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Abstract

A Kokotsakis mesh is a polyhedral structure consisting of an n-sided central
polygon P0 surrounded by a belt of polygons in the following way: Each side
ai of P0 is shared by an adjacent polygon Pi, and the relative motion between
cyclically consecutive neighbor polygons is a spherical coupler motion. Hence,
each vertex of P0 is the meeting point of four faces. In the case n = 3 the mesh
is part of an octahedron.

These structures with rigid faces and variable dihedral angles were first studied
in the thirties of the last century. However, in the last years there was a re-
naissance: The question under which conditions such meshes are infinitesimally
or continuously flexible gained high actuality in discrete differential geometry.
The goal of this paper is to revisit the wellknown continuously flexible exam-
ples (Bricard, Graf, Sauer, Kokotsakis) from the kinematic point of view and to
extend their list by a new family.

Keywords: Kokotsakis mesh, discrete conjugate net, overconstrained
mechanism, spherical coupler motion

1. Introduction

The definition of a Kokotsakis mesh (German: Neunflach) dates back to A.I.
Kokotsakis (1932). While for arbitrary n the classification of continously flexible
Kokotsakis meshes is an open problem (compare Bobenko et al., 2008, p. 76),
for the case n = 3 we know since R. Bricard (1897) that there are three flexible
types (see also Stachel, 1987).

In discrete differential geometry there is an interest in polyhedral structures
composed of quadrilaterals, i.e., in quadrilateral surfaces. When all quadrilat-
erals are planar, the edges form a discrete conjugate net (see, e.g., Pottmann et
al., 2007, Fig. 14e). When each quadrilateral is seen as a rigid body and only
the dihedral angles can vary, the question arises under which conditions such
structures are flexible. In Bobenko et al. (2008), p. 75, the following theorem
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Figure 1: a) Kokotsakis mesh for n = 4 and b) spherical image of the pyramide with apex V1

can be found:

A discrete conjugate net is continuously flexible if and only if all its 3× 3 com-
plexes, i.e., all included Kokotsakis meshes, are continuously flexible.

This reveals the recent interest in these examples of overconstrained structures.

1.1. Kinematic interpretation

Let us concentrate on the case n = 4 (see Fig. 1a). In terms of kinematics the
involved polygons P0, . . . ,P4 represent different systems Σ0, . . . ,Σ4, i.e., rigid
bodies. The central polygon P0 with vertices V1, . . . , V3 and sides a1, . . . , a4

stands for the fixed system Σ0. The sides ai are instantaneous axes Ii0 of the
relative motions Σi/Σ0, i.e., of Σi against Σ0.

For n = 4 the edges of a Kokotsakis mesh constitute a net of folds. There are
four connected triples of edges. For the sake of brevity, we call them horizontal
or vertical (note Fig. 1a). The horizontal folds include either a1 or a3 as central
edge, the vertical folds pass either through a2 or through a4. Each vertex Vi is
a crossing point of a horizontal and a vertical fold.

Since not the lengths of the sides a1 = V1V2, . . . , a4 = V4V1 of P0, but only
their directions have an influence on the flexibility, we can translate all four-
sided pyramides with apex Vi, i = 1, . . . , 4, through a common center O. If we
intersect these pyramides with the unit sphere S2 centered at O, we obtain the
spherical image of the mesh. Then we can state:

Theorem 1. A Kokotsakis mesh is of k-th order infinitesimally flexible, k =
1, 2, . . . , or continuously flexible if and only if its spherical image is of k-th order
infinitesimally or continuously flexible, respectively.

First order infinitesimal flexibility of such meshes has been characterized by
Kokotsakis (1932) and recently by O.N. Karpenkov (2008). It should be noted
that due to B. Wegner (1984) first order flexibility of a spherical structure is
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equivalent to first order flexibility of its planar sections; this principle called
‘coning’ is the main reason for the projective invariance of first order flexibility.
2nd order infinitesimal flexibility or Kokotsakis meshes has recently been studied
in Bobenko et al. (2008).

