A kinematic approach to Kokotsakis meshes

Hellmuth Stachel ${ }^{1}$
Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstr. 8-10/104, A 1040 Wien, Austria

Abstract

A Kokotsakis mesh is a polyhedral structure consisting of an n-sided central polygon \mathcal{P}_{0} surrounded by a belt of polygons in the following way: Each side a_{i} of \mathcal{P}_{0} is shared by an adjacent polygon \mathcal{P}_{i}, and the relative motion between cyclically consecutive neighbor polygons is a spherical coupler motion. Hence, each vertex of \mathcal{P}_{0} is the meeting point of four faces. In the case $n=3$ the mesh is part of an octahedron. These structures with rigid faces and variable dihedral angles were first studied in the thirties of the last century. However, in the last years there was a renaissance: The question under which conditions such meshes are infinitesimally or continuously flexible gained high actuality in discrete differential geometry. The goal of this paper is to revisit the wellknown continuously flexible examples (Bricard, Graf, Sauer, Kokotsakis) from the kinematic point of view and to extend their list by a new family.

Keywords: Kokotsakis mesh, discrete conjugate net, overconstrained mechanism, spherical coupler motion

1. Introduction

The definition of a Kokotsakis mesh (German: Neunflach) dates back to A.I. Kokotsakis (1932). While for arbitrary n the classification of continously flexible Kokotsakis meshes is an open problem (compare Bobenko et al., 2008, p. 76), for the case $n=3$ we know since R. Bricard (1897) that there are three flexible types (see also Stachel, 1987).

In discrete differential geometry there is an interest in polyhedral structures composed of quadrilaterals, i.e., in quadrilateral surfaces. When all quadrilaterals are planar, the edges form a discrete conjugate net (see, e.g., Pottmann et al., 2007, Fig. 14e). When each quadrilateral is seen as a rigid body and only the dihedral angles can vary, the question arises under which conditions such structures are flexible. In Bobenko et al. (2008), p. 75, the following theorem

[^0]a)

b)

Figure 1: a) Kokotsakis mesh for $n=4$ and b) spherical image of the pyramide with apex V_{1}
can be found:
A discrete conjugate net is continuously flexible if and only if all its 3×3 complexes, i.e., all included Kokotsakis meshes, are continuously flexible.
This reveals the recent interest in these examples of overconstrained structures.

1.1. Kinematic interpretation

Let us concentrate on the case $n=4$ (see Fig. 1a). In terms of kinematics the involved polygons $\mathcal{P}_{0}, \ldots, \mathcal{P}_{4}$ represent different systems $\Sigma_{0}, \ldots, \Sigma_{4}$, i.e., rigid bodies. The central polygon \mathcal{P}_{0} with vertices V_{1}, \ldots, V_{3} and sides a_{1}, \ldots, a_{4} stands for the fixed system Σ_{0}. The sides a_{i} are instantaneous axes $I_{i 0}$ of the relative motions Σ_{i} / Σ_{0}, i.e., of Σ_{i} against Σ_{0}.

For $n=4$ the edges of a Kokotsakis mesh constitute a net of folds. There are four connected triples of edges. For the sake of brevity, we call them horizontal or vertical (note Fig. 1a). The horizontal folds include either a_{1} or a_{3} as central edge, the vertical folds pass either through a_{2} or through a_{4}. Each vertex V_{i} is a crossing point of a horizontal and a vertical fold.

Since not the lengths of the sides $a_{1}=\overline{V_{1} V_{2}}, \ldots, a_{4}=\overline{V_{4} V_{1}}$ of \mathcal{P}_{0}, but only their directions have an influence on the flexibility, we can translate all foursided pyramides with apex $V_{i}, i=1, \ldots, 4$, through a common center O. If we intersect these pyramides with the unit sphere S_{2} centered at O, we obtain the spherical image of the mesh. Then we can state:

Theorem 1. A Kokotsakis mesh is of k-th order infinitesimally flexible, $k=$ $1,2, \ldots$, or continuously flexible if and only if its spherical image is of k-th order infinitesimally or continuously flexible, respectively.

First order infinitesimal flexibility of such meshes has been characterized by Kokotsakis (1932) and recently by O.N. Karpenkov (2008). It should be noted that due to B. Wegner (1984) first order flexibility of a spherical structure is
equivalent to first order flexibility of its planar sections; this principle called 'coning' is the main reason for the projective invariance of first order flexibility. 2nd order infinitesimal flexibility or Kokotsakis meshes has recently been studied in Bobenko et al. (2008).

If we intersect the planes adjacent to the vertex V_{i} with a sphere centered at V_{i}, the relative motion $\Sigma_{i+1} / \Sigma_{i}, i=1, \ldots, 4(\bmod 4)$, is a spherical coupler motion. To recall, a spherical coupler motion (see Fig. 1b) is based on a spherical quadrangle $I_{10} I_{20} B A$ with constant edge lengths but variable angles. It transmits the rotation about the center I_{10} through the angle φ_{1} by the coupler $A B$ non-uniformly to the rotation about I_{20} through φ_{2}.

A Kokotsakis mesh is continuously flexible if and only if the transmission of the rotation Σ_{1} / Σ_{0} to Σ_{3} / Σ_{0} by the two coupler motions at V_{1} and V_{2} on the right hand side (Fig. 1a) is the same as via V_{4} and V_{3} on the left hand side. This is why we change the notation slightly and replace $\Sigma_{4}, V_{4}, V_{3}, a_{4}=I_{40}$ by $\Sigma_{2}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}, a_{2}^{\prime}=I_{20}^{\prime}$, respectively. Of course, in the flexible case there is also a two-fold 'horizontal' decomposition of the transmission $\Sigma_{2}^{\prime} / \Sigma_{2}$, one via Σ_{1} and the other via Σ_{3}.

