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Abstract: The geometry of pairs of linear images has been a standard topic of Descriptive Geometry for 
more than 100 years [2]. During the last twenty years great progress has been made within the field of 
Computer Vision [3]. Previously graphical or mechanical methods of reconstruction have been replaced 
by numerical methods. This paper will explain to geometers how to recover metrical data from two im-
ages using a computer algebra system. Not the presented results are new, but the way how they are de-
duced by geometric reasoning. 
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1. INTRODUCTION  
 
  The basic term in this paper is the central projection  
with center  and image plane z π , which maps any point 

 onto the point of intersection ≠x z ( )c π= ∨ ∩x z x . 
This is the geometric idealization of the photographic 
mapping with  as the focal center of the lenses and z π  
as the plane carrying the CCD sensor. The pedal point of 

 with respect to z π  is the principal point ; the dis-
tance  is the focal length. The obtained im-
age is called a  central or linear perspective. 
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Fig. 1.  Central projection and the camera frame 
 
 Each central projection or photographic mapping is 
connected with a particular coordinate frame in space, 
the camera frame. Its origin is placed at the center , the 
principal ray  is the 

z
∨z h 3x -axis. The main directions in 

the photosensitive plane serve as 1x - and 2x -axis. These 
two coordinate axes span the vanishing plane vπ  of this 
central projection. 
 For any given central photo the position of the princi-
pal point  and the focal distance d (adjusted to the scale 
of the photo) define the intrinsic calibration parameters. 

A photo with known intrinsic calibration parameters is 
called calibrated. In this case the position of the camera 
frame relative to the photo is known. This determines – 
up to a rigid spatial motion – the bundle of rays  in 
the viewing situation, i.e., in the moment when the photo 
was made.   
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c∨z x

 On the other hand, the parameters which define posi-
tion of the camera frame with respect to the world coor-
dinate frame are called extrinsic calibration parameters. 
In the sequel we assume that two calibrated photos of the 
same object are given, and our goal is to recover the met-
rical data of the depicted object. A classical theorem 
originating from the Bavarian geometer S. Finsterwalder 
(1899) states: 
  
Theorem 1 (Fundamental Theorem of Photogrammetry): 
From two calibrated images the depicted object can be 
reconstructed up to a similarity.  
 
2. THE EPIPOLAR CONSTRAINT 
 
 Let two central projections be given with centers , 

 and image planes 
1z

2z 1π  and 2π , respectively. We pre-
suppose 1 2≠z z .  
 

 
 
Fig. 2.  A pair of perspectives in the viewing situation. 2  and 

 are the epipoles,  and are corresponding images  
'z

1''z 'x ''x
 



 

Any space point  different from the two centers has   
two images  and . We call these two images of  
corresponding (Fig. 2), and this remains after the two 
perspectives are scaled and placed somewhere else thus 
destroying the viewing situation. This is called a two-
views system.  
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 The basic geometric property of two-views systems 
results from the fact that for all space points  which are 
not aligned with the two centers, the two rays of sight 

 and  are coplanar and they span a plane 

x

1 ∨z x 2 ∨z x δ x  
which in both images is depicted in an edge view (see 
Fig. 2). In the viewing situation the images  and  of 
these planes 

1l 2l
δ x  constitute two perspective line pencils in 

1π  and 2π . After the displacement of the two images  
the pencils remain mutually projective. These lines are 
called epipolar. The centers  and  of the two pen-
cils are the epipoles. The projectivity between the two 
pencils is called epipolar constraint. We summarize:  

2'z 1''z

  
Theorem 2: For any pair of linear perspectives of a 
scene there is a projectivity  between two particular line 
pencils such that two image points  and  are cor-
responding if and only if they are located on correspond-
ing epipolar lines.  