If we intersect the planes adjacent to the vertex Vi with a sphere centered
at Vi, the relative motion Σi+1/Σi, i = 1, . . . , 4 (mod 4), is a spherical coupler
motion. To recall, a spherical coupler motion (see Fig. 1b) is based on a spher-
ical quadrangle I10I20BA with constant edge lengths but variable angles. It
transmits the rotation about the center I10 through the angle ϕ1 by the coupler
AB non-uniformly to the rotation about I20 through ϕ2.

A Kokotsakis mesh is continuously flexible if and only if the transmission of
the rotation Σ1/Σ0 to Σ3/Σ0 by the two coupler motions at V1 and V2 on the
right hand side (Fig. 1a) is the same as via V4 and V3 on the left hand side.
This is why we change the notation slightly and replace Σ4, V4, V3, a4 = I40 by
Σ′

2, V
′

1 , V
′

2 , a
′

2 = I ′20, respectively. Of course, in the flexible case there is also a
two-fold ‘horizontal’ decomposition of the transmission Σ′

2/Σ2, one via Σ1 and
the other via Σ3.

The transference from a Kokotsakis mesh to its spherical image gives a
unique result only if each edge is oriented. It is quite natural to endow the
axes I10, . . . , I40 with an orientation since the angles of rotations about these
axes need to be signed. However, the orientation of all other edges — or, equiv-
alently, the choice of half-edges terminated by Vi — is arbitrary. This leads to
some ambiguities.

1.2. Known continously flexible examples

Up to recent, to the author’s best knowledge the following examples of con-
tinuously flexible Kokotsakis meshes are known. Under appropriate notation
and orientation of edges the flexible cases can be characterized as follows:

(I) Planar-symmetric type (Kokotsakis, 1932, § 18): The reflection in the
plane of symmetry of V1 and V4 maps each horizontal fold onto itself while
the two vertical folds are exchanged.

(II) Translational type: There is a translation V1 7→ V4 and V2 7→ V3 map-
ping the three planes on the right hand side onto the triple on the left
hand side.

(III) Isogonal type (Kokotsakis, 1932; Bobenko et al., 2008): At each vertex
opposite angles are congruent. We return to this 3 × 3 complex of a Voss
surface in Section 4.1.

(IV) Orthogonal type (Sauer, Graf, 1931; Sauer, 1970): Here the horizontal
folds are located in parallel (say: horizontal) planes, the vertical folds in
vertical planes. P0 is a trapezoid. The underlying conditions for this 3×3
complex of T-nets will be presented in Section 4.2.

In Section 4.3 a new family of continuously flexible Kokotsakis meshes will be
introduced, which we call the line-symmetric type V though the symmetries
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are only locally. This family includes Kokotsaki’s remarkable example of a pla-
nar tesselation with congruent convex quadrangles (Kokotsakis (1932, Fig. 15),
note also Bobenko et al. (2008, Fig. 8) or Stachel (2009)).

The famous Miura-ori folding technique (e.g., Piekarski (2000) or Stachel
(2009)) contains 3×3 complexes which are of type II, III and IV, simultaneously.
As shown in Stachel (2000), any Cardan joint is also based on a spherical coupler
motion, however a particular case where the sides I10A, I20B and AB have the
spherical length π/2. An appropriate combination of two Cardan joints gives a
uniform transmission from Σ1 to Σ3. This results in a flexible case with parallel
axes I10 and I30 which obeys the conditions of type V; however, the second
decomposition according to type V is no more a Cardan joint.

We finally emphasize that the complete classification of continuously flexible
meshes has not been achieved yet.

1.3. Conventions

According to Theorem 1 our investigation takes place on the unit sphere S2

with center O. In order to avoid ambiguities in spherical geometry, we introduce
the following notations and conventions:

• Each point A on the sphere has a diametrically opposed point A, its
antipode. A circle on S2 passing through A is a great circle if and only if
it passes also through A.

• For any two points A,B with B 6= A,A the spherical segment or bar
AB stands for the shorter of the two connecting arcs on the great circle
spanned by A and B. We denote this great circle by [AB].

• The spherical distance AB is defined as the arc length of the segment AB.
We require 0 ≤ AB ≤ π thus including also the limiting cases B = A and
B = A.

• The oriented angle <) ABC on S2 is the angle of the rotation about axis
OB which carries the segmentBA into a position aligned with the segment
BC. This angle is oriented in the mathematical sense, if looking from
outside, and can be bounded by −π < <) ABC ≤ π.