The transference from a Kokotsakis mesh to its spherical image gives a unique result only if each edge is oriented. It is quite natural to endow the axes I_{10}, \ldots, I_{40} with an orientation since the angles of rotations about these axes need to be signed. However, the orientation of all other edges - or, equivalently, the choice of half-edges terminated by V_{i} — is arbitrary. This leads to some ambiguities.

1.2. Known continously flexible examples

Up to recent, to the author's best knowledge the following examples of continuously flexible Kokotsakis meshes are known. Under appropriate notation and orientation of edges the flexible cases can be characterized as follows:
(I) Planar-symmetric type (Kokotsakis, 1932, § 18): The reflection in the plane of symmetry of V_{1} and V_{4} maps each horizontal fold onto itself while the two vertical folds are exchanged.
(II) Translational type: There is a translation $V_{1} \mapsto V_{4}$ and $V_{2} \mapsto V_{3}$ mapping the three planes on the right hand side onto the triple on the left hand side.
(III) Isogonal type (Kokotsakis, 1932; Bobenko et al., 2008): At each vertex opposite angles are congruent. We return to this 3×3 complex of a Voss surface in Section 4.1.
(IV) Orthogonal type (Sauer, Graf, 1931; Sauer, 1970): Here the horizontal folds are located in parallel (say: horizontal) planes, the vertical folds in vertical planes. \mathcal{P}_{0} is a trapezoid. The underlying conditions for this 3×3 complex of T-nets will be presented in Section 4.2.

In Section 4.3 a new family of continuously flexible Kokotsakis meshes will be introduced, which we call the line-symmetric type V though the symmetries
are only locally. This family includes Kokotsaki's remarkable example of a planar tesselation with congruent convex quadrangles (Kokotsakis (1932, Fig. 15), note also Bobenko et al. (2008, Fig. 8) or Stachel (2009)).

The famous Miura-ori folding technique (e.g., Piekarski (2000) or Stachel (2009)) contains 3×3 complexes which are of type II, III and IV, simultaneously. As shown in Stachel (2000), any Cardan joint is also based on a spherical coupler motion, however a particular case where the sides $I_{10} A, I_{20} B$ and $A B$ have the spherical length $\pi / 2$. An appropriate combination of two Cardan joints gives a uniform transmission from Σ_{1} to Σ_{3}. This results in a flexible case with parallel axes I_{10} and I_{30} which obeys the conditions of type V ; however, the second decomposition according to type V is no more a Cardan joint.

We finally emphasize that the complete classification of continuously flexible meshes has not been achieved yet.

1.3. Conventions

According to Theorem 1 our investigation takes place on the unit sphere S^{2} with center O. In order to avoid ambiguities in spherical geometry, we introduce the following notations and conventions:

- Each point A on the sphere has a diametrically opposed point \bar{A}, its antipode. A circle on S^{2} passing through A is a great circle if and only if it passes also through \bar{A}.
- For any two points A, B with $B \neq A, \bar{A}$ the spherical segment or bar $A B$ stands for the shorter of the two connecting arcs on the great circle spanned by A and B. We denote this great circle by $[A B]$.
- The spherical distance $\overline{A B}$ is defined as the arc length of the segment $A B$. We require $0 \leq \overline{A B} \leq \pi$ thus including also the limiting cases $B=A$ and $B=\bar{A}$.
- The oriented angle $\Varangle A B C$ on S^{2} is the angle of the rotation about axis $O B$ which carries the segment $B A$ into a position aligned with the segment $B C$. This angle is oriented in the mathematical sense, if looking from outside, and can be bounded by $-\pi<\Varangle A B C \leq \pi$.

2. Analysis of a spherical coupler motion

We start with the analysis of the spherical coupler motion, which is the spherical image of the flexing pyramide with apex V_{1} (Fig. 2): Let $I_{10} I_{20}$ be the frame link of a spherical four-bar with the coupler $A_{1} B_{1}$. We denote the spherical length of the driving arm $I_{10} A_{1}$ with α_{1} and that of the driven arm $I_{20} B_{1}$ with β_{1}. Furthermore, we set $\gamma_{1}:=\overline{A_{1} B_{1}}$ and $\delta_{1}:=\overline{I_{10} I_{20}}$ obeying

$$
0<\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}<\pi
$$

The movement of the coupler remains unchanged when A_{1} is replaced by its antipode \bar{A}_{1} and at the same time α_{1} and γ_{1} are substituted by $\pi-\alpha_{1}$ and

Figure 2: a) Pyramides with apices V_{1} and V_{2} and b) composition of the two spherical fourbars $I_{10} A_{1} B_{1} I_{20}$ and $I_{20} A_{2} B_{2} I_{30}$ with side lengths $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}, i=1,2$
$\pi-\delta_{1}$, respectively. The same holds for the other vertices. When I_{10} is replaced by its antipode \bar{I}_{10}, then also the sense of orientation changes, when the rotation of the driving bar $I_{10} A_{1}$ is inspected from outside of S^{2} either at I_{10} or at \bar{I}_{10}.

