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Abstract  Spatial kinematics is a challenging field because of its real world applications at serial and parallel 
manipulators. However, it is not easy to teach as on the one hand the students’ spatial abilities need to be well 
developed. And on the other hand familiarity with calculus and vector algebra is substantial.  
After several years of experience I learned that one can expect from students to work with dual vectors. Only at first sight 
they look too abstract. But students soon estimate the advantages of this method: 
(1) Though looking like common vectors, they allow to handle oriented lines. With dot product and cross product 
complicated 3D-geometric problems can be solved in a very brief and elegant way. 
(2) Beside the correspondance between dual unit vectors and oriented lines, the general dual unit vectors symbolize 
screws, i.e., instantaneous motions. As each dual vector is a dual multiple of a dual unit vector, any instantaneous motion 
is a helical motion with well defined axis, angular velocity and translatory velocity. 
(3) The spatial ‘Three-Pole-Theorem’ states, that the screw of the relative motion is the difference of the screws of the 
absolute motion and the guiding motion. Therefore the instantaneous motion of the endeffector equals the sum of the 
screws of the instanteous rotations between consecutive links. 
This leads directly to the Jacobi-matrix of serial robots with the dual vectors of the revolute axes as columns. And it 
allows to solve, e.g., calibration problems at parallel robots, thus revealing that the ‘purely abstract looking’ dual vector 
algebra is a powerful tool for a plenty of real world applications.  
 
Index Terms  dual vector, forward kinematics, line coordinates, parallel manipulator, spatial kinematics, serial 
manipulator, screw,  Jacobi matrix.  
 
DUAL UNIT VECTORS REPRESENTING ORIENTED LINES IN THE 3-SPACE 
 
There is a tight connection between spatial kinematics and the geometry of lines in the Euclidean 3-space 3IE .  Therefore 
we start with recalling the use of appropriate line coordinates (cf. [4], p. 155 ff)).  

Any oriented line (spear)  g  with direction vector g  and passing through point  a, i.e., IRg = +a g can be uniquely 
represented by the pair of vectors ˆ( ),g, g the direction vector g and the momentum vector ˆ,g  according to the definitions  

 1⋅ =g g  and ˆ := ×g a g  which imply  ˆ 0⋅ =g g . 
Conversely, any pair ˆ( )g, g  of vectors obeying 1⋅ =g g and ˆ 0⋅ =g g  defines a unique spear g because ˆ:= ×a g g is a  
point of this line, the pedal point of g with respect to the origin. It makes sense to replace the pair ˆ( )g, g by the dual 
vector  
 ˆ: ε= +g g g ,          (1) 
where the dual unit ε obeys the rule 2 0ε = . We extend the usual dot product of vectors to dual vectors and notice 
 ˆ ˆ ˆ ˆ( ) ( ) . 2 . 1 0 1ε ε ε ε⋅ = + ⋅ + = + = + =g g g g g g g g g g .          (2) 

Hence we call g  a dual unit vector. In this sense the set of oriented lines in 3IE can be seen as the dual extension of the 

unit sphere. The representation of oriented lines g in 3IE  by dual unit vectors g  brings about several advantages, and 
from now on we do not distinguish between oriented lines g and their representing dual vector g  as well as for points 
X and their coordinate vector x . 

 
THEOREM 1: For two given oriented lines g , h  in 3IE let n  denote the common normal endowed with an arbitrary 
orientation. If the helical motion along n  which transforms g  into h  (see Figure 1) has the angle ϕ  of  rotation and the 
length ϕ̂  of translation and we combine them in the dual angle ˆϕ ϕ ε ϕ= + , then the following equations hold true: 

 ˆcos cos sinϕ ϕ εϕ ϕ⋅ = = −g h    and   ˆ ˆsin sin (sin cos )ϕ ϕ ε ϕ ϕ ϕ× = = + +g h n n n n .       (3)   
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Here we use the dual extension of differentiable functions which is defined by  
 ˆ ˆ( ) ( ) ( )  ( )f x f x f x x f xεϕ ε ′= + = + . 

