
IVORY’S THEOREM IN HYPERBOLIC SPACES

H. STACHEL AND J. WALLNER

Abstract. According to the planar version of Ivory’s Theorem the family of
confocal conics has the property that in each quadrangle formed by two pairs
of conics the diagonals are of equal length. It turned out that this theorem
is closely related to self-adjoint affine transformations. This point of view is
capable of generalization to hyperbolic and other spaces.

1. Introduction

The planar Euclidean version of Ivory’s Theorem states that the two diagonals
X1X

′
2 and X2X

′
1 of any curvilinear quadrangle formed by four confocal conics have

the same length (this is illustrated in Fig. 1). Another version of this theorem is
the following: Assume that k, k′ are confocal ellipses or confocal hyperbolas (two
conics of the same type). Then there is an affine transformation α with α(k) = k ′

and such that whenever a conic of the other type, but confocal with k and k ′

intersects the conic k in the point X1, it will intersect k′ in the point α(X1), and
both intersections are orthogonal. Now Ivory’s Theorem states equal distances

α(X1) X2 = X1 α(X2) for all X1, X2 ∈ k.

This statement holds also for singular α when k′ = α(k) degenerates into a set
of points located on an axis of symmetry of k.

In 1809 J. Ivory proved the three-dimensional version of this theorem by
straightforward calculation and by using an appropriate parametrization ([7],
see also [5, 11, 4, 1]).

This theorem holds in the n-dimensional Euclidean space (n > 1, see e.g. [9]).
It has been shown by [8] that it is also true in the pseudo-Euclidean (Minkowski)
plane. The aim of this paper is to prove Ivory’s Theorem in hyperbolic spaces
Hn, and indeed in a more general class of pseudo-Riemannian spaces of constant
curvature.

2. Definitions and basic results

2.1. Scalar products. We consider the real n-dimensional projective space Pn,
which is the set of points X = xR with x ∈ Rn+1 \ {0}. We assume that Rn+1

is endowed with a scalar product, i.e., a nondegenerate symmetric bilinear form
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Figure 1. Ivory’s Theorem in the Euclidean plane E2

〈 , 〉. If the scalar product has signature (− + · · ·+), then the n-dimensional
hyperbolic space is given by the subset

Hn = {xR | 〈x,x〉 < 0}

of Pn. The hyperbolic distance dh(x,y) of points of Hn is given by

cosh dh(x,y) =
∣∣∣ 〈x,y〉√

〈x,x〉〈y,y〉

∣∣∣.(1)

The case of signature (+ · · ·+) leads to the elliptic metric de in Pn defined by

cos de(x,y) =
∣∣∣ 〈x,y〉√

〈x,x〉〈y,y〉

∣∣∣.(2)

Remark. Standard spherical geometry is a twofold covering of the elliptic n-space.
We may identify Hn with one of the two components of the set {x | 〈x,x〉 = −1}.
This embedding induces a Riemannian metric in Hn, where distances of points
are given by (1). For general information on hyperbolic spaces see [2].
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The signatures (+−· · ·−) and (− · · · −) likewise generate hyperbolic and elliptic
geometries, with the obivous modifications in the definition of the metric. Sig-
natures of the form (+ +−−± · · · ±) do not lead to Riemannian manifolds, but
we may still consider expressions of the form

δ(X,Y ) = δ(x,y) =
〈x,y〉√

|〈x,x〉〈y,y〉|
(3)

which serve as a substitute for the metric, and which are meaningful for all points
X = xR, Y = yR ∈ Pn with 〈x,x〉, 〈y,y〉 6= 0. Points xR with 〈x,x〉 = 0 are
called absolute.

The hyperplanes in Pn are the zero sets of linear forms a∗ ∈ R(n+1)∗. We
may represent a∗ by its gradient vector v such that a∗(x) = 〈v,x〉. The two
hyperplanes with gradient vectors v, w, resp., are called orthogonal if 〈v,w〉 = 0.
Self-orthogonal hyperplanes are called absolute.

Recall that endomorphisms l and l∗ are called adjoint, if 〈x, l(y)〉 = 〈l∗(x),y〉
for all x,y. When we write bilinear forms as σ(x,y) = 〈x, l(y)〉 with a linear
endomorphism l, then σ is symmetric if and only if l is selfadjoint.