2.1. Relation between input and output angle

We use a cartesian coordinate frame with I_{10} on the positive x-axis and $I_{10} I_{20}$ in the $x y$-plane such that I_{20} has a positive y-coordinate (see Fig. 2b). The input angle φ_{1} is measured between $I_{10} I_{20}$ and the driving arm $I_{10} A_{1}$ in mathematically positive sense. The output angle φ_{2} is the oriented exterior angle at vertex I_{20}, hence $\varphi_{2}=\Varangle \bar{I}_{10} I_{20} B_{1}$. This results in the following coordinates:

$$
A_{1}=\left(\begin{array}{c}
\mathrm{c} \alpha_{1} \\
\mathrm{~s} \alpha_{1} \mathrm{c} \varphi_{1} \\
\mathrm{~s} \alpha_{1} \mathrm{~s} \varphi_{1}
\end{array}\right) \text { and } \quad B_{1}=\left(\begin{array}{c}
\mathrm{c} \beta_{1} \mathrm{c} \delta_{1}-\mathrm{s} \beta_{1} \mathrm{~s} \delta_{1} \mathrm{c} \varphi_{2} \\
\mathrm{c} \beta_{1} \mathrm{~s} \delta_{1}+\mathrm{s} \beta_{1} \mathrm{c} \delta_{1} \mathrm{c} \varphi_{2} \\
\mathrm{~s} \beta_{1} \mathrm{~s} \varphi_{2}
\end{array}\right) .
$$

Herein s and c are abbreviations for the sine and cosine function, respectively. In these equations the lengths α_{1}, β_{1} and δ_{1} are signed. The coordinates would also be valid for negative lengths.

The constant length γ_{1} of the coupler implies the condition

$$
\begin{align*}
& \mathrm{c} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{c} \delta_{1}-\mathrm{c} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{~s} \delta_{1} \mathrm{c} \varphi_{2}+\mathrm{s} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{~s} \delta_{1} \mathrm{c} \varphi_{1} \\
& +\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \delta_{1} \mathrm{c} \varphi_{1} \mathrm{c} \varphi_{2}+\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{~s} \varphi_{1} \mathrm{~s} \varphi_{2}=\mathrm{c} \gamma_{1} . \tag{1}
\end{align*}
$$

Now we express $\mathrm{s} \varphi_{i}$ and $\mathrm{c} \varphi_{i}$ in terms of $t_{i}:=\tan \varphi_{i} / 2$ setting

$$
\mathrm{c} \varphi=\frac{1-t_{i}^{2}}{1+t_{i}^{2}}, \quad \mathrm{~s} \varphi=\frac{2 t_{i}}{1+t_{i}^{2}} .
$$

Figure 3: $t_{1}=\tan \varphi_{1} / 2$ is a projective coordinate of point A_{1} on the circle a_{1}

Note that t_{1} is a projective coordinate of point A_{1} on the circle a_{1} (see Fig. 3). The same is true for t_{2} and $B_{1} \in b_{1}$. From (1) we obtain

$$
\begin{aligned}
& \mathrm{c} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{c} \delta_{1}-\mathrm{c} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{~s} \delta_{1} \frac{1-t_{2}^{2}}{1+t_{2}^{2}}+\mathrm{s} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{~s} \delta_{1} \frac{1-t_{1}^{2}}{1+t_{1}^{2}} \\
& +\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \delta_{1} \frac{1-t_{1}^{2}}{1+t_{1}^{2}} \frac{1-t_{2}^{2}}{1+t_{2}^{2}}+\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \frac{2 t_{1}}{1+t_{1}^{2}} \frac{2 t_{2}^{2}}{1+t_{2}^{2}}=\mathrm{c} \gamma_{1}
\end{aligned}
$$

or

$$
\begin{gather*}
-K\left(1+t_{1}^{2}\right)\left(1-t_{2}^{2}\right)+L\left(1-t_{1}^{2}\right)\left(1+t_{2}^{2}\right)+M\left(1-t_{1}^{2}\right)\left(1-t_{2}^{2}\right) \\
+4 \mathrm{~s} \alpha_{1} \mathrm{~s} \beta_{1} t_{1} t_{2}+N\left(1+t_{1}^{2}\right)\left(1+t_{1}^{2}\right)=0 \tag{2}
\end{gather*}
$$

where

$$
\begin{array}{ll}
K=\mathrm{c} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{~s} \delta_{1}, & M=\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \delta_{1}, \tag{3}\\
L=\mathrm{s} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{~s} \delta_{1}, & N=\mathrm{c} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{c} \delta_{1}-\mathrm{c} \gamma_{1} .
\end{array}
$$

The biquadratic equation (2) describes a 2-2-correspondence between points A_{1} on circle $a_{1}=\left(I_{10} ; \alpha_{1}\right)$ and B_{1} on $b_{1}=\left(I_{20} ; \beta_{1}\right)$. It can be abbreviated by

$$
\begin{equation*}
c_{22} t_{1}^{2} t_{2}^{2}+c_{20} t_{1}^{2}+c_{02} t_{2}^{2}+c_{11} t_{1} t_{2}+c_{00}=0 \tag{4}
\end{equation*}
$$

setting

$$
\begin{array}{r}
c_{00}=-K+L+M+N, \quad c_{02}=K+L-M+N, \\
\quad c_{11}=4 \mathrm{~s} \alpha_{1} \mathrm{~s} \beta_{1} \neq 0, \tag{5}\\
c_{20}=-K-L-M+N, \quad c_{22}=K-L+M+N
\end{array}
$$

Alternatively, (2) can also be expressed as

$$
\begin{align*}
& \sin \frac{\alpha_{1}-\beta_{1}+\gamma_{1}+\delta_{1}}{2} \sin \frac{\alpha_{1}-\beta_{1}-\gamma_{1}+\delta_{1}}{2} t_{1}^{2} t_{2}^{2} \\
+ & \sin \frac{\alpha_{1}+\beta_{1}+\gamma_{1}+\delta_{1}}{2} \sin \frac{\alpha_{1}+\beta_{1}-\gamma_{1}+\delta_{1}}{2} t_{1}^{2}-2 \sin \alpha_{1} \sin \beta_{1} t_{1} t_{2} \\
+ & \sin \frac{\alpha_{1}+\beta_{1}+\gamma_{1}-\delta_{1}}{2} \sin \frac{\alpha_{1}+\beta_{1}-\gamma_{1}-\delta_{1}}{2} t_{2}^{2} \tag{6}\\
+ & \sin \frac{\alpha_{1}-\beta_{1}+\gamma_{1}-\delta_{1}}{2} \sin \frac{\alpha_{1}-\beta_{1}-\gamma_{1}-\delta_{1}}{2}=0 .
\end{align*}
$$