This is the beginning of a Taylor series where due to 2 0ε =  all higher powers are vanishing. This guarantees that 
identities like 2 2cos sin 1x x+ =  are preserved under the dual extension as they are valid for the power series, too.  
     The notation ε  originates from the fact that the dual unit can be seen as such a small number that its square is 
neclectable. Note that only dual numbers x  with non-vanishing real part have an inverse 1x− .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        FIGURE 1:  DUAL ANGLE ˆϕ ϕ εϕ= +  BETWEEN g  AND h .                   FIGURE 2: : cos sinϕ ϕ= +k g h  

 
On the other hand we use in Theorem 1 the dual extension of  the vector product according to  

 ˆ ˆˆ ˆ( ) ( ) ( )ε ε ε× = + × + = × + × + ×g h g g h h g h g h g h .           (4) 

Proof  of  Theorem 1: Suppose ˆ := ×g a g  and ˆ := ×h b h . Then the shortest distance between g  and h  reads 

 1 1 1 ˆˆˆ ( ) [det( , , ) det( , , )] [ ( ) ( ) )] ( )sin sin sin sinϕ ϕ ϕ ϕ ϕ
× −= − ⋅ = − = − × ⋅ − × ⋅ = ⋅ + ⋅g hb a b g h a g h b h g a g h g h g h . 

If a and b are supposed to be the intersection points of g  and h  with the common normal n , then 
     ˆsin sin ( ) ( ) ( ) [( ) ] ( ) ( )ϕ ϕ= × = × × = ⋅ − ⋅ + − ⋅ = ⋅ − ⋅n a n a g h a h g a g h a b g h a h g b g h . 
The expression in brackets vanishes and could therefore be added without changing the value. On the other hand due to 
standard formulas from vector algebra we see 
     ˆˆ( ) ( ) [( ) ] [ ( )] ( ) ( ) ( ) ( )× + × = × × + × × = ⋅ − ⋅ + ⋅ − ⋅ =g h g h a g h g b h a h g g h a g h b g b h  
     ˆ ˆ( ) ( ) ( )( ) sin cosϕ ϕ ϕ= ⋅ − ⋅ + ⋅ − = +a h g b g h g h b a n n .               �   
 
By dual extension it is possible to convert formulas from spherical geometry into formulas on spears. The following 
example should illustrate this so called ‘principle of transference’ (German: Uebertragungsprinzip) which dates back to 
E. Study. A first example is given in 
 
THEOREM 2: Let g and h  be two orthogonally intersecting spears with the common perpendicular n . Then 
     : cos sinϕ ϕ= +k g h              (5) 
is the image of g under the helical motion along n  through the dual angle ϕ  (see Figure 2).  
 
Proof: From the perpendicular intersection of g and h  we conclude 0⋅ =g h  and := ×n g h . These equations imply 

2 2=cos ( ) sin ( ) 1ϕ ϕ⋅ ⋅ + ⋅ =k k g g h h , and from Theorem 1 we conclude : sin ( ) sinϕ ϕ× = × =g k g h n as stated.    �  
 
 Another standard example is shown in [5]: The statement that in any spherical triangle with atmost one right angle the 
altitudes are concurrent leads by dual extension to a statement of  J. Hjelmslev and F. Morley (1898): At any skew 
hexagon with only right angles the common perpendiculars of opposite sides intersect a common line perpendicularily, 
provided atmost one pair of opposite sides is parallel. Finally, in [6] the differential geometry of ruled surfaces is based 
on Frenet equations which are exactly the dual extensions of the Frenet equations for spherical curves. Here the curvature 
center of a spherical curve is replaced by the curvature axis (or Disteli axis) of the ruled surface.  
 In  the sequel we need 
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THEOREM 3: Any dual vector ˆε= +v v v  is a dual multiple of a dual unit vector, i.e., λ=v g with 1⋅ =g g . In the case 

≠v o  the dual unit vector g  is uniquely determined up to its sign. 
 
Proof: We have to fulfill the equation ˆ ˆˆ ˆˆ ( )( ) ( )ε λ ε λ ε λ ε λ λ+ = + + = + +v v g g g g g . First we note that 2λ⋅ = ⋅v v g g  

implies 2 ˆˆ2 ( ) 2ε λ ε λλ⋅ + ⋅ = +v v v v . This gives λ=v g , ˆ ˆˆ λ λ= +v g g  and ˆˆ λλ⋅ =v v . For || || 0λ = ± ≠v  we get  

 1
λ

=g v   and  2

ˆ1ˆ ˆ λλ
λ λ
� �

= −� �� �
� �

g v v                            (6) 

as the solution. In the case 0λ = , i.e., ˆε=v v , we set ˆ ˆ|| ||λ = v , ˆ ˆλ =g v  and choose an arbitrary ĝ  under ˆ 0λ ≠ , 
otherwise the  unit vector g can be chosen arbitrarily, too.          �  
 