Definition 1. A (nondegenerate) quadric Φ is the zero set of a (nondegener-
ate) symmetric bilinear form σ(x,y) = 〈x, l(y)〉, with a selfadjoint (nonsingular)
linear endomorphism l.

l = id corresponds to the absolute quadric Ω, the set of absolute points.

2.2. Selfadjoint endomorphisms. We are going to describe simultaneous nor-
mal forms of the symmetric bilinear form 〈 , 〉 and the selfadjoint linear mappings
l — this means the choice of a coordinate system such that both have simple co-
ordinate matrices. We use the notation Ik for the k × k unit matrix, and

Jk(t, s) =




t s. . . . . .
t s

t


 , Sk =

[
1

· · ·1

]
, R2(a, b) =

[
a b

−b a

]
,

R2k(a, b, s) =




R2(a, b) sI2

. . . . . .
R2(a, b) sI2

R2(a, b)


 .

The lower right index indicates the size of the matrix.

Theorem 1. For any selfadjoint l, there are coordinates in Rn+1 such that
〈x,y〉 = xT Hy, l(x) = A · x, and the matrices A, H have the form

A = diag(Jr0
(t0, 1), . . . , Jrk−1

(tk−1, 1), R2rk
(ak, bk, 1), . . . , R2rs

(as, bs, 1)),(4)

H = diag(ε0Sr0
, . . . , εk−1Srk−1

, εkS2rk
, . . . , εsS2rs

),(5)

with εi = ±1 and ti, ai, bi ∈ R, bi 6= 0.

Proof: See [6], Th. 5.3. �
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Corollary 1. In case of a definite scalar product 〈 , 〉, the normal form of Th. 1
is the following:

A = diag(t0, . . . , tn), H = ±In+1.

In case of a hyperbolic scalar product with signature ε(−+ · · ·+) the normal form
of Th. 1 is one of the following:

(i) A = diag(t0, . . . , tn) H = ε diag(−1, In),
(ii) A = diag(J2(t0, 1), t2, . . . , tn) H = ε diag(ε0S2, In−1) with ε0 = ±1,
(iii) A = diag(R2(a, b), t2, . . . , tn) H = ε diag(ε0S2, In−1) with ε0 = ±1,
(iv) A = diag(J3(t0, 1), t3, . . . , tn) H = ε diag(S3, In−2).

Proof: We consider the hyperbolic case first. The signature of each matrix εSr

is given by ε(+−+− · · · ), and by summing up we easily compute the signature
of the block matrix (5). This signature must equal the signature of 〈 , 〉. Thus
only one of the Sr’s can have size greater than one, and this size must be less
than four. The result follows immediately from Th. 1.

The elliptic case is similar — besides, this is the spectral theorem for selfadjoint
endomorphisms in the presence of a definite scalar product. �

2.3. Square roots. Later we will need that certain endomorphisms have square
roots of a certain form, so we collect some lemmas here. We will extend the defi-
nition of Jk(t, s) to matrices with entries in a ring R in the obvious way. First we
define a relation between formal power series with coefficients in a commutative
ring R and matrices in Rk×k (k > 0) as follows:

a(x) ∼ A ⇐⇒ a(x) =
∑

aix
i, A =




a0 a1 . . . ak−1

a0 . . . ak−2

. . .
...
a0


 .(6)

It is obvious that

A,B ∈ Rk×k, a(x) ∼ A, b(x) ∼ B =⇒ a(x)b(x) ∼ AB.(7)

Lemma 1. Assume that R is a Q-algebra (i.e., a commutative ring which con-
tains Q as a subring). Assume further that t ∈ R has a square root

√
t as well as

an inverse t−1. Consider the upper triangular matrix A ∈ Rk×k which according
to (6) is related to the power series

a(x) = (t + sx)1/2 =
∑

i≥0

(
1/2

i

)
(st−1)i

√
txi ∈ R[[x]].(8)

Then A2 equals the Jordan block Jk(t, s).

Proof: Clearly, the matrix Jk(t, s) is related to the power series t + sx, and by
(7) a square root is found as the matrix related to (t+sx)1/2 =

√
t(1+st−1)1/2 =√

t
∑

i≥0

(
1/2
i

)
(st−1)ixi. �
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Lemma 2. A Jordan block Jk(t, s) ∈ Rk×k with t > 0 has a square root of the

form (6) with ai =
(
1/2
i

)
(s/t)i

√
t. All matrices R2k(a, b, s) ∈ R2k×2k with b 6= 0

have square roots of the following forms:
√

R2(a, b) = R2(b/2ζ, ζ), where 4ζ4 + 4aζ2 − b2 = 0,

√
R2k(a, b, s) =




A0 A1 . . . Ak−1

A0 . . . Ak−2

. . .
...