Remark: It should be noted that conversely the 2-2-correspondance (4) defines $\alpha_{1}, \ldots, \delta_{1}$ uniquely. This can be seen as follows: First we get

$$
\begin{array}{ll}
4 K=-c_{00}+c_{02}-c_{20}+c_{22}, & 4 L=c_{00}+c_{02}-c_{20}-c_{22} \\
4 M=c_{00}-c_{02}-c_{20}+c_{22}, & 4 N=c_{00}+c_{02}+c_{20}+c_{22}
\end{array}
$$

On the other hand

$$
\frac{4 K}{c_{11}}=\frac{\mathrm{s} \delta_{1}}{\tan \alpha_{1}}, \quad \frac{4 L}{c_{11}}=\frac{\mathrm{s} \delta_{1}}{\tan \beta_{1}}, \quad \frac{4 M}{c_{11}}=\mathrm{c} \delta_{1}, \quad \frac{4 N}{c_{11}}=\frac{\mathrm{c} \alpha_{1} \mathrm{c} \beta_{1} \mathrm{c} \delta_{1}-\mathrm{c} \gamma}{\mathrm{~s} \alpha_{1} \mathrm{~s} \beta_{1}} .
$$

This gives consecutively $\mathrm{c} \delta_{1}, \tan \alpha_{1}, \tan \beta_{1}$ and $\mathrm{c} \gamma_{1}$, which defines the four barlengths uniquely within the intervall $[0, \pi]$.

2.2. Relation between opposite angles

Figure 4: a) Opposite angles φ_{1} and ψ_{1} at the spherical four-bar $I_{10} A_{1} B_{1} I_{20}$; b) Orthogonal case: each quadrangle has orthogonal diagonals

At the end of this analysis of a spherical four-bar mechanism we focus on opposite angles in the spherical quadrangle $I_{10} A_{1} B_{1} I_{20}$: The diagonal $A_{1} I_{20}$ splits the quadrangle into two triangles, and we inspect the interior angles φ_{1} at I_{10} and ψ_{1} at B_{1} (Fig. 4a). Also for non-convex quadrangles, the spherical Cosine Theorem implies

$$
\cos \overline{A_{1} I_{20}}=\mathrm{c} \beta_{1} \mathrm{c} \gamma_{1}+\mathrm{s} \beta_{1} \mathrm{~s} \gamma_{1} \mathrm{c} \psi_{1}=\mathrm{c} \alpha_{1} \mathrm{c} \delta_{1}+\mathrm{s} \alpha_{1} \mathrm{~s} \delta_{1} \mathrm{c} \varphi_{1}
$$

Hence there is a linear function, i.e., there are constants $k_{1}, l_{1} \in \mathbb{R}$ such that

$$
\begin{equation*}
\mathrm{c} \psi_{1}=k_{1}+l_{1} \mathrm{c} \varphi_{1} \quad \text { for } \quad-1 \leq \mathrm{c} \psi_{1}, \mathrm{c} \varphi_{1} \leq 1 \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
k_{1}=\frac{\mathrm{c} \alpha_{1} \mathrm{c} \delta_{1}-\mathrm{c} \beta_{1} \mathrm{c} \gamma_{1}}{\mathrm{~s} \beta_{1} \mathrm{~s} \gamma_{1}}, \quad l_{1}=\frac{\mathrm{s} \alpha_{1} \mathrm{~s} \delta_{1}}{\mathrm{~s} \beta_{1} \mathrm{~s} \gamma_{1}} . \tag{8}
\end{equation*}
$$

For later use it is necessary to define also ψ_{1} as an oriented angle, hence

$$
\psi_{1}=\Varangle I_{20} B_{1} A_{1}, \quad \varphi_{1}=\Varangle I_{20} I_{10} A_{1} \quad \text { under } \quad-\pi<\psi_{1}, \varphi_{1} \leq \pi
$$

This is still compatible with eq. (7).

We note that in general for given φ_{1} there are two positions B_{1} and \widetilde{B}_{1} on circle b_{1} obeying (7). They are placed symmetrically with respect to the diagonal $A_{1} I_{20}$. So, the corresponding oriented angles $\Varangle I_{20} B_{1} A_{1}$ and $\Varangle I_{20} \widetilde{B}_{1} A_{1}$ have different signs (Fig. 4a).

Lemma 2. The cosines of the opposite oriented angles $\psi_{1}=\Varangle I_{20} B_{1} A_{1}$ and $\varphi_{1}=\Varangle I_{20} I_{10} A_{1}$ at the four-bar are linearly related by eq. (7). The signs of φ_{1} and ψ_{1} are different if and only if B_{1} and I_{10} are on different sides of $\left[A_{1} I_{20}\right]$.

Remark: Contrary to the 2-2-correspondance describing the relation between φ_{1} and φ_{2}, the linear function (7) does not characterize the underlying four-bar uniquely. This follows immediately from a parameter count.

