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1. Revisiting S. Finsterwalder’s principle of gearing

The driving wheel Σ1

rotates about O1 through
ϕ1, the out-put wheel Σ2

rotates about O2 through
ϕ2.

Then the relative pole
12 divides the segment
O1O2 in the ratio
of instantaneous angular
velocities, i.e.,
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O1 12 : O2 12 = ϕ̇2 : ϕ̇1 = ω2 : ω1.
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Non-uniform transmission

Required: Gears that transmit rotary motion according to some

Transmission function: ϕ2 = f(ϕ1) for 0 ≤ ϕ1 ≤ 2π.

Function f is assumed to be strictly monotonic, quite often differentiable, and

f(ϕ1 + 2π) = f(ϕ1) + 2π/n for n ∈ Z \ {0}.

(n full input rotations ↔ 1 output rotation). n is called global transmission ratio.
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Non-uniform transmission

The transmission function f(ϕ1) defines the associated perturbation function

g(ϕ1) := nf(ϕ1) − ϕ1 or f(ϕ1) =
1

n
[ϕ1 + g(ϕ1)].

Because of

g(ϕ1 + 2π) = nf(ϕ1 + 2π) − ϕ1 − 2π = nf(ϕ1) − ϕ1 = g(ϕ1)

function g(ϕ1) is periodic and can be set up as a Fourier series.
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Law of gearing
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c1 and c2 are conjugate tooth profiles ⇐⇒

the common normal line at the point C of contact passes
always through the relative pole 12.
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Law of gearing
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We express the position of C in polar coordinates (ρ, ψ) with
respect to the relative pole 12 and the pole tangent.

We may suppose 0 ≤ ψ < π for ρ ∈ R.
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S. Finsterwalder’s principle of gearing

As the two polodes p1, p2 are in contact at 12,
the coordinates (ρ, ψ) of C ∈ ci are the same
with respect to p1 and p2.

We imagine the polode p1 as a flexible metal
band and replace c1 by a discrete set of line
elements, each attached to the polode p1 by
fixing the angle ψ and the distance ρ.

For any flex p2 of p1 the curve c2 formed by
the attached line elements is conjugate to c1
if the relative motion Σ2/Σ1 is defined by p2

rolling along p1.
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Original model from Munich

S. Finsterwalder, 1862-1951, professor for geometry
Technische Universität München
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Original model from Munich

A straight line at the rack defines general involute gearing.
Photos: courtesy H. Hartl (TU Munich)
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Original model from Munich

A particular initial profile is a point
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Original model from Munich

Bending the metal band transforms the point into particular conjugate profiles
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Algorithm for computing conjugate tooth profiles

1. Compute the polodes p1 and p2 for the relative motion Σ2/Σ1.

2. Rectify p1, i.e., stretch it into the straight line p0. Freely choose the
corresponding rack tooth profile c0 as long as it is nowhere orthogonal to p0

and compute the polar coordinates (ρ, ψ) with respect to p0.

3. Bend p0 back into p1 and p2 and use (ρ, ψ) with respect to the polodes to
compute c1 and c2.

4. The applicable segments of c1 and c2 are arrived at by inspecting their relative
movement in view of the contact ratio under avoidance of local and global
undercuts.
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A real world example

Mechanism for emptying
garbage containers

(3 Positions Σ1, Σ2, Σ3)

c0
c1

Σ0

Σ1

Σ2

Σ3
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Equivalence to the principle of Camus

Finsterwalder’s method is the discretized version
of general cycloid gearing (principle of Camus)
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Equivalence to the principle of Camus

Choose p0 as auxiliary curve with c0 attached. Then
ci, i = 1, 2 , can be seen as envelope of c0 while p0

is rolling along pi.

This is exactly the principle of Camus in the general
form.

Choose for any flex p0 the profile c0 as a point P0.
Then ci is the path of P0 while p0 is rolling along pi.

This is the more popular principle of Camus and
basis for cycloid gearing.
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2. Non-uniform belt drives

Belt drives offer another option to transmit rotary motion by a given transmission
function ϕ2 = f(ϕ1).

We call corresponding pully profiles b1, b2 conjugate.
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Relation between belt drives and gears

The upper belt span
between the contact
points B1 and B2 defines
a new system Σ3.

As line b3 rolls on b1 and
b2, points B1 and B2 are
the relative poles 13 and
23, respectively.

This implies

Theorem 1: At each instant the upper belt span must be aligned with the
relative pole 12.
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Relation between belt drives and gears

Under the relative motion
Σ3/Σ1 an arbitrary point
C attached to line b3
traces an involute c1 of
b1.

The path of C under
Σ3/Σ2 is an involute c2
of b2, which contacts c1
at C.

Theorem 2: b1 and b2 are conjugate pulley profiles ⇐⇒ b1, b2 are evolutes of
conjugate tooth profiles c1, c2.
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Relation between belt drives and gears

B1 and B2 are curvature
centers of c1, c2, resp., at
point C.

c1 envelopes c2 under the
relative motion Σ1/Σ2.