A0


 , where Ai =

(
1/2

i

)√
R2(a, b)siR2(a, b)−i.

Proof: The statement about Jk(t, s) follows directly from Lemma 1 if we let R =
R. The statement about R2(a, b) is easily verified. Observe that the quadratic
equation 4ξ2 + 4aξ − b2 = 0 has the solutions ξ = 1

2
(−a±

√
a2 + b2), at least one

of which is positive because b 6= 0. This shows that ζ exists and is nonzero.
Now let R equal the subring of the matrix ring R2×2 which is generated by the

matrix
√

R2(a, b). Note that the matrix ring Rk×k is embedded into the matrix
ring R2k×2k, and that Jk(R2(a, b), sI2) = R2k(a, b, s). With these identifications,

the statement about
√

R2k(a, b, s) follows directly from Lemma 1. �

Corollary 2. Selfadjoint linear endomorphisms l in Rn+1 whose real eigenvalues
are positive possess selfadjoint square roots.

Proof: We use the coordinate matrices A of l and H of 〈 , 〉 given by Th. 1
which have a common block diagonal structure. It is sufficient to consider each
block Ak and Hk = ±Sk separately. Square roots

√
Ak are given by Lemma 2.

As
√

Ak
T
(±Sk) = (±Sk)

√
Ak in each case, the mapping

√
l constructed in this

way is selfadjoint. �

Corollary 3. Both the matrices Jk(t, s) for t > 0 and R2k(a, b, s) with a2+b2 > 0
have square roots which depend smoothly on t, s and on a, b, s, respectively. The
derivatives commute with the matrices.

Proof: The result concerning smoothness follows from the explicit formula for
the square roots given by Lemma 2 — we use the fact that ζ equals ( 1

2
(−a+(a2 +

b2)
1

2 ))
1

2 . We observe that derivatives of matrices of the form (6) are again of that
form. Now commutativity follows from (7), as multiplication of power series is
commutative. �

2.4. Dual quadrics. Points X = xR, Y = yR are called conjugate with re-
spect to a nondegenerate quadric Φ or its defining bilinear form σ, if σ(x,y) =
〈x, l(y)〉 = 0.

The set of points conjugate to X is the hyperplane with gradients λl(x). If
points X,Y are contained in a quadric Φ, and they are conjugate with respect
to Φ, then the line X ∨ Y is contained in Φ. Conversely, any two points of a
subspace contained in Φ are conjugate.
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The tangent hyperplane of Φ in x has gradients λl(x). Conversely, a hyperplane
with gradient v is tangent to Φ if and only if σ̂(v,v) = σ(l−1(v), l−1(v)〉 =
〈l−1(v),v〉 = 〈v, l−1(v)〉 = 0. If a∗,b∗ have respective gradient vectors v,w,
then we consider the bilinear form

σ∗(a∗,b∗) = σ̂(v,w) = 〈v, l−1(w)〉.(9)

Definition 2. The quadric Φ̂ in the dual space defined by (9) is called the dual
of the original quadric Φ defined by σ.

If we use coordinates with respect to some basis, we assume linear forms to be
coordinatized with respect to the corresponding dual basis. If 〈x,y〉 = xT Hy,
then a linear form a∗ and its gradient v are connected via a∗ = Hv. If σ(x,y) =
xT HAy, we have σ̂(v,w) = vT HA−1w, and σ∗(a∗,b∗) = a∗T (HA)−1b∗.

The dual quadric Φ̂ may be seen as a set of hyperplanes (the zero sets of the
corresponding linear forms). It is the image of Φ under the mapping “X 7→
hyperplane of points conjugate to X”.

We have excluded singular quadrics and singular forms from this discussion
about dual quadrics — they do not possess duals in the sense of Def. 2. There
are however singular dual quadrics defined by singular symmetric bilinear forms
in R(n+1)∗.