2.3. Particular cases

Spherical isogram:

Under the conditions $\beta_{1}=\alpha_{1}$ and $\delta_{1}=\gamma_{1}$ opposite sides of the quadrangle $I_{10} A_{1} B_{1} I_{20}$ have equal lengths. Such quadrangles are called spherical isograms. In this case we have $c_{00}=c_{22}=0$ in (4), and eq. (6) converts into

$$
\mathrm{s} \alpha_{1}\left[-2 \mathrm{~s} \alpha_{1} t_{1} t_{2}+\mathrm{s}\left(\alpha_{1}+\gamma_{1}\right) t_{1}^{2}+\mathrm{s}\left(\alpha_{1}-\gamma_{1}\right) t_{2}^{2}\right]=0
$$

The left hand side can be decomposed as

$$
\begin{aligned}
& \mathrm{s}\left(\alpha_{1}-\gamma_{1}\right)\left[\mathrm{s}\left(\alpha_{1}-\gamma_{1}\right) t_{2}^{2}-2 \mathrm{~s} \alpha_{1} t_{1} t_{2}+\mathrm{s}\left(\alpha_{1}+\gamma_{1}\right) t_{1}^{2}\right] \\
& =\left[\mathrm{s}\left(\alpha_{1}-\gamma_{1}\right) t_{2}-\left(\mathrm{s} \alpha_{1}+\mathrm{s} \gamma_{1}\right) t_{1}\right]\left[\mathrm{s}\left(\alpha_{1}-\gamma_{1}\right) t_{2}-\left(\mathrm{s} \alpha_{1}-\mathrm{s} \gamma_{1}\right) t_{1}\right]
\end{aligned}
$$

because of $\mathrm{s}^{2} \alpha_{1}-\mathrm{s}^{2} \gamma_{1}=\mathrm{s}\left(\alpha_{1}+\gamma_{1}\right) \mathrm{s}\left(\alpha_{1}-\gamma_{1}\right)$. The 2-2-correspondance between the circles a_{1} and b_{1} splits into two projectivities ${ }^{2}$

$$
\begin{equation*}
t_{1} \mapsto t_{2}=\frac{\left(\mathrm{s} \alpha_{1} \pm \mathrm{s} \gamma_{1}\right)}{\mathrm{s}\left(\alpha_{1}-\gamma_{1}\right)} t_{1} \tag{9}
\end{equation*}
$$

provided $\alpha_{1} \neq \gamma_{1}, \pi-\gamma_{1}$. Both projectivities keep $t_{1}=0$ and $t_{1}=\infty$ fixed (Fig. 3). These parameters belong to the two folded positions, where the coupler $A_{1} B_{1}$ is aligned with the frame link $I_{10} I_{20}$. In these positions a bifurcation is possible between the two projectivities. (Note that at the planar analogue one of these projectivities is the identity $t_{2}=t_{1}$ as $I_{10} A_{1} B_{1} I_{20}$ is a parallelogram.)

Orthogonal case:

For a given point $A_{1} \in a_{1}$ the corresponding $B_{1}, \widetilde{B}_{1} \in b_{1}$ are the points of intersection between the circles $\left(A_{1} ; \gamma_{1}\right)$ and $b_{1}=\left(I_{20} ; \beta_{1}\right)$ (see Fig. 4a). Hence, B_{1} and \widetilde{B}_{1} are located on a great circle perpendicular to the great circle $\left[A_{1} I_{20}\right]$.

[^1]Under the condition

$$
\begin{equation*}
\cos \alpha_{1} \cos \beta_{1}=\cos \gamma_{1} \cos \delta_{1} \tag{10}
\end{equation*}
$$

the diagonals of the spherical quadrangle $I_{10} A_{1} B_{1} I_{20}$ are orthogonal (Fig. 4b) as each of the products equals the products of cosines of the four segments on the two diagonals. Hence, under (10) B_{1} and \widetilde{B}_{1} are always aligned with I_{10}, but also conversely, the two points A_{1} and \widetilde{A}_{1} corresponding to B_{1} are aligned with I_{20}.

Lemma 3. Under condition (10) the 2-2-correspondence between a_{1} and b_{1} maps pairs of points $A_{1} \in a_{1}$ spherically aligned with I_{20} onto pairs of points $B_{1} \in b_{1}$ which are spherically aligned with I_{10}. Corresponding great circles $\left[I_{20} A_{1}\right]$ and $\left[I_{10} B_{1}\right]$ are orthogonal (Fig. 4b).
Remark: In the notation (4) this is characterized by $\operatorname{det}\left(\begin{array}{cc}c_{22} & c_{02} \\ c_{20} & c_{00}\end{array}\right)=0$, because by (5) this is equivalent to $\operatorname{det}\left(\begin{array}{rr}K & N \\ M & -L\end{array}\right)=0$, which means

$$
\mathrm{s} \alpha_{1} \mathrm{c} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \beta_{1} \mathrm{~s}^{2} \delta_{1}+\mathrm{s} \alpha_{1} \mathrm{c} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \beta_{1} \mathrm{c}^{2} \delta_{1}-\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \gamma_{1} \mathrm{c}^{2} \delta_{1}=0
$$

or

$$
\mathrm{s} \alpha_{1} \mathrm{c} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \beta_{1}=\mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \mathrm{c} \gamma_{1} \mathrm{c} \delta_{1} \quad \text { under } \quad \mathrm{s} \alpha_{1} \mathrm{~s} \beta_{1} \neq 0
$$

3. Composition of two spherical coupler motions

Now we use the output angle φ_{2} of this coupler motion as the input angle of a second coupler motion with vertices $I_{20} A_{2} B_{2} I_{30}$, with arm lengths α_{2}, β_{2}, with the coupler length γ_{2} and with δ_{2} as length of the frame link (Fig. 2b). The two frame links are assumed in aligned position. In the case $\Varangle I_{10} I_{20} I_{30}=\pi$ the length δ_{2} is positive, otherwise negative. Analogously, a negative α_{2} expresses the fact that the aligned bars $I_{20} B_{1}$ and $I_{20} A_{2}$ are pointing to opposite sides. Changing the sign of β_{2} means replacing the output angle φ_{3} by $\varphi_{3}-\pi$. The sign of γ_{2} has no influence on the transmission.