'x ''x

 
For the numerical reconstruction we must express the 
epipolar constraint in an analytical way:  
 For this purpose we specify the coordinates. For each 
image point  or  we use its 3D coordinates with 
respect to the corresponding camera frame as homogene-
ous 2D coordinates and we denote this 3-vector again 
with the same symbol. According to Fig. 2 the three vec-
tors  ,   and  are coplanar. Therefore 
their triple product vanishes. However, we have to pay 
attention to the fact that  and  are given in two 
different camera frames. Let 

'x ''x

21 2 1:= −z z z
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  1 21: .= +x z R x
be the coordinate transformation from the second camera 
frame into the first one with an orthogonal matrix R . 
Now the complanarity is equivalent to 
  . 21 21 210 det( ', , . '') '.( . '')= + = ×x z z R x x z R x
We may replace the cross product with  by the prod-
uct of  with a skew-symmetric matrix  with the 
coordinates of  as entries, i.e., 

21z
''x S

21z
 . 21' . ( . '') '. ( . . '')× =x z R x x S R x
Now we write the dot product in matrix form and end up 
with 
  
Theorem 3: When for two calibrated photos each image 
point is represented by its coordinate vector with respect 
to the camera frame, then the two points  and  are 
corresponding if and only if  

'x ''x

  with the essential matrix . T' . . '' 0=x B x .=B S R
Here  is skew-symmetric, i.e., TS S  and R  is or-
thogonal, i.e., T 1R

S = −
−=

  

This essential matrix  is the coefficient matrix of a 
bilinear form and contains nine entries. Its rank is 

B
3<  

since any skew-symmetric  matrix is singular. How-
ever,  is even more special.  

3 3×
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Fig. 3. Step 1) Specify pairs of corresponding points and de-
termine their coordinates with respect to the camera frames 

  
Theorem 4: The essential matrix of two calibrated 
photos has two equal singular values.  

B

  
Proof: A result of Linear Algebra says that each matrix 

can be expressed by a product  with a diago-
nal matrix  of the same size and two orthogonal matri-
ces  and . All entries in  are . The positive 
digonal elements are called singular values or principal 
distortions of . They are uniquely defined, and their 
computation is a standard routine for computer-algebra 
systems. E.g., the related command in Maple reads 

B T. .U D V
D

U V D 0≥

B

 sing_vals := evalf(Svd(B,U,V)). 
The singular values of .=B S R  are identical with that of  
the skew-symmetric S , since  is orthogonal. And they 
are invariant against the coordinate transformation from 

 to 

R

x .=x W x%  with a direct orthogonal matrix , since W
 , hence . T.( . ) . . . .= =W S x W S W x S x%% % T. .=S W S W%

On the other hand  
  21 21 21. .( ) ( . ) ( . ) ( )= × = × = ×S x W z x W z W x z x% % % % . 
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This reveals that the entries in S  are the transformed 
coordinates of . We may assume  with 

. Thus we obtain 

%

21z T
21 (0,0, )z=z%

21|| || 0z = ≠z

 . 3

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

.
z z

z z

− −

= =
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

S D R% .

  is orthogonal and represents the rotation about the 3R

3x -axis through . The matrix  contains the singu-
lar values  of S , of S  and . 

090 D
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 Conversely, if  is given, then is 

skew-symmetric as well as the matrix , 
which is obtained by transformation with .  This leads 
to the factorization 

T. .=B U D V 3.D R

3
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Theorem 5: If  is the essential matrix for 
two calibrated photos, then the decomposition of B  into 
the product of a skew-symmetric and an orthogonal 
matrix reads  and R U . 

T. .=B U D V

.S R
T

3. . .= ±S U D R U T T
3. .