2. Analysis of a spherical coupler motion

We start with the analysis of the spherical coupler motion, which is the
spherical image of the flexing pyramide with apex V1 (Fig. 2): Let I10I20 be
the frame link of a spherical four-bar with the coupler A1B1. We denote the
spherical length of the driving arm I10A1 with α1 and that of the driven arm
I20B1 with β1. Furthermore, we set γ1 := A1B1 and δ1 := I10I20 obeying

0 < α1, β1, γ1, δ1 < π .

The movement of the coupler remains unchanged when A1 is replaced by
its antipode A1 and at the same time α1 and γ1 are substituted by π − α1 and
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Figure 2: a) Pyramides with apices V1 and V2 and b) composition of the two spherical four-
bars I10A1B1I20 and I20A2B2I30 with side lengths αi, βi, γi, δi, i = 1, 2

π−δ1, respectively. The same holds for the other vertices. When I10 is replaced
by its antipode I10, then also the sense of orientation changes, when the rotation
of the driving bar I10A1 is inspected from outside of S2 either at I10 or at I10.

2.1. Relation between input and output angle

We use a cartesian coordinate frame with I10 on the positive x-axis and
I10I20 in the xy-plane such that I20 has a positive y-coordinate (see Fig. 2b).
The input angle ϕ1 is measured between I10I20 and the driving arm I10A1 in
mathematically positive sense. The output angle ϕ2 is the oriented exterior
angle at vertex I20, hence ϕ2 = <) I10I20B1. This results in the following coor-
dinates:

A1 =

0
@

cα1

sα1 cϕ1

sα1 sϕ1

1
A and B1 =

0
@

cβ1 cδ1 − sβ1 sδ1 cϕ2

cβ1 sδ1 + sβ1 cδ1 cϕ2

sβ1 sϕ2

1
A.

Herein s and c are abbreviations for the sine and cosine function, respectively.
In these equations the lengths α1, β1 and δ1 are signed. The coordinates would
also be valid for negative lengths.

The constant length γ1 of the coupler implies the condition

cα1 cβ1 cδ1 − cα1 sβ1 sδ1 cϕ2 + sα1 cβ1 sδ1 cϕ1

+ sα1 sβ1 cδ1 cϕ1 cϕ2 + sα1 sβ1 sϕ1 sϕ2 = cγ1.
(1)

Now we express sϕi and cϕi in terms of ti := tanϕi/2 setting

cϕ =
1 − t2i
1 + t2i

, sϕ =
2ti

1 + t2i
.
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Figure 3: t1 = tanϕ1/2 is a projective coordinate of point A1 on the circle a1

Note that t1 is a projective coordinate of point A1 on the circle a1 (see Fig. 3).
The same is true for t2 and B1 ∈ b1. From (1) we obtain

cα1 cβ1 cδ1 − cα1 sβ1 sδ1
1 − t22
1 + t2

2

+ sα1 cβ1 sδ1
1 − t21
1 + t2

1

+ sα1 sβ1 cδ1
1 − t21
1 + t2

1

1 − t22
1 + t2

2

+ sα1 sβ1

2t1

1 + t2
1

2t22
1 + t2

2

= cγ1

or
−K(1 + t21)(1 − t22) + L(1 − t21)(1 + t22) +M(1 − t21)(1 − t22)

+ 4 sα1 sβ1 t1t2 +N(1 + t21)(1 + t21) = 0 ,
(2)

where
K = cα1 sβ1 sδ1 , M = sα1 sβ1 cδ1 ,
L = sα1 cβ1 sδ1 , N = cα1 cβ1 cδ1 − cγ1 .

(3)

The biquadratic equation (2) describes a 2-2-correspondence between points A1

on circle a1 = (I10;α1) and B1 on b1 = (I20;β1). It can be abbreviated by

c22t
2
1t

2
2 + c20t

2
1 + c02t

2
2 + c11t1t2 + c00 = 0 (4)

setting
c00 = −K + L+M +N, c02 = K + L−M +N,

c11 = 4 sα1 sβ1 6= 0 ,
c20 = −K − L−M +N, c22 = K − L+M +N .