Due to (4) the transmission between the angles φ_{1}, φ_{2} and the output angle φ_{3} of the second four-bar with $t_{3}:=\tan \varphi_{3} / 2$ can be expressed by the two biquadratic equations

$$
\begin{aligned}
c_{22} t_{1}^{2} t_{2}^{2}+c_{20} t_{1}^{2}+c_{02} t_{2}^{2}+c_{11} t_{1} t_{2}+c_{00} & =0 \\
d_{22} t_{2}^{2} t_{3}^{2}+d_{20} t_{2}^{2}+d_{02} t_{3}^{2}+d_{11} t_{2} t_{3}+d_{00} & =0 .
\end{aligned}
$$

The $d_{i k}$ are defined by equations analogue to eqs. (5) and (3). We eliminate t_{2} by computing the resultant of the two polynomials with respect to t_{2} and obtain

$$
\operatorname{det}\left(\begin{array}{cccc}
c_{22} t_{1}^{2}+c_{02} & c_{11} t_{1} & c_{20} t_{1}^{2}+c_{00} & 0 \tag{11}\\
0 & c_{22} t_{1}^{2}+c_{02} & c_{11} t_{1} & c_{20} t_{1}^{2}+c_{00} \\
d_{22} t_{3}^{2}+d_{20} & d_{11} t_{3} & d_{02} t_{3}^{2}+d_{00} & 0 \\
0 & d_{22} t_{3}^{2}+d_{20} & d_{11} t_{3} & d_{02} t_{3}^{2}+d_{00}
\end{array}\right)=0
$$

This biquartic equation expresses a 4-4-correspondance between points A_{1} and B_{2} on the circles a_{1} and b_{2}, respectively.

4. Examples of flexible Kokotsakis meshes

As mentioned above, a continuously flexible Kokotsakis mesh for $n=4$ is based on a two-fold decomposition of the transmission $\Sigma_{1} \rightarrow \Sigma_{3}$ into two spherical four-bars. In view of Fig. 1a we speak of the right-hand decomposition via Σ_{2} and the left-hand decomposition via $\Sigma_{4}=\Sigma_{2}^{\prime}$. Of course, in the translational type II the two decompositions have identical spherical images.

4.1. Combination of isograms

When two isograms are combined, both 2-2-correspondances split into projectivities $t_{1} \mapsto t_{2}$ and $t_{2} \mapsto t_{3}$ with $0 \mapsto 0$ and $\infty \mapsto \infty$ in the sense of Fig. 3. Hence, also the 4 - 4 -correspondance is composed from such projectivities. Each of them is uniquely defined by any pair $t_{1} \mapsto t_{3}$ with $t_{1} \neq 0, \infty$. Beside the two isograms on the right-hand side we can also combine two isograms with lengths $\alpha_{1}^{\prime}, \ldots, \delta_{1}^{\prime}$ on the left-hand side such that both $4-4$-correspondances share one projectivity. This proves the continuous flexibility of the isogonal type III: Any Kokotsakis mesh consisting of four isogonal pyramides - the preimages of spherical isograms - and with any given non-coplanar initial position is continuously flexible (Kokotsakis, 1932).

These arguments are not only true for $n=4$. We can conclude that referring to Fig. 1a - for $k \geq 2$ isogonal pyramides on the 'right-hand side' of the central polygon \mathcal{P}_{0} and $l \geq 1$ isogonal pyramides on the 'left-hand side' with a non-coplanar initial position a flexible Kokotsakis mesh arises with an n-sided central polygon, $n=k+l$. This includes for $n=3$ the Bricard octahedra of type 3. By (9) we can formulate the closure conditions as

$$
\prod_{i=1}^{k} \frac{\left(\mathrm{~s} \alpha_{i} \pm \mathrm{s} \gamma_{i}\right)}{\mathrm{s}\left(\alpha_{i}-\gamma_{i}\right)}=\prod_{j=1}^{l} \frac{\left(\mathrm{~s} \alpha_{j}^{\prime} \pm \mathrm{s} \gamma_{j}^{\prime}\right)}{\mathrm{s}\left(\alpha_{j}-\gamma_{j}\right)} \quad \text { and } \quad \sum_{i=1}^{k} \delta_{i}=\sum_{j=1}^{l} \delta_{j}^{\prime}
$$

for any appropriate choice of signs.

4.2. Combination of quadrangles with orthogonal diagonals

In view of Lemma 3 we combine two orthogonal four-bars such that they have one diagonal in common (see Fig. 5a), i.e., under $\alpha_{2}=\beta_{1}$ and $\delta_{2}=-\delta_{1}$, hence $I_{30}=I_{10}$. Then the 4-4-correspondance between A_{1} and B_{2} is the square of the 2-2-correspondance

$$
c_{21} t_{1}^{2} t_{3}+c_{12} t_{1} t_{3}^{2}+c_{10} t_{1}+c_{01} t_{3}=0
$$

which expresses the fact that A_{1} and B_{2} are permanently spherically aligned with I_{20}. The coefficients are

$$
\begin{array}{ll}
c_{21}=\mathrm{t} \beta_{2}\left(\mathrm{t} \alpha_{1}+\mathrm{t} \delta_{1}\right), & c_{12}=-\mathrm{t} \alpha_{1}\left(\mathrm{t} \beta_{2}+\mathrm{t} \delta_{1}\right) \\
c_{10}=\mathrm{t} \alpha_{1}\left(\mathrm{t} \beta_{2}-\mathrm{t} \delta_{1}\right), & c_{01}=-\mathrm{t} \beta_{2}\left(\mathrm{t} \alpha_{1}-\mathrm{t} \delta_{1}\right)
\end{array}
$$

Herein t is the abbreviation for the tangent function.