We compute the image Φ1 = k(Φ0) of a quadric Φ0 under a nonsingular endo-
morphism k: We have x ∈ Φ0 ⇐⇒ k(x) ∈ Φ1. Thus if Φ0 is defined by the bilin-
ear form σ0(x,y) = 〈x, l(y)〉, then Φ1 is defined by σ1(x,y) = 〈k−1(x), lk−1(y)〉 =
〈x, (k−1)∗lk−1(y)〉. If we represent linear forms by their gradients, the respective
duals of Φ0 and Φ1 are defined by bilinear forms 〈v, l−1(w)〉 and 〈v, kl−1k∗(w)〉.

The fact that the inverse of k does not appear in the form which defines Φ̂1

allows to extend these computations by the following definition:

Definition 3. If k is a linear endomorphism and the quadric Φ is given by the
endomorphism l, then we define the dual k-image of Φ to have the equation

σ̂(v,v) = 0, with σ̂(v,w) = 〈v, kl−1k∗(w)〉.

σ̂ is understood to apply to gradients.

It so appears that singular linear mappings, when applied to nonsingular
quadrics, still define meaningful dual image quadrics.

2.5. Families of confocal forms and quadrics. Assume that the quadrics
Φ0 and Φ1 are defined by symmetric bilinear forms σ0 and σ1, or selfadjoint

endomorphisms l0 and l1, respectively, and that their respective duals Φ̂0, Φ̂1 are
represented by the symmetric bilinear forms σ̂0 and σ̂1 according to Def. 2.

In coordinates, we let li(x) = Aix and 〈x,y〉 = xT Hy. Then σi(x,y) = xT Qiy

with Qi = HAi, and σ∗
i (a

∗,b∗) = a∗TQ−1
i b∗.
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Definition 4. We use the notations defined immediately above. Φ0 and Φ1 are
said to be confocal (or homofocal), if one of the following equivalent conditions
holds true:

(i) the bilinear forms σ̂0, σ̂1, 〈̂ , 〉 = 〈 , 〉 are linearly dependent,
(ii) the linear endomorphisms l−1

0 , l−1
1 , id are linearly dependent,

(iii) the coordinate matrices Q−1
1 , Q−1

2 , and H−1 are linearly dependent.

The family of quadrics Φ confocal to Φ0 is defined by endomorphisms l which
satisfy l−1 = λl−1

0 + µid, (λ, µ) ∈ R2, λ 6= 0.

Hence the dual quadrics Φ̂ together with the dual Ω̂ of the absolute quadric
form a linear system of algebraic hypersurfaces in the dual projective space. Any
absolute tangent hyperplane of Φ is also tangent to Φ0, and vice versa.

Remark. This definition extends the usual definition of confocality in Euclidean
geometry, which fits into this framework after introducing homogeneous coordi-

nates and defining a singular symmetric bilinear form 〈̂ , 〉, cf. [5, 11, 4, 3].

In the Euclidean plane, confocal conics (see Fig. 1) may be of different type,
i.e., one of them an ellipse, and another a hyperbola. The obvious fact that there
is no continuous transition from an ellipse to a hyperbola is the motivation for
the following definition.

Definition 5. Within the family of confocal bilinear forms spanned by l0, the con-
nected components of {(λ, µ) | λ(l−1

0 + µid) nonsingular} correspond to quadrics
of different types.

Lemma 3. In the n-dimensional elliptic or hyperbolic space (n > 1) all confocal
families possess at least two types of quadrics.

Proof: By Def. 5 it is sufficient to show that l−1
0 has an eigenvalue. As l−1

0 is
selfadjoint, we apply Cor. 1 and the fact that n + 1 ≥ 3. �

The following is well known:

Lemma 4. If confocal quadrics Φ0 and Φλ intersect, they do so orthogonally.

Proof: Assume that g0 and gλ are endomorphisms which define confocal quadrics,
such that g−1

λ = g−1
0 +λid (λ 6= 0), and that v = g0(x) and w = gλ(x) are gradient

vectors of tangent hyperplanes in x ∈ Φ0 ∩ Φλ.
From the relation 0 = 〈x, g0(x)〉 = 〈x,v〉 = 〈g−1

λ (w),v〉 and the analogous
relation 0 = 〈g−1

0 (w),v〉 we get 0 = 〈v,w〉 by linear combination. �

3. The Ivory property and selfadjoint endomorphisms

3.1. Ivory maps are linear. We show that Ivory’s Theorem for two quadrics
Φ0, Φ1 is always related to the existence of a selfadjoint linear endomorphism l
with Φ1 = l(Φ0).