=⇒ B2 results from
B1 under Bobillier’s
construction.

Theorem 3: The endpoints B1 and B2 are corresponding under the curvature
transformation of the relative motion Σ1/Σ2.
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Relation between belt drives and gears

Pulley profiles b1, b2 must be closed curves —
contrary to the tooth profiles c1, c2.

Recalling Finsterwalder’s method, we
focus on the envelopes of the attached normal
lines making angle ψ with the polodes. These
envelopes b1, b2 are conjugate pulley profiles.

Theorem 4: For any transmission function
ϕ2 = f(ϕ1) and any driving pulley b1 there
is a unique conjugate profile b2. However, b2
needs not be convex.
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3. Strict non-uniform belt drives

A belt drive with belt slack
zero, i.e., when length of
the surrounding belt with taut
spans remains constant, is
called strict.

In this case the lower belt span
rolls on b1 and b2, too.

Theorem 5 [J. Hoschek 1982]:
Conjugate pulley profiles b1, b2 operate without needing a tightener ⇐⇒
at each instant both the upper and the lower belt span are aligned with the
relative pole 12.
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3. Strict non-uniform belt drives

Strict belt drive for the transmission function

f(ϕ1) = 0.5 [ϕ1 + 0.2 sinϕ1 + 0.16 sin 2ϕ1 + 0.008 cos 2ϕ1].

The length of the belt varies within approx. 0.002%.
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Exact strict belt drives

The following nontrivial — but more academic — example of a non-uniformly
transmitting strict belt drive is known:

W. Wunderlich and P. Zenow discovered 1975 that for the line-symmetric
motion with ellipses as polodes p1, p2 two congruent ellipses b1, b2 confocal with
p1 and p2, resp., are pulley profiles for a strict belt drive and with global gear
ratio −1 : 1.

Remark: In the uniform 1 :1-case any convex disk together with a translated copy constitute a

strict belt drive.
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Algorithm for computing strict belt drives

Theorem 5 implies an algorithm for computing strict belt drives — a slight
modification of J. Hoschek’s method (1982):
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Algorithm for computing strict belt drives

1. In an arbitrary initial position (ϕ1 = ϕ
(0)
1 ) we specify an upper belt span

passing through 12. We attach this line to Σ1.

2. We rotate Σ1 and simultanously Σ2 until this line becomes a lower belt span

(ϕ1 = ϕ
(1)
1 ). This must be tangent to the conjugate profile b2, too, and we

attach it to Σ2.

3. We rotate Σ2 and simultaneously Σ1 until this line again covers an upper belt

span (ϕ1 = ϕ
(2)
1 ). In general, this gives a new tangent line of b1.

Iteration gives a finite set of lines tangent to b1.
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Algorithm for computing strict belt drives

In contrast to Hoschek’s method using
Bézier curves, we represent the tangent
lines by their support function h1 = h1(α1).

By a least square method the best
approximating Fourier series (of given
order) is computed.

The same is done for tangent lines of b2.
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On the existence of non-uniform belt drives

This algorithm works well in all examples with global transmission ratio n 6= 1.
The computed lines obviously envelope a unique curve b1.

This observation together with some arguments give rise to

Conjecture 1: For a given non-uniform transmission function ϕ2 = f(ϕ1) with
global transmission ratio n 6= 1 there is a one-parametric set of pairs of conjugate
pulley profiles b1, b2 for a strict belt drive.

However, these profiles are convex only if the given transmission lies sufficiently
close to the uniform case with the same global ratio n.

A rigorous mathematical proof is open but there is some supporting evidence:
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On the existence of non-uniform belt drives

For convex relative
polodes and analytic
ϕ2 = f(ϕ1) the mapping

ψ(ϕ
(0)
1 ) 7→ ψ(ϕ

(2)
1 )

of lines is analytic, too.

Lines tangent to p1 are
fixed. Passing through
the center (ψ = γ) is
preserved. And the
support function obeys

O1 O2
e

ω1 ω2

C
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p1p2
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ti
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h1(ϕ
(2)
1 )

h1(ϕ
(0)
1 )

=
Ω(ϕ

(2)
1 )

Ω1(ϕ
(1)
1 )

for Ω(ϕ1) =
ω2(ϕ1)

ω1(ϕ1)
and h1 = r1 cos(γ − ψ).
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On the existence of non-uniform belt drives

The excluded case n = 1 shows a strange behavior that was observed – but not
reported – by J. Hoschek:

The lines obtained by the above algorithm do not envelope any curve.

It can be proved that in this case a starting line passing through O1 after iteration
does not rotate fully about O1 but approaches a limiting position. By continuity,
this seems to contradict the required convexity of b1 and leads to

Conjecture 2: There is no strict belt drive for non-uniform transmission with
global transmission ratio n = 1.
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