  
It is proved in [3] or [1] that this is the only possible fac-
torization of this type. It is important to realize that the 
two factors  and  define the relative position be-
tween the two camera frames up to the distance 

2 1 . Hence we can recover the viewing situation 
and reconstruct the depicted object by intersecting corre-
sponding rays  and . Any variation of the 
distance  acts as a similarity on the recovered 
object. 
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For the computation of the essential matrix we use the 
coordinates of  pairs ( '  of corresponding 
points and apply least square methods to rule out the im-
precisions of the measurement. This is carried out in two 
steps: We first compute the optimal solution  of the 
homogeneous system of equations 

7n > , '')i ix x

B%
T' . . '' 0i i =x B x  origi-

nating from the bilinear relation in Theorem 3. This is an 
eigenvalue problem (see, e.g., [1]). In order to find in the 
neighborhood of   a matrix with two equal singular 
values, we follow  

B%

  
Theorem 6: Let  be the singular value de-
composition of  with 

T. .=B U D V% %

B% 1 2 3diag ( , ,λ λ λ= )D%  obeying 

1 2 3λ λ λ≥ ≥ . Then the replacement of  by D%

diag ( , ,0λ λ= )D  with 1 2( ) / 2λ λ λ= +  gives the closest 
essential matrix  , i.e., with minimal Fro-
benius norm .  

T. .=B U D V
|| ||−B B%

  
For the proof see, e.g., [3] or [1].   
 
 
 

3. THE ALGORITHM  
 
Now we can formulate the numerical algorithm for the 
numerical reconstruction of two calibrated images with 
the aid of any computer algebra system (e.g., Maple). It 
consists of the following six steps: 
 

 
 

 
 

Fig. 4. Step 4) The essential matrix  determines the 
relative position of the two camera frames and hence the epipo-

lar lines passing through the epipoles  

.=B S R

 
1) Specify  pairs ( ' , , of corre-

sponding points (Fig. 3) and determine their coordi-
nates with respect to the corresponding camera 
frame by measurements in the photos. 

7n > , '')i ix x 1,...,i = n

2) Set up the homogeneous linear system of equations 
T' . . '' 0i i =x B x  for the unknown essential matrix B . %

3)  The optimal solution  is an eigenvector of the 
smallest eigenvalue of  , when A  denotes the 
coefficient matrix of the linear system of equations. 

B%
T.A A

4) Based on the singular value decomposition of , i.e.,  
 with , 

B%
T. .=B U D V% % T 1−=U U 1 2 3diag ( , ,λ λ λ= )D% , 

1 2 3λ λ λ≥ ≥ T 1, −=V V

/ 2

, compute the closest rank 2 
matrix with two equal singular values. Due to Theo-
rem 6 this is  with the arithmetic mean T. .=B U D V

1 2( )λ λ λ= +  as entry in the diagonal matrix 
diag ( , ,0λ λ= )D . Matrix B  defines the projectivity 
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between epipolar lines (Figs. 2 and 4).  The epipole 
 solves the equation , the epipole  is 

a solution of the homogeneous system 
1''z . =B x 0 2'z

T. =B x 0 .  
5) Factorize  into the product  of a skew-

symmetric matrix B  and an orthogonal  accord-
ing to Theorem 5. This determines the relative posi-
tion of the two camera frames – up to the scale.    

B .S R
R

6) In one of the camera frames compute the approximate 
point  of intersection between corresponding rays 

 and  for via the common 
intersecting normal line (Fig. 5) and inspect the 
square sum of the shortest distances as a measure for 
the obtained precision. 

is

1 'i∨z x 2 ''i∨z x 1, ...,i = n

7) Transform the recovered point coordinates of the  
scene into any world coordinate frame.   

 
 

 
 
Fig. 5.  Step 6)  Compute the approximate point  of intersec-

tion  between corresponding rays  and  
is

1 'i∨z x 2 ''i∨z x
 
Figs. 3-4 show an example with the computed epipolar 
lines and epipoles. The recovered object is displayed in 
Fig. 6. 
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Fig. 6.  The reconstructed object, the historical `Stadtbahn' 
station Karlsplatz in Vienna (Otto Wagner, 1897) 
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