DUAL VECTORS REPRESENTING SCREWS 
 
In this section we demonstrate the use of dual vectors for describing instantaneous motions (for an introduction see also 
[1,2,3]): Let a rigid body representing the moving system Σ1  perform a one-parameter motion against the frame, the 
fixed system 0Σ . We assume that cartesian coordinate frames are attached to each system iΣ , 0,1i = , and we use the 
subscript i to indicate related coordinate vectors. Then the movement of  Σ1 against 0Σ  can analytically be described by 
the coordinate transformation which at each instant t gives the 0Σ -coordinate vector 0x  of any point which with respect 
to the moving system Σ1  has the coordinate vector 1x . This coordinate transformation reads 
 1 0 0 0 1/ : ( ) ( )t tΣ Σ = + ⋅x u A x   with 3( ) ( )Tt t⋅ =A A I  and  det ( ) 1t =A .       (7) 
Here 3I  denotes the unit matrix, 0 ( )tu is the 0Σ -coordinate vector of the origin of Σ1 , and ( )tA  is an orthogonal matrix, 
i.e., its transposed ( )TtA  is at the same time its inverse 1( )t −A . In order to figure out the distribution of velocity vectors 

10X v  of points X  attached to the moving system Σ1  we differentiate and replace 1x  by 0x  due to (7). We thus obtain – 
after dropping the parameter t –  
     10 0 0 1 0 0 0( )T T

X = = + ⋅ = − ⋅ ⋅ + ⋅ ⋅v x u A x u A A u A A x� � �� � �            (8) 

because of 1 =x o� . The matrix T⋅A A�  is skew as differentiation of 3
T⋅ =A A I   gives 

     ( )T T T T T⋅ + ⋅ = ⋅ + ⋅ =A A A A A A A A O� � � �  = zero matrix. 
There is a dual vector  
     10 10 10ˆε= +q q q  such that 0 10 0

T⋅ ⋅ = ×A A x q x�  for all 3
0 ∈x �  and  10 0 0ˆ : T= − ⋅ ⋅q u A A u�� .     (9) 

We call this dual vector the instantanous screw as according to (8) it rules the distribution of those velocity vectors which 
the given motion instantaneously assigns to each point 1X ∈ Σ . We have 
     10 10 10 0ˆ ( )X = + ×v q q x .            (10) 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
    FIGURE 3:  INSTANTANEOUS  MOTION WITH  SCREW  10 10 10ω=q p .              FIGURE 4: PORTION OF PLÜCKER’S CYLINDROID 

  
 Due to Theorem 3 the dual vector 10q  is a dual multiple of a dual unit vector, i.e., 

     10 10 10ω=q p  or explicitely 10 10 10 10 10 10 10 10 10 10 10 10ˆ ˆ ˆˆ ˆ( )( ) ( )ε ω εω ε ω ε ω ω+ = + + = + +q q p p p p p    (11) 
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with 10 10 1⋅ =p p .  In order to figure out the meaning of the dual scalar 10ω  and the oriented line 10p  we use a point 0s  of 

this line and set  10 0 10ˆ = ×p s p . Then according to (10) and (11) we get  
     10 10 10 0 10 10 10 10 10 10 0 10 10 10 10 0 0ˆ ˆˆ ˆ( ) ( ) [ ] [ ( )]X ω ω ω ω ω= + × = + + × = + × −v q q x p p p x p p x s .    (12) 
This reveals that 10X v  is the velocity vector of 0x  under a helical motion about the instantaneous axis (ISA) 10p with 

angular velocity 10ω  and translatory velocity 10ω̂  (see Figure 3). We call 10ω  the dual angular velocity of the 
instantaneous motion. In this sense the dual unit vectors are at the same time the screws for instantaneous rotations with 
angular velocity 1.  
     Now it is clear why due to Theorem 2 the axis 10p  is uniquely determined only under 10 0ω ≠ : Otherwise the 
instantaneous motion is a translation and here only the direction of the axis is determined, but not the axis itself. 
 
THEOREM 4: When the instantaneous screw 10q  is expressed as a multiple 10 10 10ω=q p  of a dual unit vector, then 10p  

is the instantaneous axis and 10ω  the dual angular velocity of the instantaneous helical motion. 
 