(5)

Alternatively, (2) can also be expressed as

sin
α1 − β1 + γ1 + δ1

2
sin

α1 − β1 − γ1 + δ1

2
t21t

2
2

+ sin
α1 + β1 + γ1 + δ1

2
sin

α1 + β1 − γ1 + δ1

2
t21 − 2 sinα1 sinβ1 t1t2

+ sin
α1 + β1 + γ1 − δ1

2
sin

α1 + β1 − γ1 − δ1

2
t22

+ sin
α1 − β1 + γ1 − δ1

2
sin

α1 − β1 − γ1 − δ1

2
= 0 .

(6)

Remark: It should be noted that conversely the 2-2-correspondance (4) defines
α1, . . . , δ1 uniquely. This can be seen as follows: First we get

4K = −c00 + c02 − c20 + c22 , 4L = c00 + c02 − c20 − c22 ,
4M = c00 − c02 − c20 + c22 , 4N = c00 + c02 + c20 + c22 .
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On the other hand

4K

c11
=

sδ1
tanα1

,
4L

c11
=

sδ1
tanβ1

,
4M

c11
= cδ1 ,

4N

c11
=

cα1 cβ1 cδ1 − cγ

sα1 sβ1

.

This gives consecutively cδ1, tanα1, tanβ1 and cγ1, which defines the four bar-
lengths uniquely within the intervall [0, π].

2.2. Relation between opposite angles
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Figure 4: a) Opposite angles ϕ1 and ψ1 at the spherical four-bar I10A1B1I20; b) Orthogonal
case: each quadrangle has orthogonal diagonals

At the end of this analysis of a spherical four-bar mechanism we focus on
opposite angles in the spherical quadrangle I10A1B1I20: The diagonal A1I20
splits the quadrangle into two triangles, and we inspect the interior angles ϕ1

at I10 and ψ1 at B1 (Fig. 4a). Also for non-convex quadrangles, the spherical
Cosine Theorem implies

cosA1I20 = cβ1 cγ1 + sβ1 sγ1 cψ1 = cα1 cδ1 + sα1 sδ1 cϕ1

Hence there is a linear function, i.e., there are constants k1, l1 ∈ R such that

cψ1 = k1 + l1cϕ1 for − 1 ≤ cψ1, cϕ1 ≤ 1 (7)

with

k1 =
cα1 cδ1 − cβ1 cγ1

sβ1 sγ1

, l1 =
sα1 sδ1
sβ1 sγ1

. (8)

For later use it is necessary to define also ψ1 as an oriented angle, hence

ψ1 = <) I20B1A1, ϕ1 = <) I20I10A1 under − π < ψ1, ϕ1 ≤ π .

This is still compatible with eq. (7).
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We note that in general for given ϕ1 there are two positions B1 and B̃1 on
circle b1 obeying (7). They are placed symmetrically with respect to the diagonal

A1I20. So, the corresponding oriented angles <) I20B1A1 and <) I20B̃1A1 have
different signs (Fig. 4a).

Lemma 2. The cosines of the opposite oriented angles ψ1 = <) I20B1A1 and
ϕ1 = <) I20I10A1 at the four-bar are linearly related by eq. (7). The signs of ϕ1

and ψ1 are different if and only if B1 and I10 are on different sides of [A1I20].

Remark: Contrary to the 2-2-correspondance describing the relation between
ϕ1 and ϕ2, the linear function (7) does not characterize the underlying four-bar
uniquely. This follows immediately from a parameter count.

2.3. Particular cases

Spherical isogram:

Under the conditions β1 = α1 and δ1 = γ1 opposite sides of the quadrangle
I10A1B1I20 have equal lengths. Such quadrangles are called spherical isograms.
In this case we have c00 = c22 = 0 in (4), and eq. (6) converts into

sα1

[
−2 sα1 t1t2 + s(α1 + γ1) t

2
1 + s(α1 − γ1) t

2
2

]
= 0.