Lemma 5. Assume that Φ is a quadric, possibly singular but not contained in a
hyperplane, and that there is a mapping x 7→ x′ such that

〈x′
1,x2〉 = 〈x1,x

′
2〉 for all x1,x2 ∈ Φ,
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then there is a selfadjoint linear endomorphism l of Rn+1 such that x′ = l(x) for
all x ∈ Φ.

Proof: Choose linearly independent vectors x0, . . . ,xn ∈ Φ and define a linear
endomorphism l by l(xi) = x′

i (i = 0, . . . , n). By our assumption, we have

〈xi, l
∗(y)〉 = 〈l(xi),y〉 = 〈x′

i,y〉 = 〈xi,y
′〉 (i = 0, . . . , n).

By linear independence of the vectors xi, we conclude that y′ = l∗(y). This holds
for all y, so we especially have l∗(xi) = x′

i, which shows that l = l∗. �

3.2. The quadrics with equation 〈x,x〉 − 〈l(x), l(x)〉 = 0.

Lemma 6. If the linear endomorphism l is selfadjoint, then the quadric

Φ0 : σ(x,x) := 〈x,x〉 − 〈l(x), l(x)〉 = 0(10)

together with its l-image Φ1 has the Ivory property

δ(l(x),y) = δ(x, l(y)) for all x,y ∈ Φ with 〈x,x〉, 〈y,y〉 6= 0.

The restriction of l to any linear subspace contained in Φ0 is isometric in the
sense of δ.

Proof: We have to show that

〈x, l(y)〉√
〈x,x〉〈l(y), l(y)〉

=
〈l(x),y〉√

〈l(x), l(x)〉〈y,y〉
The denominators of these fractions are equal due to (10), whereas the numerators
are equal because l is selfadjoint.

As to the second statement, the distance δ is preserved for x,y ∈ Φ0 if and
only if 〈x,y〉 = 〈l(x), l(y)〉. This equation characterizes conjugacy with respect
to Φ0, and it follows that the restriction of l to any subspace contained in Φ0 is
isometric. �

Lemma 7. Assume that l is selfadjoint and that the quadric Φ0 given by (10) is
regular. Then Φ0 and Φ1 = l(Φ0) are confocal (We apply Def. 3 if necessary).

Proof: We rewrite the equation of Φ0:

σ0(x,y) = 〈x,y〉 − 〈l(x), l(y)〉 = 〈x, (id − l2)(y)〉.
Its dual is represented by

σ̂0(v,w) = 〈v, (id − l2)−1(w)〉.
The dual l-image of Φ0 is, according to Def. 3, defined by

σ̂1(v,w) = 〈v, l(id − l2)−1l(w)〉.
We show that

σ̂0 − σ̂1 = 〈 , 〉(11)

by using l(id− l2) = (id− l2)l and thus verifying that (id− l2)−1 − l(id− l2)−1l =
id. �
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Figure 2. Ivory’s Theorem in the hyperbolic plane H2 — case (iv)
of Th. 1 which leads to conics without center and axis.

Lemma 8. If l is selfadjoint, then in most cases the quadric Φ0 as defined by
(10) is of the same type as Φ1 = l(Φ0) provided both are regular. Different types
are only possible when the normal form of l contains a block matrix R2(0, b) or
R2k(0, b, 1).

Proof: The quadric Φi is the zero set of σi(x,x) = 〈x, gi(x)〉, with selfadjoint gi

(i = 0, 1). The proof of Lemma 7 shows that σ̂0 − σ̂1 = 〈 , 〉, i.e., g−1
0 − id = g−1

1 .
We ask if

g−1
λ = (1 − λ)g−1

0 + λg−1
1 = g−1

0 − λid (0 ≤ λ ≤ 1)

can be singular — if it is not for any λ ∈ [0, 1], then according to Def. 5, Φ0 and
Φ1 are of the same type (if it is, then the notation g−1

λ of course does not make
sense).

By construction, we have g−1
0 = (id − l2)−1. We use coordinates according to

Th. 1. Because of the block matrix structure of (4) it is sufficient to assume that
the coordinate matrix A of l equals either Jk(t, 1) or R2k(a, b, 1). In the first case,
the coordinate matrix of g−1

λ reads

(Ik − A2)−1 − λIk =




(1 − t2)−1 − λ ∗
. . .

(1 − t2)−1 − λ


 .

