge University Press, 2004.
- PETERS R.M.: Analysis and Synthesis of Eccentric chainwheel Drives. Mechanism and Machine Theory **7**, 111–119 (1972).

- SPITAS V., COSTOPOULOS T., SPITAS C.: Fast modeling of conjugate gear tooth profiles using discrete presentation by involute segments. Mechanism and Machine Theory **42**, 751-762 (2007).
- STACHEL H.: *Nonuniform Chain-Wheel Drives*. Proc. 8th World Congress on the Theory of Machines and Mechanisms, Prague 1991, Vol. 5, 1343–1346.
- STRUBECKER K.: *Differentialgeometrie I*. Sammlung Göschen, Walter de Gruyter, Berlin 1964.
- TIDWELL P.H., BANDUKWALA N., DHANDE C.F., REINHOLTZ C.F., WEBB G.: Synthesis of Wrapping Cams. Transactions of the ASME 116, 634–638 (1994).
- WANG H., WANG SH., WANG Y.: *Design and Machinery of Non-circular Sprocket's Tooth*. Proc. 9th World Congress on the Theory of Machines and Mechanisms, Milano 1995, Vol. 1, pp. 556–559.

- WUNDERLICH W.: *Ebene Kinematik*. Bibliographisches Institut, Mannheim 1970.
- WUNDERLICH W., P. ZENOV: *Contribution to the geometry of elliptic gears*. Mechanism and Machine Theory **10**, 273–278 (1975).