The left hand side can be decomposed as

s(α1 − γ1)
[
s(α1 − γ1) t

2
2 − 2 sα1 t1t2 + s(α1 + γ1) t

2
1

]

= [s(α1 − γ1)t2 − (sα1 + sγ1)t1] [s(α1 − γ1)t2 − (sα1 − sγ1)t1]

because of s2α1− s2γ1 = s(α1 +γ1) s(α1−γ1). The 2-2-correspondance between
the circles a1 and b1 splits into two projectivities 2

t1 7→ t2 =
(sα1 ± sγ1)

s(α1 − γ1)
t1 , (9)

provided α1 6= γ1, π − γ1. Both projectivities keep t1 = 0 and t1 = ∞ fixed
(Fig. 3). These parameters belong to the two folded positions, where the coupler
A1B1 is aligned with the frame link I10I20. In these positions a bifurcation is
possible between the two projectivities. (Note that at the planar analogue one
of these projectivities is the identity t2 = t1 as I10A1B1I20 is a parallelogram.)

Orthogonal case:

For a given point A1 ∈ a1 the corresponding B1, B̃1 ∈ b1 are the points of
intersection between the circles (A1; γ1) and b1 = (I20;β1) (see Fig. 4a). Hence,

B1 and B̃1 are located on a great circle perpendicular to the great circle [A1I20].

2As mentioned above, the vertices of the moving quadrangle can be replaced by their
antipodes whithout changing the motion. This is the reason why the same property also
shows up under β1 = π−α1 and δ1 = π− γ1. We will not mention this in the future but only
refer to an ‘appropriate choice of orientations’.
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Under the condition

cosα1 cosβ1 = cos γ1 cos δ1. (10)

the diagonals of the spherical quadrangle I10A1B1I20 are orthogonal (Fig. 4b)
as each of the products equals the products of cosines of the four segments on
the two diagonals. Hence, under (10) B1 and B̃1 are always aligned with I10,

but also conversely, the two points A1 and Ã1 corresponding to B1 are aligned
with I20.

Lemma 3. Under condition (10) the 2-2-correspondence between a1 and b1
maps pairs of points A1 ∈ a1 spherically aligned with I20 onto pairs of points
B1 ∈ b1 which are spherically aligned with I10. Corresponding great circles
[I20A1] and [I10B1] are orthogonal (Fig. 4b).

Remark: In the notation (4) this is characterized by det
„

c22 c02
c20 c00

«

= 0,

because by (5) this is equivalent to det
„

K N
M −L

«

= 0 , which means

sα1 cα1 sβ1 cβ1 s2δ1 + sα1 cα1 sβ1 cβ1 c2δ1 − sα1 sβ1 cγ1 c2δ1 = 0

or
sα1 cα1 sβ1 cβ1 = sα1 sβ1 cγ1 cδ1 under sα1 sβ1 6= 0 .

3. Composition of two spherical coupler motions

Now we use the output angle ϕ2 of this coupler motion as the input angle
of a second coupler motion with vertices I20A2B2I30, with arm lengths α2, β2,
with the coupler length γ2 and with δ2 as length of the frame link (Fig. 2b). The
two frame links are assumed in aligned position. In the case <) I10I20I30 = π the
length δ2 is positive, otherwise negative. Analogously, a negative α2 expresses
the fact that the aligned bars I20B1 and I20A2 are pointing to opposite sides.
Changing the sign of β2 means replacing the output angle ϕ3 by ϕ3 − π. The
sign of γ2 has no influence on the transmission.

Due to (4) the transmission between the angles ϕ1, ϕ2 and the output angle
ϕ3 of the second four-bar with t3 := tanϕ3/2 can be expressed by the two
biquadratic equations

c22t
2
1t

2
2 + c20t

2
1 + c02t

2
2 + c11t1t2 + c00 = 0

d22t
2
2t

2
3 + d20t

2
2 + d02t

2
3 + d11t2t3 + d00 = 0 .

The dik are defined by equations analogue to eqs. (5) and (3). We eliminate t2
by computing the resultant of the two polynomials with respect to t2 and obtain

det




c22t
2
1 + c02 c11t1 c20t

2
1 + c00 0

0 c22t
2
1 + c02 c11t1 c20t

2
1 + c00

d22t
2
3 + d20 d11t3 d02t

2
3 + d00 0

0 d22t
2
3 + d20 d11t3 d02t

2
3 + d00


 = 0 . (11)

This biquartic equation expresses a 4-4-correspondance between points A1 and
B2 on the circles a1 and b2, respectively.
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4. Examples of flexible Kokotsakis meshes