Figure 5: Spherical images of the right-hand decomposition a) of the orthogonal type IV, and b) of the line-symmetric type V

Obviously, any other composition of two such four-bars obeying

$$
\begin{equation*}
\mathrm{t} \alpha_{1}^{\prime}: \mathrm{t} \delta_{1}^{\prime}: \mathrm{t} \beta_{2}^{\prime}=\mathrm{t} \alpha_{1}: \mathrm{t} \delta_{1}: \mathrm{t} \beta_{2} \tag{12}
\end{equation*}
$$

gives the same transmission $\varphi_{1} \mapsto \varphi_{3}$. This causes the flexibility of the (3×3) complexes included in T-nets, first studied in Sauer, Graf (1931). The spherical images of the horizontal folds are located on the great circle $\left[I_{10} B_{1}\right]$, that of the vertical folds on the orthogonal diagonals $\left[I_{20} A_{1}\right]$ or $\left[I_{20}^{\prime} A_{1}^{\prime}\right]$.

In the following summary we replace the orthogonality-condition (10) by a proportion.

Theorem 4. Under

$$
\mathrm{c} \alpha_{1}: \mathrm{c} \delta_{1}: \mathrm{c} \beta_{2}=\mathrm{c} \gamma_{1}: \mathrm{c} \beta_{1}: \mathrm{c} \gamma_{2}, \quad \alpha_{2}=\beta_{1} \quad \text { and } \quad \delta_{2}=-\delta_{1}
$$

the transmission $\varphi_{1} \mapsto \varphi_{3}$ (Fig. 5a) depends only on the tangents of α_{1}, δ_{1} and β_{2}. Hence, any other choice of angles $\alpha_{1}^{\prime}, \ldots, \delta_{2}^{\prime}$ obeying these conditions and eq. (12) gives the same transmission and therefore a flexible Kokotsakis mesh of the orthogonal type $I V$.

Fig. 6 shows two different decompositions of such a transmission. The underlying overconstrained spherical linkage is a composition of two spherical Dixonmechanisms (see, e.g., Stachel, 1997). At these mechanisms the bars form a bipartite graph and the knots are moving on two orthogonal great circles.

4.3. A new family of flexible Kokotsakis meshes

Now we specify the second four-bar as mirror of the first one after reflection in an angle bisector at I_{20} (see Fig. 5b). Depending on the choice of the bisector, this implies

$$
\begin{equation*}
\left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)=\left(\delta_{1}, \pm \gamma_{1},\left|\alpha_{1}\right|,-\beta_{1}\right) \quad \text { or } \quad\left(-\delta_{1}, \pm \gamma_{1},\left|\alpha_{1}\right|, \beta_{1}\right) \tag{13}
\end{equation*}
$$

Figure 6: Spherical image of the orthogonal type IV

Angle ψ_{1}, previously opposite to the input angle φ_{1}, becomes the output angle, or more precisely, φ_{3} equals $\pm \psi_{1}$ or $\pm\left(\psi_{1}-\pi\right)$.

However, according to the 4-4-correspondance between A_{1} and B_{2} there are still two other solutions for φ_{3}. The corresponding positions of B_{2} are mirrors with respect to $\left[I_{30} A_{2}\right]$. Hence, the $4-4$-correspondance is reducible, and one component is expressed by eq. (7), i.e., $\mathrm{c} \varphi_{3}= \pm\left(k_{1}+l_{1} \mathrm{c} \varphi_{1}\right)$. The sign depends on the choice of the angle bisector at I_{20}.

As already noted in Section 2.2, there are other four-bars with lengths $\alpha_{1}^{\prime}, \ldots, \delta_{1}^{\prime}$ which produce the same transmission, i.e., with constants $k_{1}^{\prime}= \pm k_{1}$, $l_{1}^{\prime}= \pm l_{1}$ by (8) and the same center $I_{30}^{\prime}=I_{30}$ (Fig. 7). We summarize:

Theorem 5. For the composition of any four-bar $\left(\alpha_{1}, \ldots, \delta_{1}\right)$ and its mirror obeying (13) the 4-4-correspondance between A_{1} and B_{2} splits. For one component the cosines of φ_{1} and φ_{3} are linearly related. This transmission is shared by other compositions obeying the conditions

$$
\delta_{1}+\delta_{2}=\delta_{1}^{\prime}+\delta_{2}^{\prime}(\bmod 2 \pi)
$$

and

$$
\mathrm{s} \alpha_{1} \mathrm{~s} \delta_{1}: \mathrm{s} \beta_{1} \mathrm{~s} \gamma_{1}:\left(\mathrm{c} \alpha_{1} \mathrm{c} \delta_{1}-\mathrm{c} \beta_{1} \mathrm{c} \gamma_{1}\right)=\mathrm{s} \alpha_{1}^{\prime} \mathrm{s} \delta_{1}^{\prime}: \pm \mathrm{s} \beta_{1}^{\prime} \mathrm{s} \gamma_{1}^{\prime}:\left(\mathrm{c} \alpha_{1}^{\prime} \mathrm{c} \delta_{1}^{\prime}-\mathrm{c} \beta_{1}^{\prime} \mathrm{c} \gamma_{1}^{\prime}\right)
$$

The twofold decomposition results in an overconstrained spherical linkage (Fig. 7), which has some properties of so-called focal mechanisms in the plane (see, e.g., Wunderlich, 1968). How can the corresponding Kokotsakis mesh be characterized?