As (1 − t2)−1 does not assume values in [0, 1], g−1
λ is nonsingular. In the second

case A = R2k(a, b, 1) with b 6= 0 we use the abbreviation U = (I2 − R2(a, b)2)−1
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and get

(Ik − A2)−1 − λI2k =




U − λI2 ∗
. . .

U − λI2


 , with

U =
1

(a2 + b2 + 1)2 − 4a2

[
1 − a2 + b2 2ab

−2ab 1 − a2 + b2

]
= R2(a

′, b′).

The eigenvalues of U are a′ ± ib′. They are nonreal if b′ 6= 0, i.e., a 6= 0. So also
in this case g−1

λ is nonsingular.
In the case a = 0 the number 1/(b2 + 1) is the only eigenvalue of U , and it is

contained in the interval [0, 1]. Thus in this case there exists λ ∈ (0, 1) such that
gλ is not defined. �

4. Ivory’s Theorem

4.1. A representation theorem. In previous lemmas we have enumerated
properties of quadrics with special equations. Now we are going to show that
this case is actually the general case we need for Ivory’s Theorem.

Lemma 9. Consider two regular confocal quadrics Φ0, Φ1 which are of the same
type. Then there is a selfadjoint endomorphism l such that Φ1 = l(Φ0) and the
equation of Φ0 is given by 〈x,x〉 − 〈l(x), l(x)〉 = 0.

Proof: We assume that Φi is determined by the selfadjoint endomorphism gi

(i = 0, 1). By confocality, g−1
1 = λg−1

0 + µid. Without changing the quadrics we
multiply g0 and g1 with real numbers such that

g−1
0 − g−1

1 = id.(12)

We first show that there exists l such that g0 = id− l2, i.e., there exists a square
root of id− g0. We assume coordinate matrices A and H of g0 and 〈 , 〉 as given
by (4) and (5), respectively. By the block matrix structure of these matrices, it
is sufficient to assume that A = Jk(t, 1) or that A = R2k(a, b, 1). In the first case,
g1 has the coordinate matrix

(A−1 − Ik)
−1 =




(t−1 − 1)−1 ∗
. . .

(t−1 − 1)−1




By our assumption on the type, t and (t−1 − 1)−1 have the same sign. A positive
sign implies that t ∈ (0, 1) and a negative one implies that t < 0. In both cases
1 − t > 0, so id − g0 has positive eigenvalues.

In the case that A = R2k(a, b, 1) the matrix I2k − A has the form R2k(1 −
a,−b,−1) with b 6= 0, and id − g0 has no real eigenvalues. Thus in all cases
we are able to apply Cor. 2, and there is a selfadjoint endomorphism l with
l2 = id − g0. It remains to show that indeed l(Φ0) = Φ1. We have just shown
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that Φ0 has an equation of the form required by Lemma 7, and by (11), l(Φ0) is
defined by an endomorphism ḡ1 with the property that

g−1
0 − ḡ−1

1 = id.

Our assumption (12) now shows ḡ1 = g1 and the proof is complete. �

Lemma 10. We use the notation of the proof of Lemma 9. There is δ > 0 such
that id−λg0 has a square root which smoothly depends on λ, for −δ < λ < 1+ δ.

Proof: We again look at the proof of Lemma 9. In the case that A = Jk(t, 1),
we have t ∈ (0, 1) or t < 0, which implies that there is δ such that 1 − λt > 0
for λ ∈ (−δ, 1 + δ). It follows that id− λg0 has a square root which according to
Cor. 3 smoothly depends on λ.

In the case that A = R2k(a, b, 1), the endomorphism id−λg0 has the coordinate
matrix R2k(1 − λa,−λb,−λ). As there is no λ such that 1 − λa = λb = 0, we
may apply Cor. 3 and conclude that there exists a square root of id − λg0 which
smoothly depends on λ. �

Remark. In a neighbourhood of λ = 0 we can also apply the implicit function
theorem to deduce that there is a selfajoint square root of id−λg0 which smoothly
depends on λ.

4.2. Orthogonal trajectories of confocal families. We want to generalize
the Euclidean theorem that corresponding points Xi, X

′
i of confocal conics k, k′

are located on another confocal conic which intersects the two original ones or-
thogonally (see Fig. 1).

Lemma 11. Suppose that Φ0, Φ1, g0, g1, l are as in Lemma 9 and its proof.
Then there is a smooth family lλ of endomorphisms with l0 = id and l1 = l, such
that the quadric Φλ = lλ(Φ0) is defined by the endomorphism gλ with

g−1
λ = g−1

0 − λid.(13)

All quadrics Φλ are confocal with Φ0. They orthogonally intersect the path lλ(x)R
of a point xR ∈ Φ0.