As mentioned above, a continuously flexible Kokotsakis mesh for n = 4 is
based on a two-fold decomposition of the transmission Σ1 → Σ3 into two spher-
ical four-bars. In view of Fig. 1a we speak of the right-hand decomposition via
Σ2 and the left-hand decomposition via Σ4 = Σ′

2. Of course, in the translational
type II the two decompositions have identical spherical images.

4.1. Combination of isograms

When two isograms are combined, both 2-2-correspondances split into pro-
jectivities t1 7→ t2 and t2 7→ t3 with 0 7→ 0 and ∞ 7→ ∞ in the sense of Fig. 3.
Hence, also the 4-4-correspondance is composed from such projectivities. Each
of them is uniquely defined by any pair t1 7→ t3 with t1 6= 0,∞. Beside the two
isograms on the right-hand side we can also combine two isograms with lengths
α′

1, . . . , δ
′

1 on the left-hand side such that both 4-4-correspondances share one
projectivity. This proves the continuous flexibility of the isogonal type III: Any
Kokotsakis mesh consisting of four isogonal pyramides — the preimages of spher-
ical isograms — and with any given non-coplanar initial position is continuously
flexible (Kokotsakis, 1932).

These arguments are not only true for n = 4. We can conclude that —
referring to Fig. 1a — for k ≥ 2 isogonal pyramides on the ‘right-hand side’ of
the central polygon P0 and l ≥ 1 isogonal pyramides on the ‘left-hand side’ with
a non-coplanar initial position a flexible Kokotsakis mesh arises with an n-sided
central polygon, n = k + l. This includes for n = 3 the Bricard octahedra of
type 3. By (9) we can formulate the closure conditions as

k∏

i=1

(sαi ± sγi)

s(αi − γi)
=

l∏

j=1

(sα′

j ± sγ′j)

s(αj − γj)
and

k∑

i=1

δi =

l∑

j=1

δ′j

for any appropriate choice of signs.

4.2. Combination of quadrangles with orthogonal diagonals

In view of Lemma 3 we combine two orthogonal four-bars such that they
have one diagonal in common (see Fig. 5a), i.e., under α2 = β1 and δ2 = −δ1,
hence I30 = I10. Then the 4-4-correspondance between A1 and B2 is the square
of the 2-2-correspondance

c21t
2
1t3 + c12t1t

2
3 + c10t1 + c01t3 = 0

which expresses the fact that A1 and B2 are permanently spherically aligned
with I20. The coefficients are

c21 = tβ2(tα1 + tδ1), c12 = −tα1(tβ2 + tδ1),
c10 = tα1(tβ2 − tδ1), c01 = −tβ2(tα1 − tδ1).

Herein t is the abbreviation for the tangent function.
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Figure 5: Spherical images of the right-hand decomposition a) of the orthogonal type IV,
and b) of the line-symmetric type V

Obviously, any other composition of two such four-bars obeying

tα′

1 : tδ′1 : tβ′

2 = tα1 : tδ1 : tβ2 (12)

gives the same transmission ϕ1 7→ ϕ3. This causes the flexibility of the (3× 3)-
complexes included in T-nets, first studied in Sauer, Graf (1931). The spherical
images of the horizontal folds are located on the great circle [I10B1], that of the
vertical folds on the orthogonal diagonals [I20A1] or [I ′20A

′

1].
In the following summary we replace the orthogonality-condition (10) by a

proportion.

Theorem 4. Under

cα1 : cδ1 : cβ2 = cγ1 : cβ1 : cγ2, α2 = β1 and δ2 = −δ1

the transmission ϕ1 7→ ϕ3 (Fig. 5a) depends only on the tangents of α1, δ1 and
β2. Hence, any other choice of angles α′

1, . . . , δ
′

2 obeying these conditions and
eq. (12) gives the same transmission and therefore a flexible Kokotsakis mesh of
the orthogonal type IV.

Fig. 6 shows two different decompositions of such a transmission. The under-
lying overconstrained spherical linkage is a composition of two spherical Dixon-
mechanisms (see, e.g., Stachel, 1997). At these mechanisms the bars form a
bipartite graph and the knots are moving on two orthogonal great circles.