One has to be careful with dual vectors when coordinate transformations are applied as the two components of a dual 
vector behave different:  
 
THEOREM 5: If in 0Σ  the coordinates 0x  of point X  are replaced by 0′x  according to 0 0 0′ ′= + ⋅x b B x with orthogonal 
B , then the components of any screw 10 10 10ˆε= +q q q  (inclusive spears) have to be replaced by 

      10 10′ = ⋅q B q  and 10 10 0 10ˆ ˆ ( )′ ′= ⋅ + × ⋅q B q b B q .        (13)     

Proof: Because of the geometric meaning of the screw 10 10 10ω=q p the coordinate transformation does affect the 
underlying spear, but not the dual angular velocity, i.e., 10 10 10ω′ ′=q p . And 10 10ˆε+p p  is transformed into 10 10ˆε′ ′+p p  by 

10 10′ = ⋅p B p  and 

     10 0 10 0 0 10 0 10 0 10 0 10 10ˆ ˆ( ) ( ) ( ) ( )′ ′ ′ ′ ′ ′= × = + ⋅ × ⋅ = × ⋅ + ⋅ × = × ⋅ + ⋅p s p b B s B p b B p B s p b B p B p .       �   

The formulas for 10q  in (9) refer to coordinates in the fixed system 0Σ . However, for the sake of simplicity we avoid the 
more precise notation 10|0q . Eqs. (13) could be used to represent the screw also with respect to 1Σ , and then  the 
coordinate vector should be denoted by 10|1q . 

 THEOREM 6: For any instantaneous motion with the screw 10q  the ‘path-normals’, i.e., the lines n  perpendicular to 
10X v  and passing through X , constitute a linear line complex as  ˆε= +n n n  obeys the linear homogeneous equation  

 10 10ˆ ˆ 0⋅ + ⋅ =q n q n   10( IR)⇔ ⋅ ∈q n .         (14) 

This equation is independent from X . Hence any line ± n , which is a path-normal at one of its points,  is a path-normal 
at each  point.          
 
Proof: Due to (10) and 0ˆ = ×n x n  we have 
     10 10 10 0 10 10 0 10 10 0 10 10ˆ ˆ ˆ ˆ ˆ0 [ ( )] det( , , ) ( )X= ⋅ = + × ⋅ = ⋅ + = ⋅ + ⋅ × = ⋅ + ⋅v n q q x n q n q x n q n q x n q n q n .       �   
 
     By (3) and (11) eq. (14) is equivalent to 10 10 10 cos IRω ω α⋅ = ∈p n , i.e., 10 10ˆ ˆ( )(cos sin ) IRω εω α εα α+ − ∈  or  

10 10ˆ ˆcos sin 0ω α ω α α− = . Hence the path normals n  of the instantaneous motion are characterized by 

 10

10

ˆ ˆ tanω α αω =          (15) 

with α  denoting the dual angle between the ISA 10p  and any orientation of  n . The quotient on the left hand side is the 
pitch of the helical motion. 

     Finally, we need the spatial Three-Pole-Theorem  

THEOREM 7: If for three given systems 0 ,Σ 1,Σ 2Σ  the dual vectors 10q and 20q  are the instantaneous screws of  
1 0/Σ Σ and 2 0/Σ Σ , respectively, then  

 21 20 10= −q q q , i.e., 21 21 20 20 10 10ω ω ω= −p p p          (16) 
is the instantaneous screw of the relative motion 2 1/Σ Σ . The three corresponding linear line complexes are included in a 
pencil of line complexes. 
 
Proof: According to (10) we have 
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     21 20 10 20 20 0 10 10 0 20 10 20 10 0ˆ ˆ ˆ ˆ[ ( )] [ ( )] ( ) [( ) ]X X X= − = + × − + × = − + − ×v v v q q x q q x q q q q x  for each point X .     �   
 

     Let a line n  intersect the ISAs 10p  of 1 0/Σ Σ  and 20p  of 2 0/Σ Σ  orthogonally, i.e., 10 20 0⋅ = ⋅ =p n p n . Then we obtain 
21 21 20 20 10 10( ) 0ω ω ω⋅ = ⋅ − ⋅ =p n p n p n  which means that the line n  does intersect the axis 21p  of 2 1/Σ Σ orthogonally, too,  

provided 21 0.ω ≠  

     Let two skew axes 10p  and 20p be given, i.e., 10 20⋅ ∉p p R . When for the corresponding dual velocities we replace  
20ω  by 20cω  with a constant c  varying in R , then the axes 21p  of the relative motions 2 1/Σ Σ  constitute a cylindroid or 

Plücker conoid (see [4], p. 181). Figure 4 gives an impression of the cylindroid by showing some generators 'between' 
10p  and 20p . 