Proof: We have g0 = id − l2 and g−1
1 = g−1

0 − id. We consider λg0 instead of g0

and define lλ by

λg0 = id − l2λ.

By Lemma 10, lλ exists and depends smoothly on λ. We observe that lλ and g0

commute, which for λ = 0 is obvious and otherwise follows from lλg0 = lλλ
−1(id−

l2λ) = λ−1(id−l2λ)lλ = g0lλ. Now we compute the endomorphism g−1
λ which defines

the dual of lλ(Φ0) according to Def. 3:

g−1
λ = lλg

−1
0 lλ = l2λg

−1
0 = (id − λg0)g

−1
0 = g−1

0 − λid.



12 H. STACHEL AND J. WALLNER

So we have shown (13). Confocality of Φ0 and lλ(Φ0) follows from Lemma 7 by
construction. We differentiate the relation λg0 = id − lλlλ and get

g0 = −(l̇λlλ + lλ l̇λ) = −2l̇λlλ =⇒ l̇λ = −1

2
g0l

−1
λ = −1

2
gλlλ.(14)

We have used gλ = g0l
−2
λ and the fact that lλ and l̇λ commute, which follows from

Th. 1 and Cor. 3.
The tangent hyperplane of Φλ in lλ(x) has the gradient vector gλlλ(x). (14)

implies that the tangent point l̇λ(x)R is conjugate to this tangent hyperplane
with respect to the absolute quadric Ω. �

Lemma 12. We use the notations of Lemma 11 and consider the quadrics Φλ,
defined by endomorphisms gλ. If Ψ is confocal with Φ0, but different from Φ0,
and x ∈ Φ0 ∩ Ψ, then also lλ(x) ∈ Ψ.

Proof: We have x ∈ Φ0 ⇐⇒ 〈x, g0(x)〉 = 0, and we assume that x ∈ Ψ ⇐⇒
〈x, gµ(x)〉 = 0, with gµ selfadjoint. By definition of confocality, g−1

µ = g−1
0 − µid

with µ 6= 0. We are going to show below that

λg0 − µlλgµlλ − (λ − µ)gµ = 0.(15)

x ∈ Φ0 ∩ Ψ together with (15) imply that lλ(x) ∈ Ψ, because

µ〈lλ(x), gµlλ(x)〉 = µ〈x, lλgµlλ(x)〉 = λ〈x, g0(x)〉 − (λ − µ)〈x, gµ(x)〉 = 0.

We know (see the proof of Lemma 11) that lλ and g0 commute, therefore so do lλ
and g−1

µ . We verify (15) by multiplying its left hand side by g−1
µ from the right:

λg0(g
−1
0 − µid) −µlλgµlλg

−1
µ −(λ − µ)id

= λid − λµg0 −µlλgµg
−1
µ lλ −(λ − µ)id

= λid − λµg0 −µ(id − λg0) −(λ − µ)id = 0.
�

Remark. There are up to n confocal quadrics meeting in a non-absolute point of
Pn (more are not possible because of their mutual orthogonality).

4.3. Ivory’s Theorem.

Theorem 2. (Generalization of Ivory’s Theorem) Assume that in a projective
space Pn with metric (3) two regular quadrics Φ0 and Φ1 are confocal and of the
same type. Then there is a smooth family Φλ = lλ(Φ0) (0 ≤ λ ≤ 1) of quadrics
confocal with Φ0 and Φ1 = l1(Φ0), such that lλ is selfadjoint and has the Ivory
property:

δ(x, lλ(y)) = δ(l(λx),y) for all x,y ∈ Φ0.(16)

Any further quadric Ψ confocal with Φ0 which contains a point x ∈ Φ0 contains
the entire path lλ(x), which intersects all quadrics Φλ orthogonally.

Proof: By Lemma 9, there exists l such that Φ0 is defined by id − l2 and
Φ1 = l(Φ0). Lemma 11 shows the existence of Φλ and lλ. By Lemma 6, lλ has the
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Ivory property (16). At last, Lemma 12 shows the statement about the quadric
Ψ, if it exists. �
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[11] O. Staude: Flächen 2. Ordnung und ihre Systeme und Durchdringungskurven. Ency-
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