4.3. A new family of flexible Kokotsakis meshes

Now we specify the second four-bar as mirror of the first one after reflection
in an angle bisector at I20 (see Fig. 5b). Depending on the choice of the bisector,
this implies

(α2, β2, γ2, δ2) = (δ1, ±γ1, |α1|, −β1) or (−δ1, ±γ1, |α1|, β1). (13)
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Figure 6: Spherical image of the orthogonal type IV

Angle ψ1, previously opposite to the input angle ϕ1, becomes the output angle,
or more precisely, ϕ3 equals ±ψ1 or ±(ψ1 − π).

However, according to the 4-4-correspondance between A1 and B2 there are
still two other solutions for ϕ3. The corresponding positions of B2 are mirrors
with respect to [I30A2]. Hence, the 4-4-correspondance is reducible, and one
component is expressed by eq. (7), i.e., cϕ3 = ±(k1 + l1cϕ1). The sign depends
on the choice of the angle bisector at I20.

As already noted in Section 2.2, there are other four-bars with lengths
α′

1, . . . , δ
′

1 which produce the same transmission, i.e., with constants k′1 = ±k1,
l′1 = ±l1 by (8) and the same center I ′30 = I30 (Fig. 7). We summarize:

Theorem 5. For the composition of any four-bar (α1, . . . , δ1) and its mirror
obeying (13) the 4-4-correspondance between A1 and B2 splits. For one compo-
nent the cosines of ϕ1 and ϕ3 are linearly related. This transmission is shared
by other compositions obeying the conditions

δ1 + δ2 = δ′1 + δ′2 (mod 2π)

and

sα1 sδ1 : sβ1 sγ1 : (cα1 cδ1 − cβ1 cγ1) = sα′

1 sδ′1 : ±sβ′

1 sγ′1 : (cα′

1 cδ′1 − cβ′

1 cγ′1).

The twofold decomposition results in an overconstrained spherical linkage
(Fig. 7), which has some properties of so-called focal mechanisms in the plane
(see, e.g., Wunderlich, 1968). How can the corresponding Kokotsakis mesh be
characterized?
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Figure 7: Line-symmetric type V: Two different decompositions of the transmission ϕ1 → ϕ3

When at the spherical image the four-bars I10I20B1A1 and I20I30B2A2 arise
from each other by reflection in an angle-bisector, then the corresponding pre-
images, the pyramides with apices V1 and V2 are symmetric with respect to
a line. This axis of symmetry is perpendicular to I20 and located in a plane
bisecting the adjacent planes in Σ2 and Σ0 (compare Fig. 2a). Analogously, the
pyramides at V ′

1 and V ′

2 are line-symmetric. This is why for this new type V

the name line-symmetric is proposed though the symmetry is not global.

Corollary 6. A Kokotsakis mesh with mutually line-symmetric pyramides at
V1 and V2 as well as at V ′

1 and V ′

2 , which additionally obeys the conditions listed
in Theorem 5, is continuosly flexible.

Kokotsakis’ example of a flexible tesselation with convex quadrangles (Kokot-
sakis, 1932, Fig. 15) is a particular case of this type V, but there also the pyra-
mides at V1 and V ′

1 are mutually line-symmetric as well as that at V2 and V ′

2

(see Stachel, 2009). Here the signed angles fulfill the following conditions:

α1 + β1 + γ1 + δ1 = 2π, (α2, β2, γ2, δ2) = (−δ1, γ1, α1, β1),
(α′

1, β
′

1, γ
′

1, δ
′

1) = (−δ1, γ1, β1,−α1), (α′

2, β
′

2, γ
′

2, δ
′

2) = (−α1,−β1, δ1,−γ1).

The composition of two linear functions of type (7) is still a linear function.
Therefore we can iterate and use k pairs of symmetric four-bars on the right-
hand side and l pairs on the left-hand side. As long as they share the resulting
linear function and the resulting center of rotation, the complete spherical link-
age is continuously flexible. The corresponding preimage is a flexible Kokotsakis
mesh with even n = 2(k + l).
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Finally is should be mentioned that for given α1, β1, γ1, δ1, and β′

1 the re-
maining angles α′

1, γ
′

1, δ
′

1 obeying the conditions of Theorem 5 can be computed.
For β′

1 sufficiently close to β1 real solutions must exist (compare Fig. 7).
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