Figure 7: Line-symmetric type V: Two different decompositions of the transmission $\varphi_{1} \rightarrow \varphi_{3}$

When at the spherical image the four-bars $I_{10} I_{20} B_{1} A_{1}$ and $I_{20} I_{30} B_{2} A_{2}$ arise from each other by reflection in an angle-bisector, then the corresponding preimages, the pyramides with apices V_{1} and V_{2} are symmetric with respect to a line. This axis of symmetry is perpendicular to I_{20} and located in a plane bisecting the adjacent planes in Σ_{2} and Σ_{0} (compare Fig. 2a). Analogously, the pyramides at V_{1}^{\prime} and V_{2}^{\prime} are line-symmetric. This is why for this new type \mathbf{V} the name line-symmetric is proposed though the symmetry is not global.

Corollary 6. A Kokotsakis mesh with mutually line-symmetric pyramides at V_{1} and V_{2} as well as at V_{1}^{\prime} and V_{2}^{\prime}, which additionally obeys the conditions listed in Theorem 5, is continuosly flexible.

Kokotsakis' example of a flexible tesselation with convex quadrangles (Kokotsakis, 1932, Fig. 15) is a particular case of this type V, but there also the pyramides at V_{1} and V_{1}^{\prime} are mutually line-symmetric as well as that at V_{2} and V_{2}^{\prime} (see Stachel, 2009). Here the signed angles fulfill the following conditions:

$$
\begin{array}{cc}
\alpha_{1}+\beta_{1}+\gamma_{1}+\delta_{1}=2 \pi, & \left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)=\left(-\delta_{1}, \gamma_{1}, \alpha_{1}, \beta_{1}\right) \\
\left(\alpha_{1}^{\prime}, \beta_{1}^{\prime}, \gamma_{1}^{\prime}, \delta_{1}^{\prime}\right)=\left(-\delta_{1}, \gamma_{1}, \beta_{1},-\alpha_{1}\right), & \left(\alpha_{2}^{\prime}, \beta_{2}^{\prime}, \gamma_{2}^{\prime}, \delta_{2}^{\prime}\right)=\left(-\alpha_{1},-\beta_{1}, \delta_{1},-\gamma_{1}\right) .
\end{array}
$$

The composition of two linear functions of type (7) is still a linear function. Therefore we can iterate and use k pairs of symmetric four-bars on the righthand side and l pairs on the left-hand side. As long as they share the resulting linear function and the resulting center of rotation, the complete spherical linkage is continuously flexible. The corresponding preimage is a flexible Kokotsakis mesh with even $n=2(k+l)$.

Finally is should be mentioned that for given $\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}$, and β_{1}^{\prime} the remaining angles $\alpha_{1}^{\prime}, \gamma_{1}^{\prime}, \delta_{1}^{\prime}$ obeying the conditions of Theorem 5 can be computed. For β_{1}^{\prime} sufficiently close to β_{1} real solutions must exist (compare Fig. 7).

References

Bricard, R., 1897. Mémoire sur la théorie de l'octaèdre articulé. J. math. pur. appl., Liouville 3, 113-148.

Bobenko, A.I., Hoffmann, T., Schief, W.K., 2008. On the Integrability of Infinitesimal and Finite Deformations of Polyhedral Surfaces. In: Bobenko et al. (eds.), 2008, Discrete Differential Geometry, Series: Oberwolfach Seminars 38, pp. 67-93.

Karpenkov, O.N., 2008. On the flexibility of Kokotsakis meshes. arXiv:0812. 3050v1 [mathDG] , 16Dec2008.

Kokotsakis, A., 1932. Über bewegliche Polyeder. Math. Ann. 107, 627-647.
Piekarski, M., 2000. Constructional Solutions for Two-Way-Fold-Deployable Space Trusses. In: Pellegrino, S., Guest, S.D. (eds.), Deployable Structures: Theory and Applications, Kluwer Academic Publ., pp. 301-310.
Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., Wang, W., 2007. Geometry of Multi-layer Freeform Structures for Architecture. ACM Trans. Graphics 26(3), SIGGRAPH 2007.

Sauer, R., 1970. Differenzengeometrie. Springer-Verlag, Berlin/Heidelberg.
Sauer, R., Graf, H., 1931. Über Flächenverbiegung in Analogie zur Verknickung offener Facettenflache. Math. Ann. 105, 499-535.

Stachel, H., 2000. Das Gleichlauf-Kugelgelenk - ein Beispiel zum anwendungsorientierten Unterricht aus Darstellender Geometrie. Proc. SDG Symposium Darstellende Geometrie, Dresden 2000 (ISBN 3-86005-258-6), 151-156.

Stachel, H., 1987. Zur Einzigkeit der Bricardschen Oktaeder. J. Geom. 28, 4156.

Stachel, H., 1997. Euclidean line geometry and kinematics in the 3-space. In: Artémiadis, N.K., Stephanidis N.K. (eds.): Proc. 4th Internat. Congress of Geometry, Thessaloniki 1996 (ISBN 960-7425-11-1), pp. 380-391.

Stachel, H., 2009. Remarks on Miura-ori, a Japanese Folding Method. Acta Technica Napocensis, Ser. Applied Mathematics and Mechanics 52, Vol. Ia, 245-248.

Wegner, B., 1984. On the projective invariance of shaky structures in Euclidean space. Acta Mech. 53, 163-171.

Wunderlich, W., 1968. On Burmester's focal mechanism and Hart's straight-line motion. J. Mechanism 3, 79-86.

[^0]: ${ }^{1}$ Email address: stachel@dmg.tuwien.ac.at, URL: http://www.dmg.tuwien.ac.at/stachel

[^1]: ${ }^{2}$ As mentioned above, the vertices of the moving quadrangle can be replaced by their antipodes whithout changing the motion. This is the reason why the same property also shows up under $\beta_{1}=\pi-\alpha_{1}$ and $\delta_{1}=\pi-\gamma_{1}$. We will not mention this in the future but only refer to an 'appropriate choice of orientations'.