   Now the principle of transference can be used to convert theorems from spherical kinematics into those of spatial 
kinematics. One example is the dual extension of the Euler-Savary-formula (see [6]). It dates back to M. Disteli (1914) 
and  deals with the curvature axes of ruled surfaces which are traced by lines under a spatial motion. Other examples 
concerning overconstrained spatial mechanisms derived from spherical ones are presented in [5]. 
 
APPLICATIONS 
 
EXAMPLE 1: Infinitesimal forward and inverse kinematics of 6R robots:  
A serial robot is an open kinematic chain of links 0 1 6, ,  ...,  Σ Σ Σ . Any two consecutive links are connected by a revolute 
joint with the axis 10 21 65, , ..., p p p , respectively. 

Given: Any posture of a 6R robot with instantaneous angular velocites 10 21 65, , ...., ω ω ω ∈ R  of the relative motions 
about the axes. All axes are given in the same coordinate system. 
Required: What is the instantaneous motion of the endeffector 6Σ ? 
     This instantaneous motion is defined by the screw 60q . From the Three-Pole-Theorem (Theorem 7) we conclude that 

60 10 10 21 21 65 65...ω ω ω= + + +q p p p . This can also be written in matrix form: We combine the coordinates 10 65, ...,p p  of 

the axes as columns in a 6 6× -matrix J . Then the resulting screw reads 
     60 1 1

1..6
i i i i

i
Jω − −

=

= = ⋅Ω�q p   

with Ω  as the column vector of given angular velocities. J  is called Jacobi matrix. In the regular case ( det 0J ≠ ) we 
can also solve the inverse problem: For given 60q  we get the corresponding angular velocities 10 65, ...., ω ω   by solving a 

linear system of equations. If there is a rank deficiency of J , then the instantaneous degree of freedom of 6 0/Σ Σ  is less 
than 6. Just in this case the columns of J  are linearly dependent. This is equivalent to the statement that the six axes are 
included in a linear line complex.  
 
EXAMPLE 2: Calibration of Stewart-Gough-Platforms:  
Given: Any posture of a Stewart-Gough-Platform, i.e., a parallel manipulator where the platform 1Σ  is connected with 
the frame 0Σ  by six telescopic legs. The anchor points in 0Σ  are denoted by 1 6, ...,a a , those in the platform 1Σ  by  

1 6, ...,b b . We assume that for all these points the instantaneous coordinates are given in the same coordinate system. 
Required: Suppose that by precise measurements a mislocation of the platform against the frame has been detected. How 
to figure out which leg is mainly responsible for this deviation. 
     There is a (small) helical motion which transports the actual posture into the target posture. After solving this 
registration problem we get the axis 10p , the angle 10ϕ of rotation and the length 10ϕ̂  of translation. Let us assume that 

this movement is performed within – say – 1 second. This defines a screw 10q , and the instantaneous helical motion of 

1Σ  assigns to each of its anchor points 1 6, ...,b b  a velocity vector according to (10). The component of this vector in 
direction of the leg i ia b  gives the corresponding variation in length which has to be carried out within 1 second. So, the 
leg with the largest velocity component should be most responsible for the mislocation. Of course, the reliability on this 
result needs to be fostered by iterated measurements in different postures. 
     How to compute these variations? Let id  denote the distance || ||i i−b a . Then the carrier line of the leg  oriented in 
the direction i ia b  has the coordinate components 

     i i
i

id
−

=
b al  and  ˆ

i i i= ×l b l . 
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From 2 2( )i i id = −b a  we obtain bei differentiation ( )i i i i id d = − ⋅b a b� � , hence 

     10 10 10 10 10 10 10 10
ˆˆ ˆ ˆ ˆ[ ( )] det( , , ) ( )i i i i i i i i i i i i id = ⋅ = ⋅ + × = ⋅ + = ⋅ + × ⋅ = ⋅ + ⋅l b l q q b l q l q b l q b l q l q l q� � . 

We form a 6 6× -matrix J  with rows consisting of the coordinates of ˆ( , )i il l  written in this order. Then we get 
     10D J= ⋅q�  

with D�  denoting the column of id� . So we get the variation of leg lengths by multiplying this Jacobi matrix J  with the 
screw. In singular postures, which are characterized by det 0J = , there are infinitesimal self motions of the platform 
while the lengths of all telescopic legs remain fixed. Just in singular postures the rows in J  are linearly dependent and 
therefore the six lines i ia b  included in a linear line complex. 
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